JP2003064388A - Releasant and casting method for polycrystalline silicon using the same - Google Patents

Releasant and casting method for polycrystalline silicon using the same

Info

Publication number
JP2003064388A
JP2003064388A JP2001257607A JP2001257607A JP2003064388A JP 2003064388 A JP2003064388 A JP 2003064388A JP 2001257607 A JP2001257607 A JP 2001257607A JP 2001257607 A JP2001257607 A JP 2001257607A JP 2003064388 A JP2003064388 A JP 2003064388A
Authority
JP
Japan
Prior art keywords
silicon
mold
release material
binder
mold release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257607A
Other languages
Japanese (ja)
Inventor
Muneyoshi Yamatani
宗義 山谷
Ryuji Ozawa
竜司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001257607A priority Critical patent/JP2003064388A/en
Publication of JP2003064388A publication Critical patent/JP2003064388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Lubricants (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a releasant including a binder capable of reducing the carbon residues in ingot, and to provide a casting method for polycrystalline silicon by using the releasant. SOLUTION: This casting method for polycrystalline silicon comprises the steps of coating the inner wall of a mold with the releasant which is prepared by blending the binder and a solvent with the main material consisting of at least one of silicon nitride, silicon carbide and silicon oxide and then solidifying a silicon melt, wherein the binder comprises a compound of the formula: [Mg5.34 Li0.66 Si8 O20 (OH)4 ]Na<+> 0.66 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は離型材およびそれを
用いた多結晶シリコンの鋳造方法に関し、特に太陽電池
用の多結晶シリコン基板を製造するのに適した離型材お
よびそれを用いた多結晶シリコンの鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold release material and a method for casting polycrystalline silicon using the mold release material, and more particularly to a mold release material suitable for producing a polycrystalline silicon substrate for a solar cell and a polycrystal using the mold release material. The present invention relates to a method for casting silicon.

【0002】[0002]

【従来の技術】多結晶シリコンの鋳造方法は、シリコン
原料を鋳型内で溶解してそのまま同一鋳型内で凝固させ
る方法と溶解ルツボで溶解したシリコン融液を別の凝固
専用鋳型に鋳込んで凝固させる方法に大別される。
2. Description of the Related Art Polycrystalline silicon is cast by melting a silicon raw material in a mold and solidifying it in the same mold, or by casting a silicon melt melted in a melting crucible into another solidifying mold for solidification. It is roughly divided into the methods to make.

【0003】何れの場合も、融液状態のシリコンを鋳型
内で凝固させる必要があるため、鋳型内壁に離型材を塗
布する方法が行なわれている。この離型材には、シリコ
ンが凝固して冷却する過程で発生するシリコンインゴッ
ト中の熱応力を緩和する目的と、活性なシリコン融液が
鋳型材と反応して鋳型の内壁に固着することを防ぐ目的
がある。
In any case, since it is necessary to solidify the molten silicon in the mold, a method of applying a mold release material to the inner wall of the mold is used. This mold release material is for the purpose of relaxing the thermal stress in the silicon ingot generated during the process of cooling and solidifying silicon, and for preventing the active silicon melt from reacting with the mold material and sticking to the inner wall of the mold. There is a purpose.

【0004】一般に、窒化珪素、炭化珪素、酸化珪素等
の粉末を適当なバインダーと溶剤とで構成される溶液中
に混合してスラリーとし、これを鋳型内壁に塗布若しく
はスプレー等の手段でコーティングすることが公知の技
術として知られている。例えば、Y. Maeda et. al, J.
Electrochem. Soc., vol. 133, No. 2, Feb. 1986 p440
-443ならびにT. Saito et. al, 15th IEEE Photovoltai
c Specialists Conf.(1981) p576-580などがこれに該当
する。
Generally, powders of silicon nitride, silicon carbide, silicon oxide, etc. are mixed into a solution composed of a suitable binder and a solvent to form a slurry, which is coated on the inner wall of the mold by means such as coating or spraying. Is known as a known technique. For example, Y. Maeda et. Al, J.
Electrochem. Soc., Vol. 133, No. 2, Feb. 1986 p440
-443 and T. Saito et. Al, 15 th IEEE Photovoltai
c Specialists Conf. (1981) p576-580 etc. correspond to this.

