JP2004291077A - Brazing heat treatment method and brazed product using the same - Google Patents

Brazing heat treatment method and brazed product using the same Download PDF

Info

Publication number
JP2004291077A
JP2004291077A JP2003090414A JP2003090414A JP2004291077A JP 2004291077 A JP2004291077 A JP 2004291077A JP 2003090414 A JP2003090414 A JP 2003090414A JP 2003090414 A JP2003090414 A JP 2003090414A JP 2004291077 A JP2004291077 A JP 2004291077A
Authority
JP
Japan
Prior art keywords
brazing
heat treatment
layer
alloy
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003090414A
Other languages
Japanese (ja)
Inventor
Kazuma Kuroki
一真 黒木
Hiromitsu Kuroda
洋光 黒田
Hideyuki Sagawa
英之 佐川
Sukaku Shirai
枢覚 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003090414A priority Critical patent/JP2004291077A/en
Publication of JP2004291077A publication Critical patent/JP2004291077A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brazing heat treatment method which brings low product manufacturing cost and superior resistance against heat, corrosion and high temperature oxidation in a brazed joined part, and also to provide a brazed product having improved reliability in brazed joined parts. <P>SOLUTION: In this brazing heat treatment method, a brazing material 10 having a brazing layer 15 on the surface of a base material 11 is heated in a high vacuum state for the brazing heat treatment. The brazing material 10 is arranged in a vacuum heating furnace together with Cr or a Cr alloy. Then, at a heat treatment temperature T in the range of 900≤T≤1,200°C, the brazing heat treatment is performed under conditions in which the degree of vacuum V satisfies an expression, V≤4×10<SP>ä(T/100)-13}</SP>(Pa), with the brazing layer 15 fused, and with chromium components of Cr or a Cr alloy evaporated in the vacuum heating furnace. Subsequently, the vacuum heating furnace is cooled to vapor-deposit a Cr or Cr alloy layer on the surface of the brazing layer 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ろう付け用複合材及びそれを用いたろう付け製品に係り、特に、熱交換器及び燃料電池用部材のろう付けに用いられる複合材及びそれを用いたろう付け製品に関するものである。
【0002】
【従来の技術】
自動車用オイルクーラの接合材としてステンレス基クラッド材が使用されている。これは、基材であるステンレス鋼板の片面又は両面に、ろう材としての機能を有するCu材がクラッドされている。
【0003】
また、ステンレス鋼や、Ni基又はCo基合金などからなる部材のろう付け材として、ろう付け接合部の耐酸化性や耐食性に優れる各種Niろう材が、JIS規格により規定されている。
【0004】
さらに、熱交換器の接合に用いられるNiろう材として、粉末状のNiろう材に、Ni、Cr、又はNi−Cr合金の中から選択される金属粉末を4〜22wt%添加してなる粉末Niろう材が提案されている(例えば、特許文献1参照)。
【0005】
また、基材であるステンレス鋼の表面にNi及びTiからなるろう付け層を有する、即ちNi/Ti/ステンレス鋼というろう付け層構造を有する自己ろう付け性複合材がある(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開2000−107883号公報
【特許文献2】
特開平7−299592号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来のろう材又はろう付け用複合材を、高温・高腐食性のガス又は液体に晒される熱交換器(排ガス再循環装置(以下、EGR(Exhaust Gas Recirculation)と示す)用クーラ)の接合用ろう材として使用する場合、以下に示すような問題があった。
【0008】
▲1▼ 前述したステンレス基クラッド材を自動車用オイルクーラの接合材として使用する場合、耐熱性及び耐食性については全く問題がないが、このステンレス基クラッド材をEGR用クーラの接合材として使用する場合、EGR用クーラ内は高温で、かつ、腐食性の高い排気ガスが循環されることから、ステンレス基クラッド材のろう材(Cu材)では、耐高温腐食性(耐高温酸化性)及び耐食性が十分でないという問題があった。
【0009】
▲2▼ 前述した各種Niろう材は粉末状であることから、各ろう付け接合部に粉末Niろう材をそれぞれ塗布するという作業が必要になる。つまり、ろう付け作業に多大な労力を要するため、ろう付け製品の生産性が著しく低く、その結果、製造コストの上昇を招くという問題があった。
▲3▼ 前述した自己ろう付け性複合材は、低温湿潤環境下における耐食性は十分であるものの、高温の酸素雰囲気下における耐食性(耐高温酸化性)は不十分であるという問題があった。
【0010】
以上の事情を考慮して創案された本発明の一の目的は、製造コストが安価で、かつ、ろう付け接合部の耐熱性、耐食性、及び耐高温酸化性が良好なろう付け熱処理方法を提供することにある。
【0011】
また、本発明の他の目的は、ろう付け接合部の信頼性が良好なろう付け製品を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成すべく本発明に係るろう付け熱処理方法は、基材表面にろう付け層を有するろう付け材を高真空下で加熱し、ろう付け熱処理を行う方法において、上記ろう付け材をCr又はCr合金と共に真空加熱炉内に配置し、その後、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
の式を満足する条件で上記ろう付け熱処理を行ってろう付け層を溶融させ、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させ、その後、真空加熱炉の冷却を行い、上記ろう付け層の表面にCr又はCr合金層を蒸着させるものである。
【0013】
また、基材表面にろう付け層を有するろう付け材を高真空下で加熱し、ろう付け熱処理を行う方法において、上記ろう付け材のろう付け層を、Ti又はTi合金層とCu又はCu合金層とを重ねて構成し、そのろう付け材をCr又はCr合金と共に真空加熱炉内に配置し、その後、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
の式を満足する条件で上記ろう付け熱処理を行ってろう付け層を溶融させ、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させ、その後、真空加熱炉の冷却を行い、各金属成分が拡散して合金化した上記ろう付け層の表面に、Cr又はCr合金層を蒸着させるものである。
【0014】
また、基材表面にろう付け層を有するろう付け材を高真空下で加熱し、ろう付け熱処理を行う方法において、上記ろう付け材のろう付け層を、Ti又はTi合金層、Cu又はCu合金層、及びNi又はNi合金層を組み合わせて重ねて構成し、そのろう付け材をCr又はCr合金と共に真空加熱炉内に配置し、その後、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件で上記ろう付け熱処理を行ってろう付け層を溶融させ、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させ、その後、真空加熱炉の冷却を行い、各金属成分が拡散して合金化した上記ろう付け層の表面に、Cr又はCr合金層を蒸着させるものである。
