JP2004291029A - Mold for casting silicon and its producing method - Google Patents

Mold for casting silicon and its producing method Download PDF

Info

Publication number
JP2004291029A
JP2004291029A JP2003087353A JP2003087353A JP2004291029A JP 2004291029 A JP2004291029 A JP 2004291029A JP 2003087353 A JP2003087353 A JP 2003087353A JP 2003087353 A JP2003087353 A JP 2003087353A JP 2004291029 A JP2004291029 A JP 2004291029A
Authority
JP
Japan
Prior art keywords
silicon
mold
silicon nitride
release material
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087353A
Other languages
Japanese (ja)
Other versions
JP4116914B2 (en
JP2004291029A5 (en
Inventor
Yohei Sakai
洋平 坂井
Muneyoshi Yamatani
宗義 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003087353A priority Critical patent/JP4116914B2/en
Publication of JP2004291029A publication Critical patent/JP2004291029A/en
Publication of JP2004291029A5 publication Critical patent/JP2004291029A5/ja
Application granted granted Critical
Publication of JP4116914B2 publication Critical patent/JP4116914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a high purity silicon ingot at good yield. <P>SOLUTION: In a mold for casting the silicon, forming a releasing agent film on the surface in the mold, the releasing agent film peculiarly contains silicon nitride powder having ≥ 1 nm oxide film on the surface by an oxidation modification treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池用シリコンインゴットの作製に用いられるシリコン鋳造用鋳型に関し、特に鋳型内表面に窒化珪素粉末を含有する離型材皮膜を形成したシリコン鋳造用鋳型およびその製造方法に関する。
【0002】
【従来の技術】
太陽電池は入射した光エネルギーを電気エネルギーに変換するものであり、クリーンな石油代替エネルギー源として小規模な家庭用から大規模な発電システムまでその実用化が期待されている。これらは使用材料の種類によって結晶系、アモルファス系、化合物系などに分類され、なかでも現在市場に流通しているものの多くは結晶系シリコン太陽電池である。この結晶系シリコン太陽電池は更に単結晶型と多結晶型に分類される。単結晶シリコン太陽電池は基板の品質がよいために変換効率の高効率化が容易であるという長所を有する反面、基板の製造コストが高いという短所を有する。これに対して多結晶シリコン太陽電池は基板の品質が単結晶シリコン基板に比べて劣るという短所はあるものの、低コストで製造できるという長所がある。このため多結晶シリコン太陽電池は従来から市場に流通してきたが、近年、環境問題への関心が高まる中でその需要は増加しており、より低コストで高い変換効率が求められている。こうした要求に対処するためには多結晶シリコン基板の低コスト化、高品質化が必要であり、高純度のシリコンインゴットを歩留よく製造することが求められている。
【0003】
多結晶シリコンインゴットは、高温で加熱溶解させたシリコン融液を鋳型内に注湯して鋳型底部より一方向凝固させることによって形成したり、シリコン原料を鋳型内に入れて一旦溶解した後、再び鋳型底部より一方向凝固させることによって形成したりする。
【0004】
このような鋳型としては、通常、石英あるいは溶融シリカ製鋳型や分割可能な黒鉛製鋳型の内表面に離型材皮膜を形成したものが用いられる。これはシリコンの溶解中あるいは凝固中にシリコンと鋳型が融着することを防止するためである。シリコンと鋳型が融着すると、鋳型内で凝固したシリコンインゴットを冷却する際に鋳型部材とシリコンとの熱収縮率の違いによってシリコンインゴットに応力が働き、シリコンインゴットが割れたり、脱型の際にシリコンインゴットに欠けが発生したりして歩留が低下するという問題が発生する。
【0005】
離型材皮膜は、一般に経済性の観点から窒化珪素(Si)、酸化珪素(SiO)等のセラミックス粉末を水やアルコールなどの溶媒と適当なバインダーとから構成される溶液中に入れて攪拌してスラリー化し、この離型材スラリーを鋳型の内表面に塗布して形成することが公知の技術として知られている。
【0006】
離型材として窒化ホウ素(BN)(例えば特許文献1参照)や酸化イットリウム(Y)(例えば特許文献2参照)、あるいは炭化珪素(SiC)などの粉末を使用することが提案されているが、こうした離型材皮膜を用いて鋳造されたシリコンインゴットは離型材からのボロン(B)やイットリウム(Y)などの混入や不純物汚染(コンタミ)などのために高い品質のシリコンインゴットが得られ難いことがある。
【0007】
このため最も良質なシリコンインゴットが得られるのは窒化珪素からなる離型材皮膜を使用した場合であると報告されている(例えば非特許文献1参照)。しかしながら、窒化珪素からなる離型材皮膜は鋳型への付着性が弱いために鋳型から剥離しやすく、皮膜自体の強度が脆弱で破損しやすく、シリコン融液が離型材皮膜である窒化珪素粉末層中に侵入し、さらには離型材皮膜中の窒化珪素は高温のシリコン融液と長時間接触するためにシリコン融液中に溶け込むという問題があった。
【0008】
このため、シリコン融液を鋳型内へ注湯する際やシリコン原料を鋳型内で溶解したりシリコン融液を凝固させる際に、離型材皮膜が破損したりシリコン融液が離型材皮膜である窒化珪素粉末層中に侵入したりしてシリコン融液が鋳型に接触して融着するため、鋳型内で凝固したシリコンインゴットを冷却する際に鋳型部材とシリコンとの熱収縮率の違いによってシリコンインゴットに応力が働いてシリコンインゴットが割れたり、シリコンインゴットを鋳型から脱型できなくなったり、さらに脱型の際にシリコンインゴットが欠けたりして歩留が低下するという問題を発生することがあった。また、破損した離型材皮膜が鋳型から剥離してシリコン融液中へ混入すると、異物としてシリコンインゴット内に残留し、シリコンインゴットの歩留が低下する問題があった。
【0009】
この問題を回避する方法として、離型材皮膜の厚みを厚くする方法がある。しかし、この方法でシリコン融液と鋳型との接触を防ぐためには、数mm以上の厚さの離型材皮膜が必要であり、高価な窒化珪素の使用量が多くなるためにシリコンインゴットの製造コストが高くなるという問題があった。
【0010】
また、窒化珪素粉末を平均粒径0.1〜0.5μmの大きさに微細化し、さらに離型材スラリー中にさまざまな分散剤や界面活性剤を添加して窒化珪素の微粉末が均一に分散したスラリーを塗布することで離型材皮膜の強度や鋳型との付着性を改善することも提案されている(例えば特許文献3参照)。
【0011】
しかし、この方法では窒化珪素粉末を微細化する工程において窒化珪素粉末中へ不純物が混入し易いという問題がある。たとえば窒化珪素の微粉末を得るために窒化珪素粉末をボールミルなどで粉砕すると、粉砕に使用する装置に用いられている物質が窒化珪素粉末中に混入してシリコンインゴットの不純物汚染の汚染源となり、高い太陽電池特性を得るための品質のよいシリコンインゴットを得難いという問題がある。同様の理由から離型材中へ分散剤などの添加剤を添加することも高純度のシリコンインゴットを得るためには好ましくない。
【0012】
この問題を解決するため、窒化珪素粉末などからなる離型材をプラズマ溶射で鋳型内面に直接塗布することで極めて緻密で高品質な離型材皮膜を形成したシリコン鋳造用鋳型が提案されている(例えば特許文献4参照)。
【0013】