【0005】また、スラリー状の離型材は、水やアルコ
ール等の溶剤、塗布成形用バインダー、更には流動性を
高めるための添加材等を適宜混合して形成するのが普通
である。
Further, the slurry-like release material is usually formed by appropriately mixing a solvent such as water or alcohol, a binder for coating and molding, and an additive material for improving fluidity.

【0006】成形用バインダーの中で最も利用されてい
る物質としてはPVA(ポリビニルアルコール)があ
る。PVAは接着性に優れることから、粉体の接着に適
している。
PVA (polyvinyl alcohol) is the most widely used substance among molding binders. PVA is suitable for adhering powder because it has excellent adhesiveness.

【0007】成形(塗布)後は、その後の加熱や融液と
の接触中に熱分解生成物が融液中に混入するのを防ぐた
めに、酸化雰囲気中の600℃程度の温度で脱脂するこ
とが通常行われている。
After molding (coating), degreasing is performed at a temperature of about 600 ° C. in an oxidizing atmosphere in order to prevent the thermal decomposition products from being mixed into the melt during subsequent heating or contact with the melt. Is usually done.

【0008】[0008]

【発明が解決しようとする課題】PVAは300℃付近
で急激に熱分解を起こしてCO等にガス化する結果、9
0%程度までは急速に除去することができるが、残り1
0%は500℃以上の温度に加熱してもなかなか除去さ
れず、カーボン残渣として残ってしまうことが多い。
PVA rapidly undergoes thermal decomposition at around 300 ° C. and is gasified into CO and the like.
It can be removed up to 0% rapidly, but the remaining 1
Even if 0% is heated to a temperature of 500 ° C. or higher, it is not easily removed and often remains as a carbon residue.

【0009】また、離型材をカーボン系鋳型材に塗布し
た場合、酸化雰囲気中で高温脱脂を行うと、鋳型材の酸
化によって消耗が進む結果、耐久性が落ち、結果的にシ
リコンインゴットの製作コストを増大させてしまう問題
がある。
When a carbon-based mold material is coated with a mold release material, high-temperature degreasing in an oxidizing atmosphere causes the mold material to be consumed due to oxidation, resulting in deterioration of durability and, as a result, the manufacturing cost of the silicon ingot. There is a problem that increases.

【0010】一方、脱脂を不活性雰囲気中で実施する
と、有機高分子の熱分解反応が急速に進行する結果、水
素原子が引き抜かれてCHが直線状に並び、それが環状
になってベンゼンその他の環状化合物になる。更に脱水
素反応を繰り返して大きく縮合して炭素の多い煤へと成
長してしまう。一旦、煤として安定化すると熱分解で除
去することは困難であるため、離型材中や離型材の表面
に付着したままシリコン融液と接触することになる。融
液と接触した煤或いは融液中に溶け込んだ炭素は、太陽
電池の特性を低下させるばかりでなく、析出してインゴ
ットを切断したり、スライスする際に加工不良を生む原
因となる場合が多い。
On the other hand, when the degreasing is carried out in an inert atmosphere, the thermal decomposition reaction of the organic polymer proceeds rapidly, and as a result, hydrogen atoms are extracted and CHs are arranged in a straight line, which becomes a ring and becomes benzene or other. Becomes a cyclic compound. Further, the dehydrogenation reaction is repeated to cause large condensation and grow into soot having a large amount of carbon. Once stabilized as soot, it is difficult to remove it by thermal decomposition, so it comes into contact with the silicon melt in the release material or while adhering to the surface of the release material. Soot in contact with the melt or carbon dissolved in the melt not only deteriorates the characteristics of the solar cell, but also causes precipitation and cutting of the ingot, and often causes processing defects when slicing. .