【0015】
具体的には、請求項4に示すように、上記真空加熱炉内の、ろう付け材を載置するステージにステージ自体を冷却する冷却手段を設け、その真空加熱炉のステージ上にろう付け材を載置することが好ましい。
【0016】
また、請求項5に示すように、上記真空加熱炉内の、ろう付け材の載置部分以外を耐熱材で覆い、その真空加熱炉内にろう付け材を配置することが好ましい。
【0017】
本発明に係るろう付け熱処理方法によれば、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件でろう付け熱処理を行うことで、耐熱性、耐食性、及び耐高温酸化性が良好なろう付け接合部を、安価に得ることができる。
【0018】
一方、本発明に係るろう付け製品は、上述したろう付け熱処理方法を用いて接合したものである。
【0019】
これによって、ろう付け接合部の信頼性が良好なろう付け製品が得られる。
【0020】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0021】
(第1の実施の形態)
本発明に係るろう付け熱処理方法に用いるろう付け用複合材の一例を図1に示す。
【0022】
図1に示すように、ろう付用複合材10は、薄板状の基材11の表面(図1中では上面のみ)に、Cu又はCu合金層13a、Ti又はTi合金層12、及びCu又はCu合金層13bを3層に重ねてなるろう付け層15を形成したものである。ここで言う基材11の表面は、外部に露出する全ての面を示している。
【0023】
この複合材10に、適宜、圧延加工を施すことで、所望の厚さのろう付け用複合材(最終製品)が得られる。
【0024】
基材11の構成材は、Feを主成分とするFe基合金が好ましく、特にステンレス鋼が好ましい。
【0025】
また、ろう付け層15に、Pを0.02〜10wt%、好ましくは5〜10wt%含有させることで、ろう材の湯流れ性、耐酸化性を著しく改善することができる。Pの含有量を0.02〜10wt%と限定したのは、0.02wt%未満だと、湯流れ性の向上が期待できないためであり、逆に10wt%を超えると、ろう付け層15が脆化し、振動疲労特性及び接合強度が著しく低下するためである。
【0026】
図1に示したろう付用複合材10は、基材11の片面(図1中では上面)のみにろう付け層15を形成しているが、基材11の両面(図1中では上・下面)にろう付け層15,15を形成してもよい。
【0027】
また、本実施の形態においては、3層構造のろう付け層15を有する複合材10を用いて説明を行ったが、これに限定するものではなく、2層構造又は4層以上の構造のろう付け層であってもよい。
【0028】
次に、この複合材10を用いた本実施の形態に係るろう付け熱処理方法について説明する。
【0029】
先ず、複合材10(ろう付け材)を、Cr又はCr合金と共に真空加熱炉内に配置する。複合材10は、冷却手段を備えたステージ上に載置する。この冷却手段による空冷又は水冷により、ステージは、その内部から冷却可能である。より好ましくは、真空加熱炉内の、壁面及びステージ表面における複合材10の周辺部分(真空加熱炉内の、ろう付け材の載置部分以外)を、Cr蒸着(後述)を防ぐための耐熱材で覆い、複合材10以外にはCr蒸着が生じないようにする。
【0030】
次に、ほぼ真空中、ろう付け層15が十分溶融する温度での定温保持を行い、ろう付け熱処理を行う。具体的には、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件でろう付け熱処理を行う。例えば、熱処理温度が900℃の時は真空度を4×10−4Pa以下、1000℃の時は真空度を4×10−3Pa以下、1100℃の時は真空度を4×10−2Pa以下、1200℃の時は真空度を4×10−1Pa以下とする。つまり、図2に示すように、ろう付け熱処理条件域(図2中の斜線領域)Aは、熱処理温度が低いほど真空度は高く(圧力は小さく)、熱処理温度が高いほど真空度は低く(圧力は大きく)なる。これらの条件でろう付け熱処理を行うことによって、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させることが可能となる。
【0031】
その後、加熱を停止して真空加熱炉の冷却(炉冷)を行う。この冷却過程において、ステージに設けた冷却手段を用いることで、複合材10が優先的に冷却されて低温となる。その結果、ろう合金層(各金属成分(Cu及びTi)が拡散して合金化したろう付け層15)の表面にCrが蒸着すると共に、蒸着したCrはろう合金層と一部混合し、ろう付け接合部を有するろう付け製品が得られる。ここで言う、ろう合金層の表面とは、最外表面のことではなく、最外表面を含んだ表層部のことを意味している。つまり、Crは、ろう合金層の最外表面だけに蒸着するのではなく、ろう合金層の内部にも一部取り込まれて混入される。
【0032】
このろう付け製品を高温の酸素雰囲気に晒すことによって、ろう合金層の内部に混入していたクロム成分が、ろう付け接合部の表面に拡散すると共に酸化され、図3に示すように、ろう合金層36の表面が酸化クロム層37で覆われたろう付け接合部35を有するろう付け製品30が得られる。この酸化クロム層37は、緻密な酸化膜であり、化学的に極めて安定であることから、ろう付け接合部35の耐熱性、耐食性、及び耐高温酸化性を著しく向上させることができる。その結果、高温(約600〜800℃)の酸化雰囲気下におけるろう合金層36の酸化を十分に防ぐことができ、高温酸化に伴うろう付け接合部35の接合強度の低下が生じにくくなり、ろう付け製品30の接合部の信頼性が良好となる。
【0033】
よって、本実施の形態に係るろう付け熱処理方法を用いてろう付け熱処理することで、耐熱性、耐食性、及び耐高温酸化性に優れたろう付け接合部を、容易に、かつ、製造コスト安価に得ることができ、高温・高腐食性のガス又は液体に晒されるEGR用クーラ等のろう付け接合部のろう付け熱処理方法として最適となる。
【0034】
また、本実施の形態のろう付け熱処理方法に用いた複合材10は、ろう付け層15を、Ti又はTi合金層12と、Cu又はCu合金層13a,13bとで構成しているため、ろう付けの際、Tiろう材中にCuろう材のCu成分が混入する(溶け込む)。これによって、Ti又はTi合金を含むろう材の融点を下げることができ、このろう材を用いたろう付けを980〜1200℃近傍で行うことが可能となる。その結果、複合材10をろう材として使用しても、優れたろう付け性を有するろう付け接合部を得ることができる。
【0035】
また、複合材10は、基材11の表面にろう付け層15を一体に設けているため、ろう付けの際、従来の各種Niろう材のように、各ろう付け接合部に粉末Niろう材をそれぞれ塗布する必要はなく、ろう付け作業に多大な労力を要することはない(ろう付け作業性が良好となる)。つまり、複合材10を用いてろう付けしてなるろう付け製品30は、接合を行う一組の被ろう付け材の内、一方の被ろう付け材を基材11として複合材10を形成し、この複合材10と他方の被ろう付け材を重ね合わせて加熱することで得られる。その結果、ろう付け製品30の歩留まり・生産性が良好となり、延いては製造コストの低減を図ることができる。
【0036】
また、複合材10は、ろう付け層15の最内層及び最外層(図1中では最下層及び最上層)が、Ti又はTi合金層12ではなく、Cu又はCu合金層13a,13bであることから、ろう付けの際に、ステンレス鋼からなる基材11とTiとの反応を抑制することができ、その結果、ろう付け接合部の信頼性がより高まる。
【0037】
よって、複合材10を用いてろう付けすることで、ろう付け特性が良好で、かつ、耐熱性、耐食性、及び耐高温酸化性に優れたろう付け接合部を、容易、安価に得ることができる。
【0038】
次に、本発明の他の実施の形態を添付図面に基いて説明する。
【0039】
(第2の実施の形態)
本発明に係るろう付け熱処理方法に用いるろう付け用複合材の他の一例を図4に示す。尚、図1と同様の部材には同じ符号を付しており、これらの部材については詳細な説明を省略する。
【0040】
前実施の形態に係るろう付け熱処理方法で用いた複合材10は、Ti又はTi合金層12を、同種の金属で、つまりCu又はCu合金層13a,13bで挟んでなるろう付け層15で構成されるものであった。
【0041】
これに対して、図4に示すように、本実施の形態に係るろう付け熱処理方法で用いる複合材40は、Ti又はTi合金層12を、異種の金属で、つまりCu又はCu合金層43、Ni又はNi合金層44で挟んでなるろう付け層45で構成されるものである。
【0042】
また、本実施の形態においては、3層構造のろう付け層45を有する複合材40を用いて説明を行ったが、これに限定するものではなく、2層構造又は4層以上の構造のろう付け層であってもよい。
【0043】
複合材40を用いた本実施の形態に係るろう付け熱処理方法においても、前実施の形態と同様の作用効果が得られる。
【0044】
また、本実施の形態のろう付け熱処理方法に用いた複合材40は、ろう付け層45を、Ti又はTi合金層12、Cu又はCu合金層43、及びNi又はNi合金層44で構成しているため、ろう付けの際、Tiろう材中にCuろう材のCu成分及びNiろう材のNi成分が混入する(溶け込む)。これによって、Ti又はTi合金を含むろう材の融点を下げることができ、このろう材を用いたろう付けを980〜1200℃近傍で行うことが可能となる。その結果、複合材40をろう材として使用しても、優れたろう付け性を有するろう付け接合部を得ることができる。
【0045】