しかし、これらの離型材皮膜はいずれも窒化珪素粉末を使用することから、離型材皮膜中の窒化珪素がシリコン融液中へ溶け込むという問題を解決できなかった。シリコン融液中に溶出した窒化珪素はシリコン融液が凝固したときに濃縮されて析出する。この析出物の多くは硬く細長い窒化珪素の針状結晶で、この析出物がシリコンインゴット中に密集した状態で存在すると、シリコンインゴットをマルチワイヤーソーなどでスライスしてシリコン基板を作製する後工程において、硬い析出物の部分がスライスできずに基板表面に段差が生じたり、基板の厚みが不均一になるなどの不良が発生して歩留が低下するという問題を発生することがあった。
【0014】
〔特許文献1〕
特開平4−84467号公報
〔特許文献2〕
特開平7−206419号公報
〔特許文献3〕
特開2002−239682号公報
〔特許文献4〕
特開2002−292449号公報
〔非特許文献1〕
15th Photovoltaic Specialists Conf. (1981), P576〜P580
【0015】
【発明が解決しようとする課題】
本発明はこのような従来の問題点に鑑みてなされたものであり、高純度のシリコンインゴットを歩留よく製造するための多結晶シリコンインゴットの鋳造用鋳型およびその製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係るシリコン鋳造用鋳型では、鋳型内表面に離型材皮膜を形成したシリコン鋳造用鋳型において、前記離型材皮膜が酸化改質処理により表面に1nm以上の酸化皮膜を有する窒化珪素粉末を含有していることを特徴とする。
【0017】
上記シリコン鋳造用鋳型では、前記窒化珪素粉末表面の酸化皮膜の厚みが100nm以下であるとともに、この酸化皮膜を含めた窒化珪素粉末の平均粒径が1.5μm以下であったほうがよい。
【0018】
また、請求項3に係るシリコン鋳造用鋳型の製造方法では、窒化珪素粉末を含有する離型材皮膜を鋳型内表面に形成するシリコン鋳造用鋳型の製造方法において、前記窒化珪素粉末はイミド熱分解法で得られるとともに、酸化改質処理により表面に1nm以上の酸化皮膜を形成することを特徴とする。
【0019】
上記シリコン鋳造用鋳型の製造方法では、平均粒径が1.0μm以下の窒化珪素粉末に前記酸化改質処理を施したほうがよい。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を詳細に説明する。
図1は本発明に係るシリコン鋳造用鋳型部材の一例を示す図であり、図2は離型剤被膜を模式的に示す図である。鋳型部材1は例えば黒鉛などから成り、一つの底部材101と四つの側面部材102とを組み合わせた分割と組み立てが可能な分割型鋳型などで構成されたりする。なお、底部材101と側面部材102とは、ボルト(不図示)などで固定することによって分割可能に組み立てられたり、底部材101と側面部材102とがちょうど嵌まる枠部材(不図示)で固定することによって分割可能に組み立てられたりする。
【0021】
鋳型部材1の内表面には離型材皮膜2が形成される。その後、鋳型部材1の内表面に離型材皮膜2を形成した鋳型1を7〜100Torrに減圧したアルゴン(Ar)雰囲気中でシリコン融液と同程度か若干低い温度で加熱してシリコン融液を注湯する。また、鋳型1内にシリコン原料を入れて加熱溶解してもよい。その後、鋳型1の底部から徐々に降温させてシリコン融液を鋳型底部から徐々に一方向凝固させる。最後に、鋳型1からシリコンインゴットを取り出して切断し、マルチワイヤーソーなどを用いてスライスして太陽電池用シリコン基板を得る。
【0022】
本発明によれば、離型材皮膜2が酸化改質処理により表面に1nm以上の酸化皮膜21aを有する窒化珪素粉末21を含有していることを特徴とする。これにより窒化珪素粉末21表面に酸化皮膜層21aを形成でき、シリコン融液と窒化珪素21との接触や、それによるシリコン融液中への窒化珪素21の溶け込み、シリコンインゴット中への窒化珪素21の析出物の生成を有効に抑制することができる。さらに、窒化珪素粉末21の表面に形成した酸化皮膜層21aがシリコン鋳造中のおよそ1412℃の高温で軟化して離型材皮膜2中の粉末どうしを結合する結果、離型材皮膜2の強度を向上させることができ、従来問題であった離型材皮膜2の破損や剥離やシリコンインゴット中への混入などを有効に低減することができる。
【0023】
ここで使用する離型材皮膜2を製造するには、窒化珪素粉末21や、窒化珪素粉末21と酸化珪素粉末(不図示)の混合粉末を有機バインダー水溶液で攪拌混合して離型材スラリーとし、この離型材スラリーを刷毛、ヘラ、またはスプレーなどを用いて鋳型内表面に塗布して乾燥するなどして形成する方法やプラズマ溶射などの方法がある。
【0024】
本発明によるシリコン鋳造用鋳型の製造方法によれば、窒化珪素粉末はイミド熱分解法で得られるとともに、酸化改質処理により表面に1nm以上の酸化皮膜を形成することを特徴とする。
【0025】
イミド熱分解法とは、四塩化珪素(SiCl)とアンモニア(NH)を原料としてシリコンジイミド(Si(NH))を合成し、そのシリコンジイミドを熱分解、及び結晶化する窒化珪素の製造方法のことであり、アミド/イミド熱分解法、あるいはシリコンジイミド熱分解法などとも呼ばれている。工業的規模で普及している窒化珪素粉末21の製法には、イミド熱分解法の他に金属シリコンの直接窒化法やシリカ還元法などが一般的である。しかし、金属シリコン直接窒化法やシリカ還元法で作製される窒化珪素粉末は粉砕によって微粉末が作製されるため、その製法上、未粉砕粒子を含有するなどして粒度分布の幅が広く、酸化改質処理後の窒化珪素粉末21中の凝集粒子あるいは融着粒子などの粗大粒子の制御が困難となるため好ましくない。一方、イミド熱分解法で製造される窒化珪素粉末21は他の製法による窒化珪素粉末と比較して高純度かつ滑らかな表面を持つ均一な粒度の粉末が得られることが特徴であり、本発明に係る離型材皮膜には最適である。また、酸化改質処理を行うことによって図2に示すように窒化珪素粉末21表面に酸化皮膜層21aを形成することができる。
【0026】
酸化改質処理は、窒化珪素粉末21を例えば電気炉(酸化炉)などに入れて酸化雰囲気下850℃〜1300℃で30分〜600分程度加熱すればよい。また、窒化珪素粉末21表面の酸化膜21aの厚みは、100nm以下であったほうがよい。100nm以上の厚みになると酸化改質処理を施した窒化珪素粉末21どうしが酸化皮膜層21aの部分で結合あるいは融着して凝集する結果、硬い粗大粒子が形成されるため好ましくない。硬く粗大な粒子群が粉末中に多いと、離型材スラリーとして使用した場合、その作製または塗布における作業性が悪いため好ましくない。具体的には、粗大な粒子はスラリー中で沈降するために均一なスラリーが作製できず、また均一に塗布できないために、形成した離型材皮膜2の厚みや強度にばらつきが生じ、離型材皮膜2の薄い部分や破損した部分でシリコン融液と鋳型1が融着しやすくなる問題がある。さらに、離型材皮膜2中の粗大粒子は皮膜中での凝集力が弱く、鋳型1との付着性も悪くて剥離し易いため、この粗大粒子を含んだ離型材皮膜2が剥離してシリコン融液中に混入して異物になるという問題が発生して不適である。酸化皮膜21aの厚みはTEM(透過型電子顕微鏡)像、及びそれによる元素分析により測定することができる。
【0027】
また、窒化珪素粉末21は、酸化皮膜21aを含めた窒化珪素粉末の平均粒径が1.5μm以下の粉末であったほうがよい。平均粒径が1.5μm以上になると酸化改質処理を施した窒化珪素粉末21中に凝集粒子あるいは融着粒子などの粗大粒子の含有率が高くなって好ましくない。平均粒径は粉末に超音波ホモジナイザーを用い、出力300〜400μAで6分間の超音波分散による前処理を施した後、レーザー回折散乱法を用いて測定することができる。ここで、酸化改質処理後の窒化珪素粉末には粉末どうしが凝集した粗大粒子が含まれている。超音波分散によりその一部は分散されるが、一部は凝集粒子として残る。このため酸化改質処理後の窒化珪素粉末の平均粒径を測定すると、酸化処理された窒化珪素粉末に加えそれらの凝集粗大粒子も測定される。その凝集粒子の含有率が多かったり、粗大粒子の大きさが大きいと、それらを含む酸化改質処理後の窒化珪素粉末の平均粒径も大きくなる。
【0028】
また、窒化珪素粉末21は、平均粒径が1.0μm以下、比表面積が2m/g以上の粉末に酸化改質処理を施した方がよい。酸化改質処理前の窒化珪素粉末21の平均粒径が1.0μm以上、あるいは比表面積が2m/g以下であると、酸化改質処理後の窒化珪素粉末21中に凝集粒子あるいは融着粒子などの粗大粒子の含有率が高くなるためである。このため酸化改質処理を施す窒化珪素粉末21は平均粒径が1.0μm以下、比表面積が2m/g以上の粉末が好ましく、さらに平均粒径が0.6μm以下、比表面積が9m/g以上であることがより好ましい。平均粒径は粉末に超音波分散による前処理を施した後、レーザー回折散乱法を用いて測定する。また、被表面積はBET法などで測定する。
【0029】
なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば鋳型部材とは、シリコン融液を注湯してシリコンを冷却凝固させる鋳型部材だけを意味するものではなく、シリコン原料を加熱溶解するるつぼの意味も含む。また、その構造や材質は特に限定されない。しかし、鋳型部材の材質はシリコンの融点(およそ1412℃)以上の温度でも分解や融解しない物質で、加えて太陽電池特性を低下させる不純物のシリコンインゴットへの混入を低減するという観点から、高純度化処理が施された黒鉛、石英、溶融シリカ成型体などが望ましい。また、離型材皮膜に含有される粉末が窒化珪素粉末のみの場合に限定されるものではなく、窒化珪素に例えば石英ガラスを粉砕して分級した平均粒径20μm程度の酸化珪素などを含有させることもできる。
【0030】
【実施例】
(実施例1)
平均粒径が0.5、0.75、1.0、1.25μmの窒化珪素粉末をそれぞれ8%ポリビニルアルコール(PVA)水溶液と混合して攪拌して得られた離型材スラリーをそれぞれ4個のシリカ製鋳型内表面にヘラを用いて塗布して乾燥して離型材皮膜を形成した。その後、鋳型を電気炉(酸化炉)で加熱した。その離型材皮膜のうち注湯時にシリコン融液と接触しない部分から一部を削り取ってTEM観察することによって窒化珪素の表面の酸化皮膜の厚みを測定するとともに、鋳型を50Torrに減圧したアルゴン(Ar)雰囲気中に配置して黒鉛ヒーターを用いて加熱(予熱)した状態で鋳型内にシリコン融液60kgを注湯し、7時間かけて鋳型底部より徐冷して一方向凝固させた。凝固したシリコンインゴットを室温まで冷却した後、鋳型から取り出して切断してスライスしてシリコン基板とし、鋳型からの離型材皮膜の剥離やシリコンインゴット中への離型材皮膜の混入の有無、およびシリコンインゴット中の析出物の有無を調べた。尚、窒化珪素の平均粒径は粉末に超音波分散による前処理を施した後、レーザー回折散乱法を用いて測定した。結果を表1に示す。
【0031】
【表1】

Figure 2004291029
【0032】
表1中で表面酸化皮膜厚の測定不可とは、酸化皮膜の厚みがごく僅かであり、TEMによる測定では酸化皮膜の明確な厚みが測定できなかったことを示す。
【0033】
鋳型からの離型材の剥離の欄で、×は離型材が剥離してシリコンインゴット中に異物として混入したことを示す。△は離型材の剥離があるが、シリコンインゴット中の混入量が僅かであることを示す。○は離型材皮膜の剥離がほとんど見られなかったことを示す。
【0034】
シリコンインゴット中の析出物の欄で、×はシリコンインゴット中に析出物が多発してスライス歩留が大きく低下したことを示す。△はシリコンインゴット中に析出物が発生したが、スライス歩留の低下は僅かであったことを示す。○はシリコンインゴット中に析出物がほとんど見られなかったことを示す。
【0035】
表1からわかるように、窒化珪素の平均粒径を問わず、窒化珪素の表面に1nm以上の酸化皮膜が形成された条件については鋳型から離型材が剥離したり、インゴット中に析出物が発生するという問題はほとんど見られなかった。
【0036】
(実施例2)
平均粒径が0.5、0.75、1.0、1.25μmの窒化珪素粉末をそれぞれ電気炉(酸化炉)で加熱処理し、表2に示すようにそれぞれの膜厚で酸化皮膜を形成した。また、比較のため、酸化改質処理を施さない窒化珪素粉末も準備した。これらの窒化珪素粉末を8%ポリビニルアルコール(PVA)水溶液と混合して攪拌し、得られた離型材スラリーを黒鉛製鋳型内表面にヘラを用いて塗布して乾燥して離型材皮膜を形成した。この鋳型を50Torrに減圧したアルゴン(Ar)雰囲気中に配置し、黒鉛ヒーターを用いて加熱(予熱)した状態で鋳型内にシリコン融液60kgを注湯して7時間かけて鋳型底部より徐冷して一方向凝固させた。凝固したシリコンインゴットを室温まで冷却した後、鋳型から取り出して切断してスライスしてシリコン基板とし、鋳型からの離型材皮膜の剥離やシリコンインゴット中への離型材皮膜の混入の有無、およびシリコンインゴット中の析出物の有無を調べた。尚、窒化珪素の平均粒径は粉末に超音波分散による前処理を施した後、レーザー回折散乱法を用いて測定し、酸化皮膜の厚みはTEM観察により確認した。結果を表2に示す。
【0037】
【表2】
Figure 2004291029
【0038】
表2において表面酸化皮膜厚の測定不可とは、酸化皮膜の厚みがごく僅かであり、TEMによる測定では明確な酸化皮膜厚みが測定できなかったことを示す。
【0039】
平均粒径の測定不可とは、酸化処理後の粉末に含まれる粗大粉末粒子の粒径が大きすぎるため、測定機の測定範囲を超えて測定できなかったことを示す。
【0040】
鋳型からの離型材の剥離の欄で、×は離型材が剥離してシリコンインゴット中に異物として混入したことを示す。△は離型材の剥離があるが、シリコンインゴット中の混入量が僅かであることを示す。○は離型材皮膜の剥離がほとんど見られなかったことを示す。◎は離型材皮膜の剥離が全く見られなかったことを示す。
【0041】
シリコンインゴット中の析出物の欄で、×はシリコンインゴット中に析出物が多発してスライス歩留が大きく低下したことを示す。△はシリコンインゴット中に析出物が発生したが、スライス歩留の低下は僅かであったことを示す。○はシリコンインゴット中に析出物がほとんど見られなかったことを示す。◎はシリコンインゴット中に析出物が全く見られなかったことを示す。
【0042】
表2に示すように、酸化前の窒化珪素の平均粒径が1.0μm以下の粉末に、10〜100nmの酸化皮膜を形成した条件では、鋳型からの離型材の剥離やインゴット中の析出物もなく良好な結果を得た。表1は鋳型内面へ離型材塗布後に酸化処理したもので、表2は酸化した窒化珪素を鋳型内に塗布したものである。表2では酸化後の粉末の状態がスラリーの性状や塗布性を左右し、酸化後に凝集粒子や粗大粒子が多い条件ではスラリーを塗布し難く、その結果塗布後の離型材層も粗雑でシリコンを鋳造するとブロック中の異物も増加する。一方、酸化処理前の窒化珪素の平均粒径については酸化改質処理前の窒化珪素粉末の平均粒径が1.0μm以上であると酸化改質処理後の窒化珪素粉末中に凝集粒子あるいは融着粒子などの粗大粒子の含有率が高くなるため、処理前の粉体は小さい方が処理後も扱い易い。また、特に平均粒径が0.5μmの条件では、鋳型からの離型材の剥離やインゴット中の析出物が全くなく、特に良好な結果を得た。
【0043】
【発明の効果】
以上詳細に説明したように、請求項1に係るシリコン鋳造用鋳型では、鋳型内表面に離型材皮膜を形成したシリコン鋳造用鋳型において、上記離型材皮膜が酸化改質処理により表面に1nm以上の酸化皮膜を有する窒化珪素粉末を含有していることから、窒化珪素粉末表面に酸化皮膜層が形成でき、シリコン融液と窒化珪素との接触や、それによるシリコン融液中へ窒化珪素の溶け込み、シリコンインゴット中への窒化珪素析出物の生成を有効に抑制することができる。さらに、窒化珪素粉末表面に形成した酸化皮膜層がシリコン鋳造中のおよそ1412℃の高温で軟化して離型材皮膜中の粉末どうしを結合する結果、離型材皮膜の強度を向上させることができ、従来問題であった離型材皮膜の破損や剥離やシリコンインゴット中への混入などを有効に低減することができる。
【0044】
このとき、上記窒化珪素粉末表面の酸化皮膜の厚みが100nm以下であるとともに、上記酸化皮膜を含めた窒化珪素粉末の平均粒径が1.5μm以下の粉末であったほうがよい。このようにすることにより、酸化改質処理を施した窒化珪素粉末どうしが酸化皮膜層の部分で結合あるいは融着したり、凝集したり、硬い粗大粒子が形成されるという問題がなくなり、離型材の剥離やインゴットへの析出の問題を有効に回避することができる。
【0045】
また、請求項3に係るシリコン鋳造用鋳型の製造方法では、窒化珪素粉末を含有する離型材皮膜を鋳型内表面に形成するシリコン鋳造用鋳型の製造方法において、上記窒化珪素粉末はイミド熱分解法で得られるとともに、酸化改質処理により表面に1nm以上の酸化皮膜を形成することから、他の製法による窒化珪素粉末と比較して高純度かつ滑らかな表面を持つ均一な粒度の粉末が得られ、強固な離型材皮膜を形成することが可能となり、離型材の剥離やインゴットへの析出の問題を有効に回避することができる。
【0046】
このとき、上記窒化珪素粉末は、平均粒径が1.0μm以下の粉末に酸化改質処理を施した方がよい。このようにすることにより、酸化改質処理後の窒化珪素粉末中に凝集粒子や融着粒子などの粗大粒子が発生することがなくなり、離型材の剥離やインゴットへの析出の問題を有効に回避することができる。
【図面の簡単な説明】
【図1】本発明に係るシリコン鋳造用鋳型を示す全体斜図である。
【図2】本発明に係る離型材皮膜中の窒化珪素粉末の模式図である。
【符号の説明】
1・・・・鋳型
101・・鋳型底部材
102・・鋳型側面部材
2・・・・離型材皮膜
21・・・離型材皮膜中の窒化珪素粉末層
211・・窒化珪素粉末
211a・窒化珪素粉末表面に形成した酸化皮膜層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a silicon casting mold used for producing a silicon ingot for a solar cell, and more particularly to a silicon casting mold having a mold release material film containing silicon nitride powder formed on the inner surface of the mold and a method for producing the same.