【0011】PVAに代わる有機バインダーは種々存在
するが、塗布性と接着性とを兼ね備えたものはないのが
実情である。
There are various organic binders that can replace PVA, but the reality is that none of them have both coating properties and adhesive properties.

【0012】本発明はこのような事情に鑑みてなされた
ものであり、インゴット中のカーボン残渣量を減少させ
ることができるバインダーを含有する離型材とそれを用
いた多結晶シリコンの鋳造方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and provides a mold release material containing a binder capable of reducing the amount of carbon residue in an ingot, and a method for casting polycrystalline silicon using the same. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る離型材は、窒化珪素、炭化珪素、お
よび酸化珪素のうちのいずれか一種以上を主原料とし
て、バインダーと溶剤を混合した離型材において、前記
バインダーとして[Mg5.34Li0.66Si820(O
H)4]Na+ 0.66を含有することを特徴とする。
In order to achieve the above object, the mold release material according to claim 1 comprises a binder and a solvent with at least one of silicon nitride, silicon carbide and silicon oxide as a main raw material. In the mold release material mixed with [Mg 5.34 Li 0.66 Si 8 O 20 (O
H) 4 ] Na + 0.66 .

【0014】上記離型材は、前記[Mg5.34Li0.66
820(OH)4]Na+ 0.66を前記窒化珪素、炭化珪
素、および酸化珪素のうちのいずれか一種以上に対して
2〜3.5wt%の範囲で含有することが望ましい。
The above-mentioned mold release material is the above-mentioned [Mg 5.34 Li 0.66 S
It is desirable that i 8 O 20 (OH) 4 ] Na + 0.66 be contained in the range of 2 to 3.5 wt% with respect to one or more of silicon nitride, silicon carbide, and silicon oxide.

【0015】また、請求項3に係る多結晶シリコンの鋳
造方法では、窒化珪素、炭化珪素、および酸化珪素のう
ちのいずれか一種以上を主原料としてバインダーと溶剤
を混合した離型材を鋳型の内壁に塗布して、シリコン融
液を凝固させる多結晶シリコンの鋳造方法において、前
記バインダーとして[Mg5.34Li0.66Si820(O
H)4]Na+ 0.66を含有する離型材を塗布することを特
徴とする。
In the method for casting polycrystalline silicon according to the third aspect of the present invention, a mold release material obtained by mixing a binder and a solvent with one or more of silicon nitride, silicon carbide and silicon oxide as a main material is used as the inner wall of the mold. In the method for casting polycrystalline silicon, which is applied to the above to solidify a silicon melt, [Mg 5.34 Li 0.66 Si 8 O 20 (O
H) 4 ] Na + 0.66 is used as a release material.

【0016】上記多結晶シリコンの鋳造方法では、前記
[Mg5.34Li0.66Si820(OH)4]Na+ 0.66
前記主原料に対して2〜3.5wt%の範囲で含有する
離型材を塗布することが望ましい。
In the above-mentioned method for casting polycrystalline silicon, the release agent containing [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 in the range of 2 to 3.5 wt% with respect to the main raw material. Is preferably applied.

【0017】また、上記多結晶シリコンの鋳造方法で
は、前記鋳型が黒鉛、カーボンコンポジット材、石英、
もしくは耐熱性セラミックのうちのいずれかから成るこ
とが望ましい。
In the method of casting polycrystalline silicon, the mold is graphite, carbon composite material, quartz,
Alternatively, it is desirable to be made of any one of heat resistant ceramics.

【0018】[0018]

【発明の実施の形態】本発明者らは、有機バインダーで
はなく無機系の物質で、塗布性・接着性を兼ね備えた物
質を鋭意調査した結果、[Mg5.34Li0.66Si820
(OH)4]Na+ 0.66で表される天然ヘクトライトの性
質に着目し、同一構造を有する高純度合成品に着目し
た。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have diligently investigated a substance which is not an organic binder but an inorganic substance and has both coatability and adhesiveness, and as a result, [Mg 5.34 Li 0.66 Si 8 O 20
Focusing on the properties of natural hectorite represented by (OH) 4 ] Na + 0.66 , attention was paid to a high-purity synthetic product having the same structure.