また、複合材40は、基材11の表面にろう付け層45を一体に設けているため、複合材10と同様に、複合材40を用いてろう付けしてなるろう付け製品50の歩留まり・生産性が良好となり、延いては製造コストの低減を図ることができる。
【0046】
また、複合材40は、ろう付け層45の最内層及び最外層(図4中では最下層及び最上層)が、Ti又はTi合金層12ではなく、Cu又はCu合金層43及びNi又はNi合金層44であることから、ろう付けの際に、ステンレス鋼からなる基材11とTiとの反応を抑制することができ、その結果、ろう付け接合部の信頼性がより高まる。
【0047】
よって、複合材40を用いてろう付けすることで、ろう付け特性が良好で、かつ、耐熱性、耐食性、及び耐高温酸化性に優れたろう付け接合部を、容易、安価に得ることができる。
【0048】
第1及び第2の実施の形態に係るろう付け熱処理方法を用いて接合したろう付け製品30,50は、EGR用クーラなどの高温・高腐食性のガス又は液体に晒される熱交換器のみに、その用途を限定するものではなく、その他にも、例えば、燃料電池の改質器用クーラ、燃料電池部材、オイルクーラ、ラジエータ、二次電池部材などの各種用途にも適用可能である。
【0049】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0050】
【実施例】
(実施例1)
厚さ0.5mmの純Cu条材、厚さ2.0mmの純Ti条材、および厚さ0.5mmの純Cu条材を、積層構造がCu/Ti/Cuとなるように重ね合わせ、熱間圧延によりクラッドし、板厚が1.4mmのクラッド板を作製した。このクラッド板に対して引き続き冷間圧延を行い、板厚が1.0mmのクラッド板を作製した。
【0051】
このクラッド板を、厚さ2.5mmのSUS304(JIS規格)条材の上に配置し(Cu/Ti/Cu/SUS)、熱間圧延によりクラッドし、引き続き冷間圧延を行い、板厚が0.5mmのろう付け用複合材を作製した。
【0052】
この複合材を、30gのクロム単体と共にバッチ式外熱型真空加熱炉内に配置する。その後、熱処理温度Tが900℃、真空度が2.0×10−4Paの条件で10分間保持した後、冷却を行い、ろう付け熱処理を行った。冷却時は、ステージ内部に空気を注入・排出させて、ステージを優先的に冷却する。また、加熱炉内の、壁面及びステージ表面における複合材の周辺部分には耐熱材をライニングし、Cr蒸着を防止する。
【0053】
(実施例2)
厚さ1.0mmの純Ni条材、厚さ2.0mmの純Ti条材、および厚さ0.5mmの純Cu条材を、積層構造がNi/Ti/Cuとなるように重ね合わせる以外は、実施例1と同様にして、ろう付け用複合材を作製した。
【0054】
この複合材を用い、30gのクロム単体と共に実施例1と同様のバッチ式外熱型真空加熱炉内に配置する。その後、熱処理温度Tが1000℃、真空度が2.0×10−3Paの条件で10分間保持した後、冷却を行い、ろう付け熱処理を行った。
【0055】
(比較例1)
実施例1において、熱処理温度Tを900℃、真空度を3.0×10−3Paとする以外は全く同様にして、ろう付け熱処理を行った。
【0056】
(比較例2)
実施例2において、熱処理温度Tを1000℃、真空度を1.0×10−1Paとする以外は全く同様にして、ろう付け熱処理を行った。
【0057】
(従来例1)
厚さ1.0mmの純Cu条材、厚さ2.0mmの純Ti条材、および厚さ1.0mmの純Cu条材を、積層構造がCu/Ti/Cuとなるように重ね合わせる以外は、実施例1と同様にして、ろう付け用複合材を作製した。
【0058】
この複合材をバッチ式外熱型真空加熱炉内に配置する。その後、熱処理温度Tが900℃、真空度が8.0×10−2Paの条件で10分間保持した後、冷却を行い、ろう付け熱処理を行った。
【0059】
(従来例2)
実施例2と同様の複合材を、実施例1と同様のバッチ式外熱型真空加熱炉内に配置する。その後、熱処理温度Tが1000℃、真空度が4.0×10−2Paの条件で10分間保持した後、冷却を行い、ろう付け熱処理を行った。
【0060】
実施例1,2、比較例1,2、及び従来例1,2の各複合材について、ろう付け熱処理後におけるろう付け接合部の耐高温酸化性の評価を行った。各複合材の諸元(ろう付け層の積層構造、熱処理温度T(℃)、及び真空度(Pa))、及び各複合材の評価結果を表1に示す。
【0061】
ここで、耐高温酸化性の評価は、実施例1,2、比較例1,2、及び従来例1,2の各複合材に対して、1気圧の大気中、600℃で72時間保持するという高温酸化試験を行い、試験前後の重量変化、及び断面観察による酸化被膜の厚さにより耐高温酸化性を評価した。
【0062】
【表1】

Figure 2004291077
【0063】
表1に示すように、本発明に係るろう付け熱処理方法を用いた実施例1,2は、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件でろう付け熱処理を行っている(つまり、図2中の斜線領域(ろう付け熱処理条件域A)内である)ため、ろう付け熱処理中、炉内に十分な量のCrが蒸発する。その結果、ろう合金層にCrを蒸着させることができ、高温酸化試験時に、ろう付け接合部の表面に、十分な厚さの酸化クロム被膜が形成される。よって、耐高温酸化性が極めて良好となった。
【0064】
これに対して、比較例1,2は、ろう付け熱処理時の真空度Vが、上記▲1▼式を満足していない(つまり、図2中の斜線領域(ろう付け熱処理条件域A)外である)ため、ろう付け熱処理中、炉内にCrを全く(又は殆ど全く)蒸発させることができない。その結果、高温酸化試験時に、ろう付け接合部の表面に酸化クロム被膜が全く(又は殆ど全く)形成されず、耐高温酸化性は不良となった。
【0065】
また、従来例1,2は、ろう付け熱処理時に、加熱炉内にクロム単体を配置していないため、高温酸化試験時に、ろう付け接合部の表面に酸化クロム被膜が全く形成されず、耐高温酸化性は不良となった。
【0066】
以上、本発明に係るろう付け熱処理方法を用いた実施例1,2は、ろう付け接合部の耐高温酸化性がいずれも良好であることから、ろう付け接合部の信頼性に優れたろう付け熱処理方法であることがわかる。
【0067】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を発揮する。
(1) 本発明に係るろう付け熱処理方法によれば、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件でろう付け熱処理を行うことで、耐熱性、耐食性、及び耐高温酸化性が良好なろう付け接合部を、安価に得ることができる。
(2) (1)のろう付け用複合材を用いてろう付けすることで、ろう付け接合部の信頼性が良好で、製造コストが安価なろう付け製品を得ることができる。
【図面の簡単な説明】
【図1】本発明に係るろう付け熱処理方法に用いるろう付け用複合材の一例を示す断面図である。
【図2】ろう付け熱処理時における温度と真空度との関係を示す図である。
【図3】図1のろう付け用複合材に、本発明に係るろう付け熱処理方法を用いたろう付け熱処理を行った後の断面図である。
【図4】本発明に係るろう付け熱処理方法に用いるろう付け用複合材の他の一例を示す断面図である。
【図5】図2のろう付け用複合材に、本発明に係るろう付け熱処理方法を用いたろう付け熱処理を行った後の断面図である。
【符号の説明】
10,40 ろう付け用複合材(ろう付け材)
11 基材
12 Ti又はTi合金層
13a,13b,43 Cu又はCu合金層
15,45 ろう付け層
30,50 ろう付け製品
35,55 ろう付け接合部
36,56 ろう合金層
37,57 酸化クロム層
44 Ni又はNi合金層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a brazing composite material and a brazing product using the same, and more particularly, to a composite material used for brazing a heat exchanger and a member for a fuel cell, and a brazing product using the same.
[0002]
[Prior art]
Stainless steel-based clad materials are used as joining materials for automotive oil coolers. In this method, a Cu material having a function as a brazing material is clad on one or both surfaces of a stainless steel plate as a base material.
[0003]
In addition, as brazing materials for members made of stainless steel, Ni-based or Co-based alloys, various Ni brazing materials having excellent oxidation resistance and corrosion resistance of brazed joints are specified by JIS standards.
[0004]
Further, as a Ni brazing material used for joining the heat exchanger, a powder obtained by adding 4 to 22 wt% of a metal powder selected from Ni, Cr, or a Ni-Cr alloy to a powdery Ni brazing material. A Ni brazing material has been proposed (for example, see Patent Document 1).