[0002]
[Prior art]
Solar cells convert incident light energy into electric energy, and are expected to be put to practical use from small households to large-scale power generation systems as a clean oil alternative energy source. These are classified into crystalline, amorphous, compound, and the like according to the type of material used. Among them, crystalline silicon solar cells are mostly distributed on the market at present. The crystalline silicon solar cells are further classified into a single crystal type and a polycrystalline type. The single crystal silicon solar cell has an advantage that the conversion efficiency can be easily increased due to good quality of the substrate, but has a disadvantage that the manufacturing cost of the substrate is high. On the other hand, the polycrystalline silicon solar cell has a disadvantage that the quality of the substrate is inferior to that of the single crystal silicon substrate, but has an advantage that it can be manufactured at low cost. For this reason, polycrystalline silicon solar cells have conventionally been distributed on the market. However, in recent years, interest in environmental issues has increased, and the demand has increased, and lower conversion costs and higher conversion efficiency have been demanded. In order to meet such demands, it is necessary to reduce the cost and the quality of the polycrystalline silicon substrate, and it is required to manufacture a high-purity silicon ingot with a high yield.
[0003]
A polycrystalline silicon ingot is formed by pouring a silicon melt heated and melted at a high temperature into a mold and solidifying it unidirectionally from the bottom of the mold, or after once dissolving the silicon raw material in the mold and then again. It is formed by unidirectional solidification from the bottom of the mold.
[0004]
As such a mold, a mold in which a release material film is formed on the inner surface of a quartz or fused silica mold or a splittable graphite mold is usually used. This is to prevent the silicon and the mold from fusing during melting or solidification of the silicon. When the silicon and the mold are fused, stress acts on the silicon ingot due to the difference in the heat shrinkage between the mold member and the silicon when cooling the solidified silicon ingot in the mold. There is a problem that the silicon ingot is chipped or the yield is reduced.
[0005]
The release material film is generally prepared by putting ceramic powder such as silicon nitride (Si 3 N 4 ) or silicon oxide (SiO 2 ) into a solution composed of a solvent such as water or alcohol and an appropriate binder from the viewpoint of economy. It is known as a well-known technique to form a slurry by stirring the slurry and apply the release material slurry to the inner surface of a mold.
[0006]
It has been proposed to use a powder of boron nitride (BN) (for example, see Patent Document 1), yttrium oxide (Y 2 O 3 ) (for example, see Patent Document 2), or silicon carbide (SiC) as a release material. However, it is difficult to obtain a high quality silicon ingot in a silicon ingot cast using such a release material film due to the contamination of the release material with boron (B) or yttrium (Y) or impurity contamination (contamination). Sometimes.
[0007]
For this reason, it is reported that the highest quality silicon ingot can be obtained when a release material film made of silicon nitride is used (for example, see Non-Patent Document 1). However, since the release material film made of silicon nitride has a weak adhesion to the mold, it is easily peeled from the mold, and the strength of the film itself is fragile and easily broken. And the silicon nitride in the release material film is in contact with the high-temperature silicon melt for a long time, so that the silicon nitride melts into the silicon melt.