【0019】[Mg5.34Li0.66Si820(OH)4
Na+ 0.66は、半径10〜20nm、高さ1nmの微小
円盤状一次粒子からなる凝集体であり、白色・無臭で水
に加えると容易にゲル化する。一次粒子はその板面が−
に、端面が+に帯電しており、Na+が板面の上下に存
在して電気的に中和しながら、層状の重なりを形成して
凝集している。
[Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ]
Na + 0.66 is an aggregate composed of fine disc-shaped primary particles having a radius of 10 to 20 nm and a height of 1 nm, and is white and odorless and easily gels when added to water. The plate surface of the primary particles is −
In addition, the end faces are positively charged, and Na + exists above and below the plate surface and electrically neutralizes, forming a layered overlap and aggregating.

【0020】この凝集体を水に懸濁させると、一次粒子
の層間に水が浸入し、Na+が水和することにより板状
粒子の層間が広がってやがてはNa+が解離する。これ
により板面は−に帯電することになり、一次粒子は相互
に反発し合って水中に分散することになる(分散性)。
その後、一次粒子の板面の−と端面の+が引き合うこと
により、水中で一次粒子による構造体(カードハウス)
を形成して増粘する(増粘性)ようになって接着性が増
す。
[0020] are suspended the aggregates in water, water intrudes between layers of the primary particles, eventually spreads out layers of plate-like particles by Na + hydrates are dissociated Na +. As a result, the plate surface becomes negatively charged, and the primary particles repel each other and disperse in water (dispersibility).
After that, the − of the plate surface of the primary particles and the + of the end surface attract each other, so that the structure of the primary particles in water (card house)
To increase the viscosity (thickening) to increase the adhesiveness.

【0021】[Mg5.34Li0.66Si820(OH)4
Na+ 0.66とPVAを種々の調合比率で調合して窒化珪
素と混合し、鋳型材への塗布性及びシリコンとの離型性
について実験を繰り返した結果、[Mg5.34Li0.66
820(OH)4]Na+ 0.6 6を含有するバインダーを
使用することで、PVAを完全になくすことはできない
ものの、[Mg5.34Li0.66Si820(OH)4]Na
+ 0.66を対窒化珪素濃度2〜3wt%の範囲の比率で混
合することにより、対粉体濃度にしてPVAを約半分ま
でに減少させ得ることを見出し、この離型材を使用する
ことにより、シリコンインゴット中に析出する炭化珪素
等の析出物や異物の量を大幅に減少させることに成功し
た。
[Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ]
Na + 0.66 and PVA were mixed at various mixing ratios and mixed with silicon nitride, and the experiment was repeated for the coating property on the mold material and the releasability from silicon. As a result, [Mg 5.34 Li 0.66 S
i at 8 O 20 (OH) 4] The use of binder containing Na + 0.6 6, although it is not possible to eliminate the PVA completely, [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4] Na
+ 0.66 by mixing in a proportion ranging pair nitride silicon concentration 2~3Wt% and found that can reduce by about half the PVA in the Taikonatai concentration, by the use of this release material, silicon We have succeeded in greatly reducing the amount of precipitates such as silicon carbide and foreign substances that precipitate in the ingot.

【0022】離型材中のバインダーは、本来粉体に接着
性と流動性を与えるために使用されるものであるが、こ
れをたかだか1000℃程度の温度で完全に脱脂してし
まうと、離型材の主成分である窒化珪素粉体は焼結する
ことができないため、完全に粉体に戻ってしまうか、或
いはゆるく結合した状態になってしまう。この状態は、
その後の融液との接触により容易に破壊され、部分的或
いは大面積で離型材の剥離や融液中への落下を誘起して
しまう。従って、カーボンの脱脂後にもある程度の強度
を持った離型材であることが望まれる。
The binder in the mold release material is originally used to impart adhesiveness and fluidity to the powder, but if it is completely degreased at a temperature of about 1000 ° C., the mold release material is completely degreased. Since the silicon nitride powder, which is the main component of the above, cannot be sintered, the powder is completely returned to the powder or loosely bonded. This state is
Subsequent contact with the melt causes easy breakage and induces peeling of the release material or drop into the melt in a partial or large area. Therefore, it is desired that the release material has some strength even after degreasing of carbon.

【0023】[Mg5.34Li0.66Si820(OH)4
Na+ 0.66は、一次粒子が非常に微小であるため、スラ
リー状態で十分に攪拌すると、粉体粒子の表面に均一に
分布するようになる。また、SiO2成分を適度に含ん
でいる構造的な特徴を利用すると、比較的低温でSiO
2成分が液化して窒化珪素粉体が液相に溶解・再析出す
ることにより、窒化珪素同士の結合が強化され、離型材
を板状に維持するに足る強度を付与することが可能であ
る。すなわち、[Mg5.34Li0.66Si820(O
H)4]Na+ 0.66を使用すれば、PVA添加量が少なく
ても脱脂中および脱脂後の離型材強度が維持されること
になる。
[Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ]
Since the primary particles of Na + 0.66 are extremely small, if they are sufficiently stirred in a slurry state, they will be uniformly distributed on the surface of the powder particles. Further, by utilizing the structural feature that contains a suitable amount of SiO 2 component, it is possible to obtain SiO at a relatively low temperature.
By liquefying the two components and dissolving and re-precipitating the silicon nitride powder in the liquid phase, the bond between silicon nitrides is strengthened, and it is possible to give the mold release material sufficient strength. . That is, [Mg 5.34 Li 0.66 Si 8 O 20 (O
When H) 4 ] Na + 0.66 is used, the strength of the release material is maintained during and after degreasing even if the amount of PVA added is small.

【0024】PVAと[Mg5.34Li0.66Si8
20(OH)4]Na+ 0.66を純水に溶解し、これに窒化珪
素粉を混合して離型材スラリーを作製し、これを鋳型材
に塗布することで塗布性と接着性が得られる。
PVA and [Mg 5.34 Li 0.66 Si 8 O
20 (OH) 4 ] Na + 0.66 is dissolved in pure water, silicon nitride powder is mixed with this to prepare a mold release material slurry, and this is applied to a mold material to obtain coatability and adhesiveness.

【0025】離型材の塗布性テストの結果を図1に示
す。図1から、PVAのみの場合の調合比率と[Mg
5.34Li0.66Si820(OH)4]Na+ 0.66のみの場
合の調合比率を結んだ直線上に各比率での最適調合比率
があることが判った。
The results of the coatability test of the release material are shown in FIG. From FIG. 1, the compounding ratio and [Mg
It was found that there was an optimum blending ratio at each ratio on a straight line connecting the blending ratios in the case of only 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 .

【0026】次に、各調合比率で作製した離型材を鋳型
材に塗布し、実際のシリコン鋳造に使用して、離型性の
テストを実施した。実験の結果、[Mg5.34Li0.66
820(OH)4]Na+ 0.66を対窒化珪素濃度3.5
wt%以上の比率で混合すると、シリコン鋳造中に離型
材にクラックが入って融液がしみ出すことが判った。ま
た、[Mg5.34Li0.66Si820(OH)4]Na+
0.66を対窒化珪素濃度2.0wt%未満の比率では、こ
のバインダーだけでは強度を維持することは難しく、P
VA含有量を増やす必要があるために当初の目的であっ
た有機バインダー中のカーボン量を十分に低減すること
ができない。
Next, the mold release material prepared at each mixing ratio was applied to the mold material and used for actual silicon casting to perform a mold release test. As a result of the experiment, [Mg 5.34 Li 0.66 S
i 8 O 20 (OH) 4 ] Na + 0.66 vs. silicon nitride concentration 3.5
It has been found that when the mixture is mixed at a ratio of wt% or more, the mold release material cracks during the casting of silicon and the melt exudes. In addition, [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na +
When the ratio of 0.66 to the silicon nitride concentration is less than 2.0 wt%, it is difficult to maintain the strength only with this binder.
Since it is necessary to increase the VA content, the amount of carbon in the organic binder, which was the original purpose, cannot be sufficiently reduced.

【0027】実験を繰り返した結果、[Mg5.34Li
0.66Si820(OH)4]Na+ 0.66を対窒化珪素濃度
2〜3.5wt%の範囲の比率で混合して作製した離型
材を鋳型材に塗布した場合に、シリコンインゴットの離
型性も良く、インゴット中に析出する炭化珪素等の析出
物や異物の量を大幅に減少させ得ることがわかった。
As a result of repeating the experiment, [Mg 5.34 Li
When a mold release material prepared by mixing 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 with respect to the silicon nitride concentration in the range of 2 to 3.5 wt% is applied to the mold material, the mold release of the silicon ingot is performed. It has been found that it has good properties and can significantly reduce the amount of deposits such as silicon carbide and foreign matters deposited in the ingot.

【0028】[0028]

【実施例】次に実施例を説明する。300mm×300
mm×300mmtの黒鉛製鋳型の内壁に窒化珪素:P
VA:[Mg5.34Li0.66Si820(OH)4]Na+
0.66=1:0.05:0.025の重量比で調合した離
型材を塗布した鋳型と従来の離型材を塗布した鋳型を準
備し、70kgのシリコンを溶解した。シリコンが完全
に溶解した後、鋳型底部に冷却板を当て鋳型を回転しな
がら底部からの一方向凝固法によりシリコンインゴット
を製造した。
EXAMPLES Next, examples will be described. 300 mm x 300
Silicon nitride: P on the inner wall of a graphite mold of mm × 300 mm t
VA: [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na +
A mold coated with a mold release material prepared in a weight ratio of 0.66 = 1: 0.05: 0.025 and a mold coated with a conventional mold release material were prepared, and 70 kg of silicon was melted. After the silicon was completely melted, a cooling plate was placed on the bottom of the mold and the mold was rotated to produce a silicon ingot by the unidirectional solidification method from the bottom.

【0029】離型材の違いによるインゴット中の異物・
析出物の発生量の違いを表1に示す。また、太陽電池の
変換効率の違いを表2に示す。
Foreign matter in the ingot due to the difference in the release material
Table 1 shows the difference in the amount of precipitate generated. Table 2 shows the difference in conversion efficiency of the solar cells.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1および表2から、本発明の離型材を用
いた多結晶シリコンで形成した太陽電池では、太陽電池
の変換効率を低下させないように、インゴット中の異物
・析出物を大きく低減させ得ることが判った。
From Table 1 and Table 2, in the solar cell formed of polycrystalline silicon using the mold release material of the present invention, the foreign matter / precipitate in the ingot is greatly reduced so as not to lower the conversion efficiency of the solar cell. It turns out to get.

【0033】[0033]

【発明の効果】以上のように、請求項1に係る離型材に
よれば、窒化珪素、炭化珪素、および酸化珪素のうちの
いずれか一種以上を主原料として、バインダーと溶剤を
混合した離型材のバインダーとして、[Mg5.34Li
0.66Si820(OH)4]Na+ 0 .66を含有することか
ら、シリコンを鋳造するための離型材として用いた場
合、インゴット中の異物・析出物量を抑制することがで
きる。
As described above, according to the mold release material of the first aspect, the mold release material in which the binder and the solvent are mixed with at least one of silicon nitride, silicon carbide and silicon oxide as a main material. As a binder for [Mg 5.34 Li
Since containing 0.66 Si 8 O 20 (OH) 4] Na + 0 .66, when used as a release agent for casting silicon, it is possible to suppress foreign matter and deposition amount in the ingot.

【0034】また、請求項3に係る多結晶シリコンの鋳
造方法によれば、窒化珪素、炭化珪素、および酸化珪素
のうちのいずれか一種以上を主原料としてバインダーと
溶剤を混合した離型材を鋳型の内壁に塗布して、シリコ
ン融液を凝固させる際のバインダーとして、[Mg5.34
Li0.66Si820(OH)4]Na+ 0.66を含有する離
型材を塗布することから、インゴット中の異物・析出物
量を抑制することができる。
Further, according to the method for casting polycrystalline silicon according to the third aspect, a mold release material obtained by mixing a binder and a solvent with at least one of silicon nitride, silicon carbide and silicon oxide as a main material is used as a mold. As a binder when the silicon melt is solidified by applying [Mg 5.34
Since the mold release material containing Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 is applied, the amount of foreign matters and precipitates in the ingot can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多結晶シリコンの製造方法に係る
離型材塗布性のテスト結果を示す図である。
FIG. 1 is a diagram showing a test result of a mold release material coatability according to a method for producing polycrystalline silicon according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10M 103/00 C10M 103/00 A 103/02 103/02 Z // C10N 40:36 C10N 40:36 Fターム(参考) 4G072 AA01 BB12 GG01 GG03 HH01 NN01 UU02 4H104 AA13C AA21A AA22A FA01 FA02 PA48 RA01 4J038 AA011 AA012 CE021 CE022 HA436 HA446 HA451 HA452 KA06 NA10 PC01 PC03 PC04─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C10M 103/00 C10M 103/00 A 103/02 103/02 Z // C10N 40:36 C10N 40:36 F Term (reference) 4G072 AA01 BB12 GG01 GG03 HH01 NN01 UU02 4H104 AA13C AA21A AA22A FA01 FA02 PA48 RA01 4J038 AA011 AA012 CE021 CE022 HA436 HA446 HA451 HA452 KA06 NA10 PC01 PC03 PC04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素、炭化珪素、および酸化珪素の
うちのいずれか一種以上を主原料として、バインダーと
溶剤を混合した離型材において、前記バインダーとして
[Mg5.34Li0.66Si820(OH)4]Na+ 0.66
含有することを特徴とする離型材。
1. A mold release material in which a binder and a solvent are mixed with at least one of silicon nitride, silicon carbide, and silicon oxide as a main raw material, and the binder is [Mg 5.34 Li 0.66 Si 8 O 20 (OH ) 4 ] Na + 0.66 is contained, The mold release material characterized by the above-mentioned.
【請求項2】 前記[Mg5.34Li0.66Si820(O
H)4]Na+ 0.66を前記窒化珪素、炭化珪素、および酸
化珪素のうちのいずれか一種以上に対して2〜3.5w
t%の範囲で含有することを特徴とする請求項1に記載
の離型材。
2. The [Mg 5.34 Li 0.66 Si 8 O 20 (O
H) 4 ] Na + 0.66 in an amount of 2 to 3.5 w with respect to any one or more of silicon nitride, silicon carbide, and silicon oxide.
The release material according to claim 1, wherein the release agent is contained in a range of t%.
【請求項3】 窒化珪素、炭化珪素、および酸化珪素の
うちのいずれか一種以上を主原料としてバインダーと溶
剤を混合した離型材を鋳型の内壁に塗布して、シリコン
融液を凝固させる多結晶シリコンの鋳造方法において、
前記バインダーとして[Mg5.34Li0.66Si8
20(OH)4]Na+ 0.66を含有する離型材を塗布するこ
とを特徴とする多結晶シリコンの鋳造方法。
3. A polycrystal for solidifying a silicon melt by applying a mold release material obtained by mixing a binder and a solvent using at least one of silicon nitride, silicon carbide and silicon oxide as a main raw material to the inner wall of a mold. In the method of casting silicon,
As the binder, [Mg 5.34 Li 0.66 Si 8 O
A method for casting polycrystalline silicon, which comprises applying a mold release material containing 20 (OH) 4 ] Na + 0.66 .
【請求項4】 前記[Mg5.34Li0.66Si820(O
H)4]Na+ 0.66を前記主原料に対して2〜3.5wt
%の範囲で含有する離型材を塗布することを特徴とする
請求項3に記載の多結晶シリコンの鋳造方法。
4. The [Mg 5.34 Li 0.66 Si 8 O 20 (O
H) 4 ] Na + 0.66 in an amount of 2 to 3.5 wt% with respect to the main raw material
The method for casting polycrystalline silicon according to claim 3, wherein a mold release material contained in the range of 10% is applied.
【請求項5】 前記鋳型が黒鉛、カーボンコンポジット
材、石英、もしくは耐熱性セラミックのうちのいずれか
から成ることを特徴とする請求項3または請求項4に記
載の多結晶シリコンの鋳造方法。
5. The method for casting polycrystalline silicon according to claim 3, wherein the mold is made of any one of graphite, a carbon composite material, quartz, and heat resistant ceramics.
JP2001257607A 2001-08-28 2001-08-28 Releasant and casting method for polycrystalline silicon using the same Pending JP2003064388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257607A JP2003064388A (en) 2001-08-28 2001-08-28 Releasant and casting method for polycrystalline silicon using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257607A JP2003064388A (en) 2001-08-28 2001-08-28 Releasant and casting method for polycrystalline silicon using the same

Publications (1)

Publication Number Publication Date
JP2003064388A true JP2003064388A (en) 2003-03-05

Family

ID=19085241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257607A Pending JP2003064388A (en) 2001-08-28 2001-08-28 Releasant and casting method for polycrystalline silicon using the same

Country Status (1)

Country Link
JP (1) JP2003064388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507972A (en) * 2005-09-14 2009-02-26 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Layer or coating and composition for its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507972A (en) * 2005-09-14 2009-02-26 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Layer or coating and composition for its production

Similar Documents

Publication Publication Date Title
EP1570117A1 (en) Vessel for holding silicon and method of producing the same
TW201125830A (en) Composite crucible, method of manufacturing the same, and method of manufacturing silicon crystal
JP2007261832A (en) Silicon nitride release material powder, method for producing release material and firing method
EP2025780A2 (en) Silicon release coating, method of making same, and method of using same
JP4328161B2 (en) Silicon casting mold
WO1987005287A1 (en) Process for manufacturing glass
JP3250149B2 (en) Silicon ingot casting mold and method of manufacturing the same
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
US9428844B2 (en) Crucible for solidifying a silicon ingot
JP4471692B2 (en) Method for manufacturing container for melting silicon having release layer
JP4116914B2 (en) Silicon casting mold manufacturing method, silicon ingot manufacturing method
JP4884150B2 (en) Manufacturing method of mold for silicon casting
JP2003064388A (en) Releasant and casting method for polycrystalline silicon using the same
JP3981538B2 (en) Silicon holding container and manufacturing method thereof
JPWO2011074321A1 (en) Polycrystalline silicon for solar cell and method for producing the same
CN102211937A (en) Method for synthesizing high-purity aluminum silicon carbon superfine powder
JP2008081394A (en) Metallic silicon and process for producing the same
JP4051181B2 (en) Silicon casting mold and method for forming solar cell using the same
Fang et al. Synthesis and characterization of ultra-long silica nanowires
CN103124693B (en) Silicon ingot manufacturing vessel
JP2001085717A (en) Carbon thin plate substrate and thin-film semiconductor crystal solar battery
JP2005046866A (en) Mold for casting silicon and its manufacturing method
JP2004323293A (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
CN108585535B (en) Production process of high-purity spraying-free crucible
JP2004174527A (en) Method for casting polycrystalline silicon ingot, silicon casting mold used therefor, and release agent used therefor