[0005]
Further, there is a self-brazing composite material having a brazing layer made of Ni and Ti on the surface of stainless steel as a base material, that is, having a brazing layer structure of Ni / Ti / stainless steel (for example, Patent Document 2). reference).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-107883 [Patent Document 2]
JP-A-7-299592
[Problems to be solved by the invention]
However, a conventional brazing material or a brazing composite material is exposed to a high-temperature, highly corrosive gas or liquid and is used in a heat exchanger (cooler for an exhaust gas recirculation device (hereinafter referred to as EGR (Exhaust Gas Recirculation))). When used as a brazing filler metal, there are the following problems.
[0008]
{Circle around (1)} When the above-mentioned stainless base clad material is used as a joining material for an automotive oil cooler, there is no problem in terms of heat resistance and corrosion resistance, but when this stainless base clad material is used as a joining material for an EGR cooler. Since the EGR cooler has a high temperature and highly corrosive exhaust gas is circulated, the brazing material (Cu material) of the stainless base clad material has high temperature corrosion resistance (high temperature oxidation resistance) and corrosion resistance. There was a problem that it was not enough.
[0009]
{Circle over (2)} Since the above-mentioned various Ni brazing materials are in a powder form, it is necessary to apply a powder Ni brazing material to each brazing joint. That is, since a large amount of labor is required for the brazing operation, the productivity of the brazed product is extremely low, and as a result, there is a problem that the manufacturing cost is increased.
{Circle around (3)} Although the self-brazing composite material described above has sufficient corrosion resistance in a low-temperature and humid environment, there is a problem that the corrosion resistance (high-temperature oxidation resistance) in a high-temperature oxygen atmosphere is insufficient.
[0010]
SUMMARY OF THE INVENTION One object of the present invention, which has been made in view of the above circumstances, is to provide a brazing heat treatment method that has low manufacturing cost and good heat resistance, corrosion resistance, and high-temperature oxidation resistance of a brazed joint. Is to do.
[0011]
It is another object of the present invention to provide a brazed product having good brazed joint reliability.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a brazing heat treatment method according to the present invention comprises heating a brazing material having a brazing layer on the surface of a base material under a high vacuum, and performing a brazing heat treatment. Or placed in a vacuum heating furnace together with a Cr alloy, and then, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V is
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
The above-mentioned brazing heat treatment is performed under the conditions satisfying the following equation to melt the brazing layer, evaporate the chromium component of Cr or a Cr alloy in a vacuum heating furnace, and then cool the vacuum heating furnace to perform the brazing. A Cr or Cr alloy layer is deposited on the surface of the layer.
[0013]
Further, in a method of heating a brazing material having a brazing layer on the surface of a base material under a high vacuum and performing a brazing heat treatment, the brazing layer of the brazing material includes a Ti or Ti alloy layer and a Cu or Cu alloy. The brazing material is placed in a vacuum heating furnace together with Cr or a Cr alloy, and then, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V is
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
The above brazing heat treatment is performed under the conditions satisfying the formula to melt the brazing layer, and the chromium component of Cr or Cr alloy is evaporated in a vacuum heating furnace, and then the vacuum heating furnace is cooled, and each metal component is cooled. Cr or a Cr alloy layer is vapor-deposited on the surface of the brazing layer formed by diffusion and alloying.