[0008]
Therefore, when pouring the silicon melt into the mold, dissolving the silicon raw material in the mold, or solidifying the silicon melt, the release material film may be damaged or the silicon melt may be a nitriding material film. The silicon melt intrudes into the silicon powder layer and contacts and fuses with the mold, so when cooling the solidified silicon ingot in the mold, the difference in the heat shrinkage between the mold member and the silicon causes the silicon ingot to cool. Stress may act on the silicon ingot, the silicon ingot may not be able to be removed from the mold, or the silicon ingot may be chipped at the time of removing the mold, thereby lowering the yield. In addition, when the damaged release material film is separated from the mold and mixed into the silicon melt, it remains as a foreign substance in the silicon ingot, and there is a problem that the yield of the silicon ingot is reduced.
[0009]
As a method of avoiding this problem, there is a method of increasing the thickness of the release material film. However, in order to prevent the silicon melt from coming into contact with the mold by this method, a release material film having a thickness of several mm or more is required, and the use of expensive silicon nitride increases the production cost of the silicon ingot. There was a problem that becomes high.
[0010]
In addition, the silicon nitride powder is refined to an average particle size of 0.1 to 0.5 μm, and various dispersants and surfactants are added to the release material slurry to uniformly disperse the fine silicon nitride powder. It has also been proposed to improve the strength of the release material film and the adhesion to the mold by applying the slurry thus prepared (for example, see Patent Document 3).
[0011]
However, this method has a problem that impurities are easily mixed into the silicon nitride powder in the step of miniaturizing the silicon nitride powder. For example, when a silicon nitride powder is pulverized with a ball mill or the like to obtain a fine powder of silicon nitride, a substance used in a device used for the pulverization is mixed into the silicon nitride powder and becomes a contamination source of impurity contamination of a silicon ingot. There is a problem that it is difficult to obtain a high quality silicon ingot for obtaining solar cell characteristics. For the same reason, it is not preferable to add an additive such as a dispersant to the release material in order to obtain a high-purity silicon ingot.
[0012]
In order to solve this problem, a mold for silicon casting has been proposed in which an extremely dense and high-quality release material film is formed by directly applying a release material made of silicon nitride powder or the like to the inner surface of the mold by plasma spraying (eg, Patent Document 4).
[0013]
However, since all of these release material films use silicon nitride powder, the problem that silicon nitride in the release material film dissolves into the silicon melt could not be solved. The silicon nitride eluted in the silicon melt is concentrated and precipitated when the silicon melt solidifies. Most of these precipitates are hard and elongated needle-like crystals of silicon nitride.If these precipitates exist in a dense state in a silicon ingot, the silicon ingot is sliced with a multi-wire saw or the like to form a silicon substrate in a later step. In some cases, the hard precipitate portion cannot be sliced, so that a step occurs on the substrate surface or a defect such as an uneven thickness of the substrate occurs, resulting in a problem that the yield decreases.
[0014]
[Patent Document 1]
JP-A-4-84467 [Patent Document 2]
JP-A-7-206419 [Patent Document 3]
JP-A-2002-239682 [Patent Document 4]
JP 2002-292449 A [Non-Patent Document 1]
15 th Photovoltaic Specialists Conf. (1981), P576-P580
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a casting mold for a polycrystalline silicon ingot for producing a high-purity silicon ingot with good yield and a method for producing the same. And
[0016]
[Means for Solving the Problems]
In order to achieve the above object, in the silicon casting mold according to claim 1, in a silicon casting mold having a mold release material film formed on an inner surface of the mold, the release material film has a surface with a thickness of 1 nm or more by an oxidation reforming treatment. It is characterized by containing a silicon nitride powder having an oxide film.
[0017]
In the above silicon casting mold, the thickness of the oxide film on the surface of the silicon nitride powder is preferably 100 nm or less, and the average particle diameter of the silicon nitride powder including the oxide film is preferably 1.5 μm or less.
[0018]
Further, in the method for manufacturing a silicon casting mold according to claim 3, a method for manufacturing a silicon casting mold in which a release material film containing silicon nitride powder is formed on the inner surface of the mold, wherein the silicon nitride powder is subjected to an imide pyrolysis method. And an oxide film having a thickness of 1 nm or more is formed on the surface by the oxidation reforming treatment.
[0019]
In the method for manufacturing a silicon casting mold, it is preferable that the above-described oxidation reforming treatment is performed on silicon nitride powder having an average particle diameter of 1.0 μm or less.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a diagram showing an example of a mold member for silicon casting according to the present invention, and FIG. 2 is a diagram schematically showing a release agent coating. The mold member 1 is made of, for example, graphite or the like, and may be constituted by a divided mold or the like which can be divided and assembled by combining one bottom member 101 and four side members 102. In addition, the bottom member 101 and the side member 102 are assembled in a dividable manner by fixing them with bolts (not shown) or fixed by a frame member (not shown) in which the bottom member 101 and the side member 102 just fit. By doing so, they can be divided and assembled.
[0021]
A mold release material film 2 is formed on the inner surface of the mold member 1. Thereafter, the mold 1 having the mold release material film 2 formed on the inner surface of the mold member 1 is heated at a temperature approximately equal to or slightly lower than that of the silicon melt in an argon (Ar) atmosphere reduced to 7 to 100 Torr. Pour water. Alternatively, a silicon raw material may be put in the mold 1 and dissolved by heating. Thereafter, the temperature is gradually lowered from the bottom of the mold 1 so that the silicon melt is gradually unidirectionally solidified from the bottom of the mold. Finally, the silicon ingot is taken out of the mold 1 and cut, and sliced using a multi-wire saw or the like to obtain a solar cell silicon substrate.
[0022]
According to the present invention, the release material film 2 contains a silicon nitride powder 21 having an oxide film 21a of 1 nm or more on the surface by an oxidation reforming process. As a result, an oxide film layer 21a can be formed on the surface of the silicon nitride powder 21. The contact between the silicon melt and the silicon nitride 21, the dissolution of the silicon nitride 21 into the silicon melt, and the silicon nitride 21 into the silicon ingot. Can be effectively suppressed. Further, the oxide film layer 21a formed on the surface of the silicon nitride powder 21 softens at a high temperature of about 1412 ° C. during the silicon casting and bonds the powders in the release material film 2 to each other, thereby improving the strength of the release material film 2. It is possible to effectively reduce breakage and peeling of the release material film 2 and mixing into the silicon ingot, which are problems in the related art.
[0023]
In order to manufacture the release material film 2 used here, the silicon nitride powder 21 or a mixed powder of the silicon nitride powder 21 and the silicon oxide powder (not shown) is stirred and mixed with an organic binder aqueous solution to form a release material slurry. There is a method of applying a mold release material slurry to the inner surface of a mold by using a brush, a spatula, a spray, or the like and drying the mold, or a method such as plasma spraying.
[0024]
According to the method for manufacturing a casting mold for silicon according to the present invention, the silicon nitride powder is obtained by an imide pyrolysis method, and an oxide film having a thickness of 1 nm or more is formed on the surface by oxidation modification.