[0014]
Further, in a method of heating a brazing material having a brazing layer on a base material surface under a high vacuum and performing a brazing heat treatment, the brazing layer of the brazing material may be a Ti or Ti alloy layer, Cu or a Cu alloy. When the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the brazing material is arranged together with Cr or the Cr alloy in a vacuum heating furnace. , The degree of vacuum V
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
The above brazing heat treatment is performed under conditions satisfying the formula (1) to melt the brazing layer, evaporate the chromium component of Cr or a Cr alloy in a vacuum heating furnace, and then cool the vacuum heating furnace. A Cr or Cr alloy layer is deposited on the surface of the brazing layer in which the metal component is diffused and alloyed.
[0015]
More specifically, a cooling means for cooling the stage itself is provided on a stage on which the brazing material is mounted in the vacuum heating furnace, and the brazing material is provided on the stage of the vacuum heating furnace. Is preferably mounted.
[0016]
In addition, it is preferable that a portion of the vacuum heating furnace other than the brazing material is covered with a heat-resistant material, and that the brazing material is disposed in the vacuum heating furnace.
[0017]
According to the brazing heat treatment method according to the present invention, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V is:
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
By performing the brazing heat treatment under the conditions satisfying the formula (1), a brazed joint having good heat resistance, corrosion resistance, and high-temperature oxidation resistance can be obtained at low cost.
[0018]
On the other hand, the brazed product according to the present invention is one that has been joined using the above-described brazing heat treatment method.
[0019]
Thereby, a brazed product having good reliability of the brazed joint is obtained.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
[0021]
(First Embodiment)
FIG. 1 shows an example of a brazing composite material used in the brazing heat treatment method according to the present invention.
[0022]
As shown in FIG. 1, a brazing composite material 10 includes a Cu or Cu alloy layer 13 a, a Ti or Ti alloy layer 12, and a Cu or Cu alloy layer 13 a on a surface of a thin plate-shaped base material 11 (only the upper surface in FIG. 1). The brazing layer 15 is formed by stacking three layers of the Cu alloy layer 13b. The surface of the substrate 11 referred to here indicates all surfaces exposed to the outside.
[0023]
By appropriately rolling the composite material 10, a composite material for brazing (final product) having a desired thickness is obtained.
[0024]
The constituent material of the base material 11 is preferably an Fe-based alloy containing Fe as a main component, and particularly preferably stainless steel.
[0025]
Also, when the brazing layer 15 contains P in an amount of 0.02 to 10% by weight, preferably 5 to 10% by weight, the flowability of the brazing material and the oxidation resistance can be remarkably improved. The reason why the content of P is limited to 0.02 to 10 wt% is that if the content is less than 0.02 wt%, improvement in the flowability of the molten metal cannot be expected. Conversely, if the content exceeds 10 wt%, the brazing layer 15 This is because the material becomes brittle and the vibration fatigue characteristics and the joining strength are significantly reduced.
[0026]
In the brazing composite material 10 shown in FIG. 1, the brazing layer 15 is formed only on one surface (the upper surface in FIG. 1) of the substrate 11, but on both surfaces (the upper and lower surfaces in FIG. 1) of the substrate 11. ) May be formed with the brazing layers 15.
[0027]
Further, in the present embodiment, the description has been given using the composite material 10 having the brazing layer 15 having a three-layer structure, but the present invention is not limited to this, and a brazing material having a two-layer structure or a structure having four or more layers is used. It may be an attachment layer.
[0028]
Next, a brazing heat treatment method according to the present embodiment using the composite material 10 will be described.
[0029]
First, the composite material 10 (brazing material) is placed in a vacuum heating furnace together with Cr or a Cr alloy. The composite material 10 is mounted on a stage provided with cooling means. The stage can be cooled from the inside by air cooling or water cooling by the cooling means. More preferably, the peripheral portion of the composite material 10 on the wall surface and the stage surface in the vacuum heating furnace (other than the brazing material mounting portion in the vacuum heating furnace) is made of a heat-resistant material for preventing Cr deposition (described later). To prevent Cr deposition from occurring except for the composite material 10.
[0030]
Next, the brazing layer 15 is maintained at a constant temperature in a substantially vacuum at a temperature at which the brazing layer 15 is sufficiently melted, and a brazing heat treatment is performed. Specifically, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V becomes
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
A brazing heat treatment is performed under conditions satisfying the equation (1). For example, when the heat treatment temperature is 900 ° C., the degree of vacuum is 4 × 10 −4 Pa or less. When the heat treatment temperature is 1000 ° C., the degree of vacuum is 4 × 10 −3 Pa or less. When the heat treatment temperature is 1100 ° C., the degree of vacuum is 4 × 10 −2. At 1200 ° C. or less, the degree of vacuum is set to 4 × 10 −1 Pa or less. In other words, as shown in FIG. 2, in the brazing heat treatment condition area (shaded area in FIG. 2) A, the lower the heat treatment temperature, the higher the degree of vacuum (the lower the pressure), and the higher the heat treatment temperature, the lower the degree of vacuum ( The pressure increases). By performing the brazing heat treatment under these conditions, it becomes possible to evaporate the chromium component of Cr or a Cr alloy in the vacuum heating furnace.
[0031]
Thereafter, the heating is stopped and the vacuum heating furnace is cooled (furnace cooling). In this cooling process, by using the cooling means provided on the stage, the composite material 10 is preferentially cooled to a low temperature. As a result, Cr is vapor-deposited on the surface of the brazing alloy layer (the brazing layer 15 in which each metal component (Cu and Ti) is diffused and alloyed), and the vapor-deposited Cr partially mixes with the brazing alloy layer, and A brazed product having a brazed joint is obtained. Here, the surface of the brazing alloy layer does not mean the outermost surface, but means the surface layer portion including the outermost surface. That is, Cr is not only deposited on the outermost surface of the brazing alloy layer, but also partially incorporated into the brazing alloy layer.
[0032]
By exposing this brazing product to a high-temperature oxygen atmosphere, the chromium component mixed in the brazing alloy layer diffuses to the surface of the brazing joint and is oxidized. As shown in FIG. A brazed product 30 having a brazed joint 35 with the surface of layer 36 covered with a chromium oxide layer 37 is obtained. Since the chromium oxide layer 37 is a dense oxide film and is extremely chemically stable, the heat resistance, corrosion resistance, and high-temperature oxidation resistance of the brazed joint 35 can be significantly improved. As a result, it is possible to sufficiently prevent the brazing alloy layer 36 from being oxidized in a high-temperature (about 600 to 800 ° C.) oxidizing atmosphere, and it is difficult to reduce the joining strength of the brazing joint 35 due to the high-temperature oxidation. The reliability of the joint of the attachment 30 is improved.
[0033]
Therefore, by performing the brazing heat treatment using the brazing heat treatment method according to the present embodiment, a brazed joint excellent in heat resistance, corrosion resistance, and high-temperature oxidation resistance can be obtained easily and at a low manufacturing cost. This method is optimal as a brazing heat treatment method for a brazing joint such as an EGR cooler exposed to a high-temperature, highly corrosive gas or liquid.
[0034]
In the composite material 10 used in the brazing heat treatment method of the present embodiment, the brazing layer 15 is composed of the Ti or Ti alloy layer 12 and the Cu or Cu alloy layers 13a and 13b. At the time of attachment, the Cu component of the Cu brazing material is mixed (dissolved) into the Ti brazing material. Thus, the melting point of the brazing material containing Ti or a Ti alloy can be lowered, and brazing using this brazing material can be performed at around 980 to 1200 ° C. As a result, even when the composite material 10 is used as a brazing material, a brazed joint having excellent brazing properties can be obtained.
[0035]
Further, since the composite material 10 has the brazing layer 15 integrally provided on the surface of the base material 11, the powdered Ni brazing material is applied to each brazing joint at the time of brazing, as in various conventional Ni brazing materials. And it is not necessary to apply much to the brazing operation (the brazing workability is improved). That is, the brazing product 30 obtained by brazing using the composite material 10 forms the composite material 10 using one of the brazing materials as the base material 11 among a set of brazing materials to be joined, The composite material 10 and the other material to be brazed are obtained by overlapping and heating. As a result, the yield and productivity of the brazed product 30 are improved, and the production cost can be reduced.
[0036]
Further, in the composite material 10, the innermost layer and the outermost layer (the lowermost layer and the uppermost layer in FIG. 1) of the brazing layer 15 are not the Ti or Ti alloy layer 12, but the Cu or Cu alloy layers 13a and 13b. Therefore, at the time of brazing, it is possible to suppress the reaction between the base material 11 made of stainless steel and Ti, and as a result, the reliability of the brazed joint is further improved.
[0037]
Therefore, by brazing using the composite material 10, a brazed joint having good brazing characteristics and excellent heat resistance, corrosion resistance, and high-temperature oxidation resistance can be easily and inexpensively obtained.
[0038]
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.
[0039]
(Second embodiment)
FIG. 4 shows another example of the brazing composite material used in the brazing heat treatment method according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals, and detailed description of these members will be omitted.
[0040]
The composite material 10 used in the brazing heat treatment method according to the previous embodiment includes a brazing layer 15 in which a Ti or Ti alloy layer 12 is sandwiched by the same kind of metal, that is, Cu or Cu alloy layers 13a and 13b. Was to be done.
[0041]
On the other hand, as shown in FIG. 4, in the composite material 40 used in the brazing heat treatment method according to the present embodiment, the Ti or Ti alloy layer 12 is made of a dissimilar metal, that is, the Cu or Cu alloy layer 43, It is composed of a brazing layer 45 sandwiched between Ni or Ni alloy layers 44.
[0042]
Further, in the present embodiment, the description has been given using the composite material 40 having the brazing layer 45 having a three-layer structure. However, the present invention is not limited to this, and a brazing material having a two-layer structure or a structure having four or more layers is used. It may be an attachment layer.
[0043]
In the brazing heat treatment method according to the present embodiment using the composite material 40, the same operation and effect as in the previous embodiment can be obtained.
[0044]
In the composite material 40 used in the brazing heat treatment method of the present embodiment, the brazing layer 45 is composed of the Ti or Ti alloy layer 12, the Cu or Cu alloy layer 43, and the Ni or Ni alloy layer 44. Therefore, at the time of brazing, the Cu component of the Cu brazing material and the Ni component of the Ni brazing material are mixed (dissolved) into the Ti brazing material. Thus, the melting point of the brazing material containing Ti or a Ti alloy can be lowered, and brazing using this brazing material can be performed at around 980 to 1200 ° C. As a result, even when the composite material 40 is used as a brazing material, a brazed joint having excellent brazing properties can be obtained.
[0045]
In addition, since the composite material 40 has the brazing layer 45 integrally provided on the surface of the base material 11, the yield of the brazed product 50 obtained by brazing using the composite material 40 is similar to the composite material 10. The productivity is improved, and the production cost can be reduced.
[0046]
In the composite material 40, the innermost layer and the outermost layer (the lowermost layer and the uppermost layer in FIG. 4) of the brazing layer 45 are not the Ti or Ti alloy layer 12, but the Cu or Cu alloy layer 43 and the Ni or Ni alloy. Since the layer 44 is used, the reaction between the base material 11 made of stainless steel and Ti during brazing can be suppressed, and as a result, the reliability of the brazed joint can be further improved.
[0047]
Therefore, by brazing using the composite material 40, a brazed joint having good brazing characteristics and excellent heat resistance, corrosion resistance, and high-temperature oxidation resistance can be easily and inexpensively obtained.
[0048]
The brazed products 30 and 50 joined using the brazing heat treatment methods according to the first and second embodiments are limited to a heat exchanger such as an EGR cooler that is exposed to a high-temperature and highly corrosive gas or liquid. However, the present invention is not limited to its use, and can be applied to various other uses such as a cooler for a reformer of a fuel cell, a fuel cell member, an oil cooler, a radiator, and a secondary battery member.
[0049]
As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various other embodiments are also possible.
[0050]
【Example】
(Example 1)
A pure Cu strip having a thickness of 0.5 mm, a pure Ti strip having a thickness of 2.0 mm, and a pure Cu strip having a thickness of 0.5 mm are overlapped so that the laminated structure becomes Cu / Ti / Cu, Clad by hot rolling to produce a clad plate having a thickness of 1.4 mm. This clad plate was continuously cold-rolled to produce a clad plate having a thickness of 1.0 mm.
[0051]
This clad plate is placed on a SUS304 (JIS standard) strip having a thickness of 2.5 mm (Cu / Ti / Cu / SUS), clad by hot rolling, and subsequently cold rolled to reduce the thickness of the plate. A 0.5 mm braze composite was made.
[0052]
This composite material is placed in a batch external heating vacuum heating furnace together with 30 g of chromium alone. Then, after holding at a heat treatment temperature T of 900 ° C. and a degree of vacuum of 2.0 × 10 −4 Pa for 10 minutes, cooling was performed and brazing heat treatment was performed. During cooling, the stage is preferentially cooled by injecting and discharging air into the stage. In addition, a heat-resistant material is lined around the composite material on the wall surface and the stage surface in the heating furnace to prevent Cr deposition.
[0053]
(Example 2)
Except for stacking a pure Ni strip material having a thickness of 1.0 mm, a pure Ti strip material having a thickness of 2.0 mm, and a pure Cu strip material having a thickness of 0.5 mm so that the laminated structure becomes Ni / Ti / Cu. In the same manner as in Example 1, a composite material for brazing was produced.
[0054]
Using this composite material, together with 30 g of chromium alone, it is placed in the same batch type external heating vacuum heating furnace as in Example 1. Then, after holding at a heat treatment temperature T of 1000 ° C. and a degree of vacuum of 2.0 × 10 −3 Pa for 10 minutes, cooling was performed and brazing heat treatment was performed.
[0055]
(Comparative Example 1)
The brazing heat treatment was performed in exactly the same manner as in Example 1 except that the heat treatment temperature T was 900 ° C. and the degree of vacuum was 3.0 × 10 −3 Pa.
[0056]
(Comparative Example 2)
The brazing heat treatment was performed in exactly the same manner as in Example 2 except that the heat treatment temperature T was 1000 ° C. and the degree of vacuum was 1.0 × 10 −1 Pa.
[0057]
(Conventional example 1)
Except that a pure Cu strip having a thickness of 1.0 mm, a pure Ti strip having a thickness of 2.0 mm, and a pure Cu strip having a thickness of 1.0 mm are overlapped so that the laminated structure becomes Cu / Ti / Cu. In the same manner as in Example 1, a composite material for brazing was produced.
[0058]
The composite material is placed in a batch type external heating vacuum heating furnace. Then, after holding for 10 minutes under the conditions of a heat treatment temperature T of 900 ° C. and a degree of vacuum of 8.0 × 10 −2 Pa, cooling was performed and brazing heat treatment was performed.
[0059]
(Conventional example 2)
The same composite material as in Example 2 is placed in the same batch type external heating vacuum heating furnace as in Example 1. Then, after holding for 10 minutes under the conditions of a heat treatment temperature T of 1000 ° C. and a degree of vacuum of 4.0 × 10 −2 Pa, cooling was performed and brazing heat treatment was performed.
[0060]
The composite materials of Examples 1 and 2, Comparative Examples 1 and 2, and Conventional Examples 1 and 2 were evaluated for high-temperature oxidation resistance of a brazed joint after brazing heat treatment. Table 1 shows the specifications (laminated structure of the brazing layer, heat treatment temperature T (° C.), and degree of vacuum (Pa)) of each composite material, and the evaluation results of each composite material.
[0061]
Here, the evaluation of the high-temperature oxidation resistance was performed by holding the composite materials of Examples 1 and 2, Comparative Examples 1 and 2, and Conventional Examples 1 and 2 at 600 ° C. for 72 hours in the atmosphere of 1 atm. A high-temperature oxidation test was performed, and the high-temperature oxidation resistance was evaluated based on the change in weight before and after the test and the thickness of the oxide film by cross-sectional observation.
[0062]
[Table 1]
Figure 2004291077
[0063]
As shown in Table 1, in Examples 1 and 2 using the brazing heat treatment method according to the present invention, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V is:
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
Since the brazing heat treatment is performed under the condition satisfying the formula (1) (that is, in the shaded region (brazing heat treatment condition region A) in FIG. 2), a sufficient amount of the brazing heat treatment is performed in the furnace during the brazing heat treatment. Cr evaporates. As a result, Cr can be deposited on the brazing alloy layer, and a sufficiently thick chromium oxide film is formed on the surface of the brazing joint during the high-temperature oxidation test. Therefore, the high temperature oxidation resistance was extremely good.
[0064]
On the other hand, in Comparative Examples 1 and 2, the degree of vacuum V during the brazing heat treatment does not satisfy the above equation (1) (that is, outside the shaded region (brazing heat treatment condition region A) in FIG. 2). Therefore, no (or almost no) Cr can be evaporated in the furnace during the brazing heat treatment. As a result, at the time of the high-temperature oxidation test, no (or almost no) chromium oxide film was formed on the surface of the brazed joint, and the high-temperature oxidation resistance was poor.
[0065]
In addition, in the conventional examples 1 and 2, chromium alone was not placed in the heating furnace during the brazing heat treatment, so that no chromium oxide film was formed on the surface of the brazed joint at the time of the high-temperature oxidation test. Oxidation became poor.
[0066]
As described above, in Examples 1 and 2 using the brazing heat treatment method according to the present invention, since the high-temperature oxidation resistance of the brazing joint is good, the brazing heat treatment with excellent reliability of the brazing joint is performed. It turns out that it is a method.
[0067]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
(1) According to the brazing heat treatment method according to the present invention, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V becomes
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
By performing the brazing heat treatment under the condition satisfying the formula (1), a brazed joint having good heat resistance, corrosion resistance, and high-temperature oxidation resistance can be obtained at low cost.
(2) By brazing using the brazing composite material of (1), it is possible to obtain a brazed product in which the reliability of the brazed joint is good and the production cost is low.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a brazing composite material used in a brazing heat treatment method according to the present invention.
FIG. 2 is a diagram showing the relationship between temperature and degree of vacuum during brazing heat treatment.
FIG. 3 is a cross-sectional view after performing a brazing heat treatment using the brazing heat treatment method according to the present invention on the brazing composite material of FIG. 1;
FIG. 4 is a cross-sectional view showing another example of the brazing composite material used in the brazing heat treatment method according to the present invention.
5 is a cross-sectional view after the brazing composite material of FIG. 2 has been subjected to a brazing heat treatment using the brazing heat treatment method according to the present invention.
[Explanation of symbols]
10,40 Brazing composite (brazing material)
Reference Signs List 11 base material 12 Ti or Ti alloy layer 13a, 13b, 43 Cu or Cu alloy layer 15, 45 brazing layer 30, 50 brazing product 35, 55 brazing joint 36, 56 brazing alloy layer 37, 57 chromium oxide layer 44 Ni or Ni alloy layer

Claims (6)

基材表面にろう付け層を有するろう付け材を高真空下で加熱し、ろう付け熱処理を行う方法において、上記ろう付け材をCr又はCr合金と共に真空加熱炉内に配置し、その後、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件で上記ろう付け熱処理を行ってろう付け層を溶融させ、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させ、その後、真空加熱炉の冷却を行い、上記ろう付け層の表面にCr又はCr合金層を蒸着させることを特徴とするろう付け熱処理方法。
In a method of heating a brazing material having a brazing layer on a substrate surface under a high vacuum and performing a brazing heat treatment, the brazing material is placed in a vacuum heating furnace together with Cr or a Cr alloy, and then the heat treatment temperature is set. When T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V is
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
The above brazing heat treatment is performed under the conditions satisfying the formula (1) to melt the brazing layer, and the chromium component of Cr or a Cr alloy is evaporated in a vacuum heating furnace. A brazing heat treatment method comprising depositing a Cr or Cr alloy layer on the surface of the brazing layer.
基材表面にろう付け層を有するろう付け材を高真空下で加熱し、ろう付け熱処理を行う方法において、上記ろう付け材のろう付け層を、Ti又はTi合金層とCu又はCu合金層とを重ねて構成し、そのろう付け材をCr又はCr合金と共に真空加熱炉内に配置し、その後、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件で上記ろう付け熱処理を行ってろう付け層を溶融させ、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させ、その後、真空加熱炉の冷却を行い、各金属成分が拡散して合金化した上記ろう付け層の表面に、Cr又はCr合金層を蒸着させることを特徴とするろう付け熱処理方法。
In a method of heating a brazing material having a brazing layer on a substrate surface under a high vacuum and performing a brazing heat treatment, the brazing layer of the brazing material includes a Ti or Ti alloy layer and a Cu or Cu alloy layer. And the brazing material is placed together with Cr or a Cr alloy in a vacuum heating furnace. Thereafter, when the heat treatment temperature T is in the range of 900 ≦ T ≦ 1200 ° C., the degree of vacuum V is
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
The above brazing heat treatment is performed under conditions satisfying the formula (1) to melt the brazing layer, evaporate the chromium component of Cr or a Cr alloy in a vacuum heating furnace, and then cool the vacuum heating furnace. A brazing heat treatment method comprising depositing a Cr or Cr alloy layer on the surface of the brazing layer in which the metal component is diffused and alloyed.
基材表面にろう付け層を有するろう付け材を高真空下で加熱し、ろう付け熱処理を行う方法において、上記ろう付け材のろう付け層を、Ti又はTi合金層、Cu又はCu合金層、及びNi又はNi合金層を組み合わせて重ねて構成し、そのろう付け材をCr又はCr合金と共に真空加熱炉内に配置し、その後、熱処理温度Tが900≦T≦1200℃の範囲の時、真空度Vが、
V≦4×10{(T/100)−13}(Pa)…▲1▼
▲1▼式を満足する条件で上記ろう付け熱処理を行ってろう付け層を溶融させ、真空加熱炉内にCr又はCr合金のクロム成分を蒸発させ、その後、真空加熱炉の冷却を行い、各金属成分が拡散して合金化した上記ろう付け層の表面に、Cr又はCr合金層を蒸着させることを特徴とするろう付け熱処理方法。
In a method of heating a brazing material having a brazing layer on a substrate surface under a high vacuum and performing a brazing heat treatment, the brazing layer of the brazing material includes a Ti or Ti alloy layer, a Cu or Cu alloy layer, And a brazing material together with Cr or a Cr alloy are placed in a vacuum heating furnace, and when the heat treatment temperature T is in a range of 900 ≦ T ≦ 1200 ° C., the vacuum Degree V
V ≦ 4 × 10 {(T / 100) −13} (Pa) ... ▲ 1 ▼
The above brazing heat treatment is performed under conditions satisfying the formula (1) to melt the brazing layer, evaporate the chromium component of Cr or a Cr alloy in a vacuum heating furnace, and then cool the vacuum heating furnace. A brazing heat treatment method comprising depositing a Cr or Cr alloy layer on the surface of the brazing layer in which the metal component is diffused and alloyed.
上記真空加熱炉内の、ろう付け材を載置するステージにステージ自体を冷却する冷却手段を設け、その真空加熱炉のステージ上にろう付け材を載置する請求項1から3いずれかに記載のろう付け熱処理方法。4. The vacuum heating furnace according to claim 1, wherein cooling means for cooling the stage itself is provided on a stage on which the brazing material is placed, and the brazing material is placed on the stage of the vacuum heating furnace. Brazing heat treatment method. 上記真空加熱炉内の、ろう付け材の載置部分以外を耐熱材で覆い、その真空加熱炉内にろう付け材を配置する請求項1から4いずれかに記載のろう付け熱処理方法。The brazing heat treatment method according to any one of claims 1 to 4, wherein a portion of the vacuum heating furnace other than the portion where the brazing material is placed is covered with a heat-resistant material, and the brazing material is disposed in the vacuum heating furnace. 請求項1から5いずれかに記載のろう付け熱処理方法を用いて接合したことを特徴とするろう付け製品。A brazed product obtained by joining using the brazing heat treatment method according to claim 1.
JP2003090414A 2003-03-28 2003-03-28 Brazing heat treatment method and brazed product using the same Pending JP2004291077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090414A JP2004291077A (en) 2003-03-28 2003-03-28 Brazing heat treatment method and brazed product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090414A JP2004291077A (en) 2003-03-28 2003-03-28 Brazing heat treatment method and brazed product using the same

Publications (1)

Publication Number Publication Date
JP2004291077A true JP2004291077A (en) 2004-10-21

Family

ID=33404051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090414A Pending JP2004291077A (en) 2003-03-28 2003-03-28 Brazing heat treatment method and brazed product using the same

Country Status (1)

Country Link
JP (1) JP2004291077A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658901B1 (en) 2005-12-26 2006-12-15 앰코 테크놀로지 코리아 주식회사 Mounting device of semiconductor package and mounting method by the same
CN114713926A (en) * 2022-03-04 2022-07-08 湘潭大学 Connecting method for nested split-type assembled special-shaped carbon/carbon and metal composite heat dissipation long pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658901B1 (en) 2005-12-26 2006-12-15 앰코 테크놀로지 코리아 주식회사 Mounting device of semiconductor package and mounting method by the same
CN114713926A (en) * 2022-03-04 2022-07-08 湘潭大学 Connecting method for nested split-type assembled special-shaped carbon/carbon and metal composite heat dissipation long pipe

Similar Documents

Publication Publication Date Title
US8029916B2 (en) Brazing filler metal, brazing composite material and brazed structure brazed/bonded with the same
JP4107553B2 (en) Brazing composite material and brazing product using the same
JP2006334602A (en) Composite material for brazing, and brazed product using the same
US20090129999A1 (en) Method of brazing a first metal member to a second metal member using a high wettability metal as layer between the two metal members; reformer manufactured by this method, the metal members having grooves
JP3915726B2 (en) Brazing composite material and brazing product using the same
JP5061969B2 (en) Brazing composites and brazing products
JP2006334603A (en) Composite material for brazing, and brazed product using the same
JP2003117678A (en) Composite material for brazing and brazed product using the same
JP2004291077A (en) Brazing heat treatment method and brazed product using the same
JP2006272363A (en) Clad metal for brazing, and brazed product using the same
JP3814179B2 (en) Brazing composite material and brazing product using the same
JP2008030102A (en) Brazing method of composite material for brazing, and brazed product
JP4880219B2 (en) Brazing composite material and brazed structure brazed and bonded using the same
JP3891137B2 (en) Brazing composite material and brazing product using the same
JP4234918B2 (en) Brazing composite material for heat exchanger and heat exchanger using the same
JP3909015B2 (en) Brazing composite material, brazing method and brazing product using the same
JP4840190B2 (en) Brazing composite material and brazing product using the same
JP2005088071A (en) Composite material for brazing and brazed product using the same
JP2006272364A (en) Clad metal for brazing, and brazed product using the same
JP4244112B2 (en) Brazing composite material and brazing product using the same
JPH10273759A (en) Fe-cr-al ferritic stainless steel excellent in high temperature strength, high temperature oxidation resistance and diffusion joinability
JP2004136299A (en) Brazing filler metal, clad material and brazed structural body
JP4107206B2 (en) Brazing method using a brazing composite material
JP2005186106A (en) Brazing method, filler metal therefor, composite material using the filler metal, and brazed product
JP2004291075A (en) Composite material for brazing, and brazed product using the same