[0025]
The imide thermal decomposition method is a method of synthesizing silicon diimide (Si (NH) 2 ) using silicon tetrachloride (SiCl 4 ) and ammonia (NH 4 ) as raw materials, and thermally decomposing and crystallizing the silicon diimide. This is a manufacturing method, and is also called an amide / imide thermal decomposition method or a silicon diimide thermal decomposition method. As a method for producing the silicon nitride powder 21 that is widely used on an industrial scale, a direct nitridation method of metal silicon, a silica reduction method, and the like are generally used in addition to the imide thermal decomposition method. However, since silicon nitride powder produced by the metal silicon direct nitridation method or the silica reduction method is produced by pulverization, fine particles are produced by the pulverization method. It is not preferable because it becomes difficult to control coarse particles such as agglomerated particles or fused particles in the silicon nitride powder 21 after the modification treatment. On the other hand, the silicon nitride powder 21 produced by the imide pyrolysis method is characterized in that a powder having a uniform particle size having a high purity and a smooth surface is obtained as compared with silicon nitride powder produced by another production method. It is most suitable for the release material film according to the above. Further, by performing the oxidation reforming treatment, an oxide film layer 21a can be formed on the surface of the silicon nitride powder 21 as shown in FIG.
[0026]
In the oxidation reforming treatment, the silicon nitride powder 21 may be heated in an oxidizing atmosphere at 850 ° C. to 1300 ° C. for about 30 minutes to 600 minutes, for example, in an electric furnace (oxidizing furnace). The thickness of the oxide film 21a on the surface of the silicon nitride powder 21 is preferably 100 nm or less. If the thickness is 100 nm or more, the silicon nitride powders 21 that have been subjected to the oxidation modification treatment are bonded or fused at the portion of the oxide film layer 21a and aggregate, resulting in formation of hard coarse particles, which is not preferable. If the hard and coarse particle group is large in the powder, when used as a mold release material slurry, the workability in its production or application is poor, which is not preferable. Specifically, since the coarse particles settle down in the slurry, a uniform slurry cannot be produced and cannot be applied uniformly, and the thickness and strength of the formed release material film 2 vary, and the release material film There is a problem that the silicon melt and the mold 1 are easily fused to each other in a thin portion or a damaged portion of the mold. Furthermore, since the coarse particles in the release material film 2 have a weak cohesive force in the film and poor adhesion to the mold 1 and are easily peeled off, the release material film 2 containing these coarse particles is peeled off and the silicon melted. This is unsuitable because it causes a problem of becoming a foreign substance when mixed into the liquid. The thickness of the oxide film 21a can be measured by a TEM (transmission electron microscope) image and an elemental analysis based thereon.
[0027]
It is preferable that the silicon nitride powder 21 be a powder having an average particle diameter of 1.5 μm or less of the silicon nitride powder including the oxide film 21a. If the average particle size is 1.5 μm or more, the content of coarse particles such as agglomerated particles or fused particles in the silicon nitride powder 21 subjected to the oxidation modification treatment is undesirably high. The average particle size can be measured by using a laser diffraction scattering method after performing pretreatment by ultrasonic dispersion for 6 minutes at an output of 300 to 400 μA using an ultrasonic homogenizer on the powder. Here, the silicon nitride powder after the oxidation reforming treatment contains coarse particles in which the powders are aggregated. A part of the particles is dispersed by ultrasonic dispersion, but a part remains as aggregated particles. Therefore, when the average particle size of the silicon nitride powder after the oxidation modification treatment is measured, in addition to the oxidized silicon nitride powder, their aggregated coarse particles are also measured. If the content of the aggregated particles is large or the size of the coarse particles is large, the average particle size of the silicon nitride powder containing the particles after the oxidation reforming treatment is also increased.
[0028]
It is preferable that the silicon nitride powder 21 has an average particle diameter of 1.0 μm or less and a specific surface area of 2 m 2 / g or more subjected to oxidation modification. If the average particle diameter of the silicon nitride powder 21 before the oxidation reforming treatment is 1.0 μm or more, or the specific surface area is 2 m 2 / g or less, aggregated particles or fused particles are formed in the silicon nitride powder 21 after the oxidation modification treatment. This is because the content of coarse particles such as particles increases. For this reason, the silicon nitride powder 21 to be subjected to the oxidation reforming treatment is preferably a powder having an average particle diameter of 1.0 μm or less and a specific surface area of 2 m 2 / g or more, and more preferably an average particle diameter of 0.6 μm or less and a specific surface area of 9 m 2. / G or more. The average particle diameter is measured by using a laser diffraction scattering method after performing pretreatment by ultrasonic dispersion on the powder. The surface area is measured by a BET method or the like.
[0029]
The present invention is not limited to the above embodiment, and many modifications and changes can be made within the scope of the present invention. For example, the mold member does not only mean a mold member for pouring a silicon melt to cool and solidify silicon, but also includes a crucible for heating and melting a silicon raw material. The structure and the material are not particularly limited. However, the material of the mold member is a substance that does not decompose or melt even at a temperature higher than the melting point of silicon (about 1412 ° C.). Desirable are graphite, quartz, fused silica molded bodies, etc., which have been subjected to a conversion treatment. Further, the powder contained in the release material film is not limited to the case where only silicon nitride powder is used. For example, silicon nitride having an average particle size of about 20 μm obtained by pulverizing and classifying quartz glass is included in silicon nitride. You can also.
[0030]
【Example】
(Example 1)
Silicone powder having an average particle diameter of 0.5, 0.75, 1.0, and 1.25 μm was mixed with an 8% aqueous solution of polyvinyl alcohol (PVA) and stirred to obtain four release agent slurries. Was applied to the inner surface of a silica mold using a spatula and dried to form a release material film. Thereafter, the mold was heated in an electric furnace (oxidizing furnace). A part of the release material film that was not in contact with the silicon melt at the time of pouring was scraped off, and the thickness of the oxide film on the surface of the silicon nitride was measured by TEM observation, and the mold was depressurized to 50 Torr with argon (Ar). ) 60 kg of the silicon melt was poured into the mold in a state where it was placed in an atmosphere and heated (preheated) using a graphite heater, and gradually cooled from the bottom of the mold for 7 hours to solidify in one direction. After cooling the solidified silicon ingot to room temperature, it is removed from the mold, cut and sliced into a silicon substrate, and the release material film is separated from the mold and the release material film is mixed into the silicon ingot. The presence or absence of precipitates therein was examined. The average particle size of silicon nitride was measured by using a laser diffraction scattering method after performing a pretreatment by ultrasonic dispersion on the powder. Table 1 shows the results.
[0031]
[Table 1]
Figure 2004291029
[0032]
In Table 1, measurement of the thickness of the surface oxide film indicates that the thickness of the oxide film was extremely small, and that the measurement by TEM did not allow a clear measurement of the thickness of the oxide film.
[0033]
In the column of peeling of the release material from the mold, × indicates that the release material was peeled and mixed as a foreign substance into the silicon ingot. The symbol Δ indicates that the release material was peeled off, but the amount mixed in the silicon ingot was small. ○ indicates that the release material film was hardly peeled off.
[0034]
In the column of precipitates in the silicon ingot, x indicates that the precipitates occurred frequently in the silicon ingot and the slice yield was greatly reduced. Δ indicates that precipitates were generated in the silicon ingot, but the decrease in slice yield was slight. ○ indicates that almost no precipitate was found in the silicon ingot.
[0035]
As can be seen from Table 1, regardless of the average particle size of silicon nitride, under conditions where an oxide film of 1 nm or more was formed on the surface of silicon nitride, the release material peeled from the mold and precipitates were generated in the ingot. The problem of doing so was rarely seen.
[0036]
(Example 2)
Each of the silicon nitride powders having an average particle size of 0.5, 0.75, 1.0, and 1.25 μm was heat-treated in an electric furnace (oxidizing furnace), and an oxide film was formed in each film thickness as shown in Table 2. Formed. For comparison, a silicon nitride powder that was not subjected to an oxidation reforming treatment was also prepared. These silicon nitride powders were mixed with an 8% aqueous solution of polyvinyl alcohol (PVA) and stirred, and the obtained release material slurry was applied to the inner surface of a graphite mold using a spatula and dried to form a release material film. . This mold was placed in an argon (Ar) atmosphere depressurized to 50 Torr, and heated (preheated) using a graphite heater, 60 kg of a silicon melt was poured into the mold and gradually cooled from the bottom of the mold over 7 hours. And unidirectionally solidified. After cooling the solidified silicon ingot to room temperature, it is removed from the mold, cut and sliced into a silicon substrate, and the release material film is separated from the mold and the release material film is mixed into the silicon ingot. The presence or absence of precipitates therein was examined. The average particle size of silicon nitride was measured using a laser diffraction scattering method after pretreatment of the powder by ultrasonic dispersion, and the thickness of the oxide film was confirmed by TEM observation. Table 2 shows the results.
[0037]
[Table 2]
Figure 2004291029
[0038]
In Table 2, measurement of the thickness of the surface oxide film indicates that the thickness of the oxide film is extremely small, indicating that a clear oxide film thickness could not be measured by TEM.
[0039]
Unmeasurable average particle diameter indicates that the measurement could not be performed beyond the measurement range of the measuring instrument because the particle diameter of the coarse powder particles contained in the powder after the oxidation treatment was too large.
[0040]
In the column of peeling of the release material from the mold, × indicates that the release material was peeled and mixed as a foreign substance into the silicon ingot. The symbol Δ indicates that the release material was peeled off, but the amount mixed in the silicon ingot was small. ○ indicates that the release material film was hardly peeled off. ◎ indicates that no peeling of the release material film was observed.
[0041]
In the column of precipitates in the silicon ingot, x indicates that the precipitates occurred frequently in the silicon ingot and the slice yield was greatly reduced. Δ indicates that precipitates were generated in the silicon ingot, but the decrease in slice yield was slight. ○ indicates that almost no precipitate was found in the silicon ingot. ◎ indicates that no precipitate was observed in the silicon ingot.
[0042]
As shown in Table 2, under conditions where an oxide film of 10 to 100 nm was formed on a powder having an average particle size of silicon nitride before oxidation of 1.0 μm or less, peeling of the release material from the mold and deposits in the ingot were performed. No good results were obtained. Table 1 shows the results obtained by applying an oxidizing treatment after applying the release material to the inner surface of the mold, and Table 2 shows the results obtained by applying oxidized silicon nitride to the inside of the mold. In Table 2, the state of the powder after oxidation affects the properties and applicability of the slurry, and it is difficult to apply the slurry under the condition that there are many agglomerated particles and coarse particles after oxidation. Casting also increases foreign matter in the block. On the other hand, regarding the average particle diameter of the silicon nitride before the oxidation treatment, if the average particle diameter of the silicon nitride powder before the oxidation modification treatment is 1.0 μm or more, agglomerated particles or fused particles are contained in the silicon nitride powder after the oxidation modification treatment. Since the content of coarse particles such as landing particles is high, the smaller the powder before treatment, the easier it is to handle after treatment. In particular, under the condition that the average particle size is 0.5 μm, there was no peeling of the release material from the mold and no precipitate in the ingot, and particularly good results were obtained.
[0043]
【The invention's effect】
As described in detail above, in the silicon casting mold according to claim 1, in the silicon casting mold having a mold release material film formed on the inner surface of the mold, the surface of the release material film has a thickness of 1 nm or more by an oxidation reforming treatment. Since it contains a silicon nitride powder having an oxide film, an oxide film layer can be formed on the surface of the silicon nitride powder, and the contact between the silicon melt and the silicon nitride and the dissolution of the silicon nitride into the silicon melt thereby, Generation of silicon nitride precipitates in a silicon ingot can be effectively suppressed. Furthermore, as a result of the oxide film layer formed on the silicon nitride powder surface softening at a high temperature of about 1412 ° C. during silicon casting and bonding the powders in the release material film, the strength of the release material film can be improved, It is possible to effectively reduce breakage and peeling of the release material film, mixing in the silicon ingot, and the like, which are problems in the related art.
[0044]
At this time, the thickness of the oxide film on the surface of the silicon nitride powder is preferably 100 nm or less, and the average particle diameter of the silicon nitride powder including the oxide film is preferably 1.5 μm or less. This eliminates the problem that the silicon nitride powders subjected to the oxidation modification treatment are bonded or fused together at the portion of the oxide film layer, aggregated, or hard coarse particles are formed, and It is possible to effectively avoid the problems of peeling and deposition on the ingot.
[0045]
According to a third aspect of the present invention, there is provided a method for manufacturing a silicon casting mold, wherein a release material film containing a silicon nitride powder is formed on an inner surface of the mold. And the formation of an oxide film of 1 nm or more on the surface by the oxidation reforming process, it is possible to obtain a powder of uniform particle size having a high purity and a smooth surface as compared with silicon nitride powder by other manufacturing methods. Thus, a strong release material film can be formed, and the problems of peeling of the release material and precipitation on the ingot can be effectively avoided.
[0046]
At this time, it is preferable that the silicon nitride powder has an average particle diameter of 1.0 μm or less subjected to an oxidation reforming treatment. By doing so, coarse particles such as agglomerated particles and fused particles are not generated in the silicon nitride powder after the oxidation modification treatment, and the problem of peeling of the release material and precipitation on the ingot is effectively avoided. can do.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing a silicon casting mold according to the present invention.
FIG. 2 is a schematic view of a silicon nitride powder in a release material film according to the present invention.
[Explanation of symbols]
1 mold 101 mold bottom member 102 mold side member 2 release material film 21 silicon nitride powder layer 211 in release material film silicon nitride powder 211a silicon nitride powder Oxide film layer formed on the surface

Claims (4)

鋳型内表面に離型材皮膜を形成したシリコン鋳造用鋳型において、前記離型材皮膜が酸化改質処理により表面に1nm以上の酸化皮膜を有する窒化珪素粉末を含有していることを特徴とするシリコン鋳造用鋳型。A silicon casting mold having a release material film formed on an inner surface of the mold, wherein the release material film contains silicon nitride powder having an oxide film of 1 nm or more on the surface by an oxidation reforming process. For mold. 前記窒化珪素粉末表面の酸化皮膜の厚みが100nm以下であるとともに、この酸化皮膜を含めた窒化珪素粉末の平均粒径が1.5μm以下であることを特徴とする請求項1に記載のシリコン鋳造用鋳型。2. The silicon casting according to claim 1, wherein the thickness of the oxide film on the surface of the silicon nitride powder is 100 nm or less, and the average particle size of the silicon nitride powder including the oxide film is 1.5 μm or less. 3. For mold. 窒化珪素粉末を含有する離型材皮膜を鋳型内表面に形成するシリコン鋳造用鋳型の製造方法において、前記窒化珪素粉末はイミド熱分解法で得られるとともに、酸化改質処理により表面に1nm以上の酸化皮膜を形成することを特徴とするシリコン鋳造用鋳型の製造方法。In a method for manufacturing a mold for silicon casting, in which a release material film containing silicon nitride powder is formed on the inner surface of the mold, the silicon nitride powder is obtained by an imide thermal decomposition method, and is oxidized to a surface of 1 nm or more by an oxidation modification treatment. A method for producing a silicon casting mold, comprising forming a film. 平均粒径が1.0μm以下の窒化珪素粉末に前記酸化改質処理を施すことを特徴とする請求項3に記載のシリコン鋳造用鋳型の製造方法。The method for producing a silicon casting mold according to claim 3, wherein the oxidation modification treatment is performed on silicon nitride powder having an average particle size of 1.0 µm or less.
JP2003087353A 2003-03-27 2003-03-27 Silicon casting mold manufacturing method, silicon ingot manufacturing method Expired - Fee Related JP4116914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087353A JP4116914B2 (en) 2003-03-27 2003-03-27 Silicon casting mold manufacturing method, silicon ingot manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087353A JP4116914B2 (en) 2003-03-27 2003-03-27 Silicon casting mold manufacturing method, silicon ingot manufacturing method

Publications (3)

Publication Number Publication Date
JP2004291029A true JP2004291029A (en) 2004-10-21
JP2004291029A5 JP2004291029A5 (en) 2006-01-26
JP4116914B2 JP4116914B2 (en) 2008-07-09

Family

ID=33401755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087353A Expired - Fee Related JP4116914B2 (en) 2003-03-27 2003-03-27 Silicon casting mold manufacturing method, silicon ingot manufacturing method

Country Status (1)

Country Link
JP (1) JP4116914B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151708A (en) * 2004-11-25 2006-06-15 Kyocera Corp Method for casting polycrystalline silicon, polycrystalline silicon ingot obtained by using the same, polycrystalline silicon substrate, and solar battery element
JP2007191343A (en) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd Mold for solidifying silicon and its manufacturing method
WO2008026688A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Method of forming mold for silicon ingot production, process for producing substrate for solar cell element, process for producing solar cell element, and mold for silicon ingot production
JP2010260099A (en) * 2009-04-07 2010-11-18 Kyocera Corp Release layer forming device and method for forming release layer
WO2012090542A1 (en) * 2010-12-28 2012-07-05 宇部興産株式会社 Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
KR101451322B1 (en) * 2008-09-05 2014-10-15 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Process for forming a non-stick coating based on silicon carbide
WO2015122388A1 (en) * 2014-02-12 2015-08-20 宇部興産株式会社 Slurry-designated silicon nitride powder and method for producing same, silicon nitride powder slurry for use in mold release agent and method for producing same, silicon nitride powder for use in mold release agent, mold release agent, and polycrystalline-silicon-casting mold and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151708A (en) * 2004-11-25 2006-06-15 Kyocera Corp Method for casting polycrystalline silicon, polycrystalline silicon ingot obtained by using the same, polycrystalline silicon substrate, and solar battery element
JP2007191343A (en) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd Mold for solidifying silicon and its manufacturing method
US8431070B2 (en) 2006-08-30 2013-04-30 Kyocera Corporation Mold forming and molding method
WO2008026688A1 (en) * 2006-08-30 2008-03-06 Kyocera Corporation Method of forming mold for silicon ingot production, process for producing substrate for solar cell element, process for producing solar cell element, and mold for silicon ingot production
JP5153636B2 (en) * 2006-08-30 2013-02-27 京セラ株式会社 Method for forming mold for manufacturing silicon ingot, method for manufacturing substrate for solar cell element, and method for manufacturing solar cell element
KR101451322B1 (en) * 2008-09-05 2014-10-15 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Process for forming a non-stick coating based on silicon carbide
JP2010260099A (en) * 2009-04-07 2010-11-18 Kyocera Corp Release layer forming device and method for forming release layer
CN103347814A (en) * 2010-12-28 2013-10-09 宇部兴产株式会社 Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
WO2012090542A1 (en) * 2010-12-28 2012-07-05 宇部興産株式会社 Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
US8973888B2 (en) 2010-12-28 2015-03-10 Ube Industries, Ltd. Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
WO2015122388A1 (en) * 2014-02-12 2015-08-20 宇部興産株式会社 Slurry-designated silicon nitride powder and method for producing same, silicon nitride powder slurry for use in mold release agent and method for producing same, silicon nitride powder for use in mold release agent, mold release agent, and polycrystalline-silicon-casting mold and method for producing same
CN105980299A (en) * 2014-02-12 2016-09-28 宇部兴产株式会社 Slurry-designated silicon nitride powder and method for producing same, silicon nitride powder slurry for use in mold release agent and method for producing same, silicon nitride powder for use in mold release agent, mold release agent, and polycrystalline-silicon-casting mold and method for producing same
JPWO2015122388A1 (en) * 2014-02-12 2017-03-30 宇部興産株式会社 Silicon nitride powder for slurry and production method thereof, silicon nitride powder slurry for release material and production method thereof, silicon nitride powder for release material, release material, and casting mold for polycrystalline silicon and production method thereof
CN105980299B (en) * 2014-02-12 2017-07-28 宇部兴产株式会社 Slurry alpha-silicon nitride powders and its manufacture method, release timber-used alpha-silicon nitride powders slurry and its manufacture method, release timber-used alpha-silicon nitride powders, release material and polycrystal silicon casting mold and its manufacture method

Also Published As

Publication number Publication date
JP4116914B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP5153636B2 (en) Method for forming mold for manufacturing silicon ingot, method for manufacturing substrate for solar cell element, and method for manufacturing solar cell element
US20130015318A1 (en) Layered crucible for casting silicon ingot and method of producing same
JP5637220B2 (en) Polycrystalline silicon ingot casting mold, manufacturing method thereof, silicon nitride powder for mold release material of polycrystalline silicon ingot casting mold, and slurry containing the same
JP4328161B2 (en) Silicon casting mold
WO2012090542A1 (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
JP2007261832A (en) Silicon nitride release material powder, method for producing release material and firing method
JP4863637B2 (en) Silicon casting apparatus and method for casting polycrystalline silicon ingot
JP4116914B2 (en) Silicon casting mold manufacturing method, silicon ingot manufacturing method
CN201857440U (en) Crucible for purification and ingot casting of solar-grade polysilicon
JP5700052B2 (en) Polycrystalline silicon ingot casting mold, silicon nitride powder for mold release material, silicon nitride powder-containing slurry for mold release layer, and mold release material for casting
KR101074304B1 (en) Metallic silicon and process for producing the same
JP4192070B2 (en) Silicon casting mold and manufacturing method thereof
WO2011074321A1 (en) Polycrystalline silicon for solar cell, and process for production thereof
JP4884150B2 (en) Manufacturing method of mold for silicon casting
JP5218934B2 (en) Metallic silicon and its manufacturing method
JP2004174527A (en) Method for casting polycrystalline silicon ingot, silicon casting mold used therefor, and release agent used therefor
JP4025671B2 (en) Manufacturing method of mold for silicon casting
JP4624178B2 (en) Release layer forming method and silicon ingot manufacturing method
JP4051181B2 (en) Silicon casting mold and method for forming solar cell using the same
JP6096653B2 (en) Silicon casting mold and manufacturing method thereof
JP2003064388A (en) Releasant and casting method for polycrystalline silicon using the same
JPS5953208B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JP4911607B2 (en) Silicon casting mold and manufacturing method thereof
KR20130114353A (en) A method for manufacturing of crucible protecting layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4116914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees