JP2004323293A - METHOD OF PRODUCING SiC SINGLE CRYSTAL - Google Patents

METHOD OF PRODUCING SiC SINGLE CRYSTAL Download PDF

Info

Publication number
JP2004323293A
JP2004323293A JP2003119952A JP2003119952A JP2004323293A JP 2004323293 A JP2004323293 A JP 2004323293A JP 2003119952 A JP2003119952 A JP 2003119952A JP 2003119952 A JP2003119952 A JP 2003119952A JP 2004323293 A JP2004323293 A JP 2004323293A
Authority
JP
Japan
Prior art keywords
sic
powder
raw material
material powder
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003119952A
Other languages
Japanese (ja)
Inventor
Masateru Nakamura
昌照 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003119952A priority Critical patent/JP2004323293A/en
Publication of JP2004323293A publication Critical patent/JP2004323293A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stably producing SiC single crystals without using a temperature gradient. <P>SOLUTION: Raw material powder is contacted with seed crystals, and pressurization is performed at an ordinary temperature or under heating. The obtained green compact is heat-treated under an ordinary pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、SiC単結晶の製造方法に関する。
【0002】
【従来の技術】
SiC単結晶は、SiとCが1対1で共有結合した構造であり、従来のSi半導体デバイスに比べて高電圧・大電力を低損失で制御できるワイドバンドギャップの半導体デバイス材料として注目されている。
【0003】
従来から単結晶の製造方法として様々な方法が提案されている。単結晶の構成物質が溶融状態を有する(調和融解する)場合には、垂直・水平ブリッジマン法(VB、HB)、その派生であり垂直凝固法(VGF)、CZ法(LEC)、FZ法、ベルヌーイ法などが用いられる。更に、溶融状態を持たない(調和融解しない)物質については、昇華法、溶液法(LPE、TSSG)等が用いられる。
【0004】
これらの方法は何れも、結晶成長装置内において、結晶を核生成させる部位を低温に、結晶の原料物質を供給する部位を高温に、それぞれ維持するように温度勾配を形成し、これにより低温部に結晶構成物質の過飽和状態(過冷状態)を生起させ、これを駆動力として結晶成長を行なう。
【0005】
SiCは溶融状態を持たないため、単結晶の製造には昇華法あるいは溶液法が用いるが、特に結晶成長速度の点で実用性が高い溶液法が着目されている。
【0006】
例えば、特許文献1(特開2000−264790号公報)には、少なくとも一種の遷移金属と、Siと、Cとを含む原料を加熱により溶融し、形成された融液を冷却することによりSiC単結晶を析出成長させる方法が開示されている。
【0007】
しかし、結晶成長に最適な温度勾配を再現性良く安定して実現することは実際上非常に困難であり、そのため装置も複雑かつ高価になることが避けられない。
【0008】
例え巨視的には温度分布を安定して確保できたとしても、結晶核発生部位の近傍における温度勾配(温度分布)の揺らぎは原理的に回避し難い。その結果、核発生過程に微妙な揺らぎが生じて、転位等の欠陥が導入されたり、多結晶化が誘発されたりするため、高品位の単結晶を安定して得ることが困難である。
【0009】
【特許文献1】
特開2000−264790号公報(特許請求の範囲)
【0010】
【発明が解決しようとする課題】
本発明は、温度勾配を用いずに、安定してSiC単結晶を製造する方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、原料粉末を種結晶に接触させて常温にて加圧し、得られた圧粉体を常圧下で熱処理することを特徴とするSiC単結晶の製造方法が提供される。
【0012】
更に、原料粉末を種結晶に接触させて加熱下で加圧し、得られた焼結体を常圧下で熱処理することを特徴とするSiC単結晶の製造方法も提供される。
【0013】
本発明においては、原料粉末粒子と種結晶との表面エネルギー差により結晶が核発生する。すなわち、バルク表面に比べて粉末粒子は表面積/体積の比が大きく、それに対応して表面エネルギーも大きい。両者を加圧により密着させて加熱すると、[1]表面拡散および固相拡散、[2]液相を形成する添加剤を含有する場合にはこれを介した溶解・再析出、などの機構により、粉末粒子から表面エネルギーの低く安定な種結晶への物質移動が起こる。このようにして原料粉末から種結晶への物質移動が継続することにより種結晶上に単結晶が成長する。
【0014】
【発明の実施の形態】
図1を参照して、本発明のSiC単結晶製造プロセスの原理を説明する。
【0015】
図1(1)は本発明の加圧工程を示す断面図であり、ダイDと上下のパンチP1/P2とから成るプレス装置にSiC粉末と任意の添加剤から成る原料粉末Mを装入する。原料粉末Mは所要量の凡そ半量を装入し、その上に種結晶Sを載せ、更にその上に原料粉末Mの残量を装入する。このようにして原料粉末Mに種結晶Sを埋め込んだ状態で加圧を行なう。加圧は常温または加熱下にて行なう。
【0016】
得られた成形体は、典型的には常温加圧なら圧粉体、加熱下加圧なら焼結体である。
【0017】
次に、上記加圧成形体を熱処理すると、前述の原理により原料粉末Mから種結晶S表面への物質移動が進行して、図1(2)に示すように種結晶Sの周囲へのエピタキシャル成長により単結晶Cが得られる。
【0018】
本発明の望ましい形態として、原料粉末として、α−SiC粉末と0.5〜10wt%のAl粉末との混合粉末を用いることができる。このように少量のAlが共存することにより高温で液相が形成される。これにより原料粉末粒子と種結晶の表面拡散速度が増大すると共に、液相を介した溶解・再析出過程も促進されて、原料粉末から種結晶への物質移動の速度が増加するので、SiC単結晶の成長速度が増加する。上記範囲で添加することにより、無添加時に比べてSiC単結晶の成長速度が約2倍以上に顕著に増加する。
【0019】
別の望ましい形態として、原料粉末として、β−SiC粉末と0.5〜10wt%のAl粉末と10wt%以下の希土類酸化物粉末との混合粉末を用いることができる。昇温過程でβ−SiCから高温安定相であるα−SiCへの相転移が起き、この相転移が成長の駆動力として加わり、成長が更に加速される。上記範囲で添加することにより、無添加時に比べてSiC単結晶の成長速度が約2倍以上に顕著に増加する。希土類酸化物としては代表的にはYを用いることができる。その場合、Al粉末とY粉末との混合比率は、Al/Y=1/0.6〜1/2.5の範囲内が適当である。この範囲内であれば、1800〜2000℃の温度域で液相を形成できる。
【0020】
上記混合粉末に、更に5wt%以下のC粉末を含ませることが望ましい。Cは粉末粒子表面の酸化物層を還元し、表面拡散を促進すると共に成長する結晶中へのOの混入を防止する。
【0021】
本発明の方法の別の実施形態として、Si基板の前面に形成された3C−SiC薄膜を上記種結晶として用い、該Si基板の背面にSiC焼結体またはC粉末含有SiC粉末圧粉体を接触させた状態で前記原料粉末を該種結晶に接触させることができる。
【0022】
一般的な種結晶としては、アチソン結晶、レーリー結晶を用いることができるが、これらはマイクロパイプや転位などの欠陥が多数含まれるものが多い。これに対して、上記3C−SiC薄膜は低欠陥である点で種結晶として好適である。ただし、その結晶多形が3Cであることが1つの特徴である。従来の結晶成長プロセスでこの薄膜を種結晶に用いた場合、基板のSiの融点以下でのプロセスとなるため、析出する結晶も3C以外の結晶多形とすることができなかった。
【0023】
これに対して、図2に示すように、本発明によりSi基板10上の薄膜種結晶12を用いた形態においては、図2(1)に示すようにSi基板10の背面にSiC焼結体14を配した場合は、熱処理過程において、SiC圧粉体16よりもSi基板10の方が熱伝導率が高いためSiC薄膜12との間に温度差が生じ、溶融した基板Si10を介してSiC焼結体14が溶解し、図2(2)に示すように薄膜12の裏側にSiC単結晶Cが析出する。その後、更なる昇温過程において、図2(3)に示すように、SiC薄膜12と接触したSiC粉末粒子16からの物質移動によりSiC薄膜12表面にSiC単結晶Cが析出する。析出した結晶は昇温過程において高温安定相であるα−SiCに相転移する。このようにして、3C−SiCを種結晶として用いながら、高品質な4Hまたは6Hの単結晶を得ることができる。
【0024】
薄膜種結晶を用いた形態において、Si基板の背面にC粉末含有SiC粉末圧粉体を配した場合は、熱処理過程において、昇温過程で溶融したSiは、過剰に存在するCとの反応によりSiC微結晶を形成し、以下上述した過程により同様に4Hまたは6Hの単結晶が得られる。
【0025】
薄膜種結晶を用いた形態では、Siが溶融する段階での温度域では圧粉体の収縮は起こらないので、基板のSiが溶解しても新たに生成したSiCが基材として機能し、薄膜を破壊することなく種結晶として用いることができる。
【0026】
薄膜種結晶を用いた形態の望ましい態様においては、原料粉末としてβ−SiC粉末を用いる。昇温過程でのβ→α相転移により成長が促進さればかりでなく、成長した結晶の多形を4Hまたは6Hに安定化させることができる。
【0027】
薄膜種結晶を用いた形態においては、熱処理を、1420〜1600℃の温度で行なう第1段階と、1800〜2100℃の温度で行なう第2段階とにより行なうことが望ましい。第1段階では基板SiのSiC化を十分に促進でき、SiC薄膜の歪みを低減することができ、第2段階で成長する単結晶の品質を向上させることができる。第1段階の熱処理温度は、Siの融点直上である1420℃以上とし、Siを消散させないために1600℃以下とする。第2段階の熱処理温度は、結晶多形4Hを生成させるために1800℃以上とし、SiCの分解および酸化揮発を防止するために2100℃以下とする。
【0028】
【実施例】
〔実施例1〕
本発明の方法により、種結晶としてバルクのレーリー結晶を用い、SiC単結晶を製造した。表1に原料粉末の組成および処理条件を示す。
【0029】
【表1】

Figure 2004323293
【0030】
表1に示した原料粉末を構成する各成分粉末をエタノール分散媒(1L)中でボールミル混合した。混合メディアとして窒化珪素ポットおよび窒化珪素ボールを用い、混合時間は48時間であった。
【0031】
混合により得られたスラリーを湯煎にて分散媒を揮発除去し、更に脱脂炉にて80℃×2hの乾燥を行い、目開き250μmのふるいにて解砕し原料粉末とした。
【0032】
得られた原料粉末12gをカーボンダイスに充填し、上パンチで仮成形し、上パンチを抜き取り、ダイス内の圧粉体上面にSiC種結晶(レーリー結晶)を置き、その上から原料粉末12gを充填し、上パンチを挿入し、面圧8.3MPaにて常温で加圧成形した。
【0033】
得られた圧粉体を2050℃×2hの熱処理により焼結した。熱処理雰囲気はAr0.01MPaとした。
【0034】
ただし、表1に示したように、試料B−3については、上記の加圧成形を2050℃×2hの加熱下で面圧40MPaのホットプレスとして行い、得られた焼結体を1900℃×24hの熱処理を施した。加圧成形および熱処理の雰囲気はAr0.01MPaであった。
【0035】
得られた各試料について、種結晶と多結晶体との接合部(成長層を含む)断面を切り出し、鏡面研磨し顕微鏡観察した。これにより単結晶部の総厚さを測定し、予め測定しておいた種結晶の厚さを差し引いて成長厚さを算出し、これを加熱保持時間の合計値(加圧成形+熱処理)で除した値を成長速度とした。結果を表2および図3に示す。
【0036】
【表2】
Figure 2004323293
【0037】
まず、常温で加圧成形し、得られた圧粉体を熱処理した場合には下記の結果が得られた。
【0038】
試料A−0の結果から、本発明により種結晶からSiC単結晶が成長したことが分かる。
【0039】
試料B−0の結果から、SiC原料粉末としてβ−SiCを用いると、α−SiCを用いた試料A−0に比べて成長速度が約2倍に向上することが分かる。
【0040】
次に、試料A−1およびA−2の結果から、加熱下で液相を形成するAlの添加またはそれに加えてCの添加により、成長速度が顕著に増加したことが分かる。この傾向は、試料B−1、B−2についても同様であった。
【0041】
また、加熱下で加圧成形し、得られた焼結体を熱処理した試料B−3についても、本発明の方法により種結晶からSiC単結晶が成長したことが分かる。この場合、加圧成形を常温で行なった場合よりも成長速度が小さかった。その理由は現時点では十分解明されていないが、恐らくこれは、加熱下で加圧すなわちホットプレスにより焼結体としたことで高密度となって原料粉末粒子同士が空隙を介さずに密着した結果、結晶成長反応が主として固相内での物質移動のみにより進行したためであろうと推察される。むしろ他の試料のように加圧成形は常温で行って過度に高密度化させず適度に原料粉末粒子間に空隙を残して固相/気相/液相が混在する状態にした方が、その後の熱処理での単結晶成長過程の進行が促進されるようである。
【0042】
<添加剤の量>
上述したとおり、SiC原料粉末に酸化物粉末または酸化物粉末と炭素粉末を添加することによりSiC単結晶の成長が促進されることが分かった。したがって、これら添加剤の添加量を最適化することが重要である。そのために、上記の実験に際して、実際には添加量を種々に変えて予備実験を行なった。
【0043】
図4に、Alの添加量とSiC単結晶成長速度との関係を示す。ただし、α−SiCについてはAlのみ添加、β−SiCについてはAlとCとを添加した場合の結果である。同図に示したように、SiC原料粉末としてα−SiC、β−SiCのいずれを用いた場合も、Alの添加量を0.5wt%以上とすることにより、無添加の場合に比べて成長速度が約2倍以上に向上する。特にAl添加量2wt%付近で成長速度が最大となる。一方、10wt%を超えて添加しても、成長速度向上効果が漸減するだけである。この結果に基づき、上記実験において表1に示したようにAl添加量を2wt%とした。
【0044】
Alと希土類酸化物の混合比率は、希土類酸化物がYである場合は、本発明の加熱温度範囲である1800℃〜2000℃の温度域で液相を形成できるように、Al/Y=1/0.6〜1/2.5の範囲内とすることが望ましい。これに基づき、前述の実験において表1に示したように、2wt%Alに対して5wt%Yとした(Al/Y=1/2.5)。
【0045】
図5に、C添加量とSiC単結晶成長速度との関係を示す。ただし、α−SiCについてはAlを2wt%添加し、β−SiCについてはAlを2wt%とYを5wt%添加した場合の結果である。同図に示したように、SiC原料粉末としてα−SiC、β−SiCのいずれを用いた場合も、C添加量が5wt%までは無添加の場合よりも成長速度が大きくなる。特にC添加量2wt%付近で成長速度が最大となる。この結果に基づき、前述の実験において表1に示したようにC添加量を2wt%とした。
【0046】
〔実施例2〕
本発明により、種結晶としてSi基板上の3C−SiC薄膜を用い、SiC単結晶を製造した。Si基板は厚さ380μm、SiC薄膜は厚さ20μmであった。表3に原料粉末の組成および処理条件を示す。
【0047】
【表3】
Figure 2004323293
【0048】
実施例1の加圧方法のうち常温での加圧により圧粉体を形成し、表3に示す熱処理を施した。熱処理雰囲気はAr0.01MPaであった。結果を表4および図6に示す。
【0049】
【表4】
Figure 2004323293
【0050】
熱処理を一段階のみで行なった試料B−6およびSi基板背面に薄膜側と同じ圧粉体を配した試料B−7では、単結晶の存在が認められなかった。これはSi基板が溶解した後に、固体のSiCとして十分に形成されなかったため、自立性に乏しい薄膜SiCが崩壊したためである。
【0051】
これに対して、本発明による試料A−3、B−4、B−5の何れにおいても、SiC薄膜を起点としてSiC単結晶の成長が認められた。更に、試料B−4、B−5では結晶多形が種結晶とは異なる4Hであった。
【0052】
【発明の効果】
本発明によれば、温度勾配を用いずに、安定してSiC単結晶を製造する方法が提供される。
【図面の簡単な説明】
【図1】図1は、本発明のSiC単結晶製造プロセスの原理を示す断面図である。
【図2】図2は、本発明の一実施形態において、Si基板上に形成したSiC薄膜を種結晶として用いるSiC単結晶製造プロセスの原理を示す断面図である。
【図3】図3は、本発明の種々の条件におけるSiC単結晶の成長速度を比較して示すグラフである。
【図4】図4は、本発明においてα−SiC粉末またはβ−SiC粉末へのAl粉末添加量とSiC単結晶成長速度との関係を示すグラフである。
【図5】図5は、本発明においてα−SiC粉末またはβ−SiC粉末へのC粉末添加量とSiC単結晶成長速度との関係を示すグラフである。
【図6】図6は、図2に示した薄膜種結晶を用いて種々の条件で製造したSiC単結晶の成長速度を比較して示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a SiC single crystal.
[0002]
[Prior art]
The SiC single crystal has a structure in which Si and C are covalently bonded in a one-to-one relationship, and is attracting attention as a wide band gap semiconductor device material capable of controlling high voltage and large power with low loss compared to a conventional Si semiconductor device. I have.
[0003]
Conventionally, various methods have been proposed as methods for producing a single crystal. When the constituent material of the single crystal has a molten state (harmonic melting), the vertical / horizontal Bridgman method (VB, HB), a derivative thereof, the vertical solidification method (VGF), the CZ method (LEC), the FZ method , Bernoulli method or the like is used. Further, for substances that do not have a molten state (not harmonically melt), a sublimation method, a solution method (LPE, TSSG) or the like is used.
[0004]
In any of these methods, a temperature gradient is formed in the crystal growth apparatus so as to maintain a portion for generating a crystal nucleus at a low temperature and a portion for supplying a crystal raw material at a high temperature. Then, a supersaturated state (supercooled state) of the crystal constituting material is generated, and crystal growth is performed using this as a driving force.
[0005]
Since SiC does not have a molten state, a sublimation method or a solution method is used for the production of a single crystal, and a solution method which is particularly practical in terms of crystal growth rate has attracted attention.
[0006]
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-264790) discloses that a raw material containing at least one type of transition metal, Si, and C is melted by heating, and the formed melt is cooled to obtain a single-SiC material. A method for depositing and growing crystals is disclosed.
[0007]
However, it is practically very difficult to stably realize the optimum temperature gradient for crystal growth with good reproducibility, so that the apparatus is inevitably complicated and expensive.
[0008]
Even if the temperature distribution can be stably secured macroscopically, fluctuation of the temperature gradient (temperature distribution) in the vicinity of the crystal nucleus generation site is difficult to avoid in principle. As a result, subtle fluctuations occur in the nucleation process, defects such as dislocations are introduced, and polycrystallization is induced. Therefore, it is difficult to stably obtain a high-quality single crystal.
[0009]
[Patent Document 1]
JP-A-2000-264790 (Claims)
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for stably producing a SiC single crystal without using a temperature gradient.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a SiC single crystal is characterized in that a raw material powder is brought into contact with a seed crystal, pressed at normal temperature, and the obtained green compact is heat-treated at normal pressure. Is provided.
[0012]
Furthermore, there is provided a method for producing a SiC single crystal, characterized in that the raw material powder is brought into contact with a seed crystal and pressurized under heating, and the obtained sintered body is heat-treated under normal pressure.
[0013]
In the present invention, crystals generate nuclei due to the surface energy difference between the raw material powder particles and the seed crystal. That is, the powder particles have a larger surface area / volume ratio than the bulk surface and correspondingly higher surface energy. When both are brought into close contact with each other by applying pressure and heated, a mechanism such as [1] surface diffusion and solid phase diffusion, and [2] dissolution / reprecipitation through an additive that forms a liquid phase through the additive is used. Then, mass transfer from the powder particles to a stable seed crystal having a low surface energy occurs. By continuing mass transfer from the raw material powder to the seed crystal in this manner, a single crystal grows on the seed crystal.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The principle of the SiC single crystal manufacturing process of the present invention will be described with reference to FIG.
[0015]
FIG. 1 (1) is a cross-sectional view showing a pressing step of the present invention. A raw material powder M made of SiC powder and an optional additive is charged into a press device consisting of a die D and upper and lower punches P1 / P2. . About half the required amount of the raw material powder M is charged, the seed crystal S is placed thereon, and the remaining amount of the raw material powder M is further charged thereon. Pressurization is performed with the seed crystal S embedded in the raw material powder M in this manner. Pressurization is performed at normal temperature or under heating.
[0016]
The obtained compact is typically a green compact when pressed at room temperature or a sintered compact when pressed under heating.
[0017]
Next, when the above-mentioned press-formed body is heat-treated, mass transfer from the raw material powder M to the surface of the seed crystal S proceeds according to the above-described principle, and epitaxial growth around the seed crystal S as shown in FIG. Yields a single crystal C.
[0018]
As a desirable mode of the present invention, a mixed powder of α-SiC powder and 0.5 to 10 wt% Al 2 O 3 powder can be used as the raw material powder. The coexistence of such a small amount of Al 2 O 3 forms a liquid phase at a high temperature. As a result, the surface diffusion rate of the raw material powder particles and the seed crystal is increased, and the dissolution / reprecipitation process via the liquid phase is also promoted, and the speed of mass transfer from the raw material powder to the seed crystal is increased. The crystal growth rate increases. By adding in the above range, the growth rate of the SiC single crystal is remarkably increased about twice or more as compared with the case of not adding.
[0019]
As another desirable form, a mixed powder of β-SiC powder, 0.5 to 10 wt% Al 2 O 3 powder and 10 wt% or less rare earth oxide powder can be used as the raw material powder. During the heating process, a phase transition from β-SiC to α-SiC, which is a high-temperature stable phase, occurs, and this phase transition is added as a driving force for growth, and the growth is further accelerated. By adding in the above range, the growth rate of the SiC single crystal is remarkably increased about twice or more as compared with the case of not adding. Typically, Y 2 O 3 can be used as the rare earth oxide. In that case, the mixing ratio of the Al 2 O 3 powder and the Y 2 O 3 powder is appropriately in the range of Al 2 O 3 / Y 2 O 3 = 1 / 0.6 to 1 / 2.5. Within this range, a liquid phase can be formed in a temperature range of 1800 to 2000 ° C.
[0020]
It is desirable that the mixed powder further contains 5 wt% or less of C powder. C reduces the oxide layer on the surface of the powder particles, promotes surface diffusion and prevents O from being mixed into the growing crystal.
[0021]
As another embodiment of the method of the present invention, a 3C-SiC thin film formed on the front surface of a Si substrate is used as the seed crystal, and a SiC sintered body or a C powder-containing SiC powder compact is formed on the back surface of the Si substrate. The raw material powder can be brought into contact with the seed crystal in the contact state.
[0022]
As a general seed crystal, an Acheson crystal or a Rayleigh crystal can be used, but many of these include many defects such as micropipes and dislocations. On the other hand, the 3C-SiC thin film is suitable as a seed crystal in that it has low defects. However, one feature is that the crystal polymorph is 3C. When this thin film is used as a seed crystal in a conventional crystal growth process, the process is performed at a temperature lower than the melting point of Si of the substrate, and thus the precipitated crystal cannot be a polymorph other than 3C.
[0023]
On the other hand, as shown in FIG. 2, in the embodiment using the thin film seed crystal 12 on the Si substrate 10 according to the present invention, as shown in FIG. When the SiC thin film 14 is disposed, a temperature difference occurs between the SiC thin film 12 and the SiC thin film 12 in the heat treatment process because the Si substrate 10 has a higher thermal conductivity than the SiC green compact 16 and the SiC thin film 12 The sintered body 14 is melted, and the SiC single crystal C is deposited on the back side of the thin film 12 as shown in FIG. Thereafter, in a further heating process, as shown in FIG. 2C, the SiC single crystal C precipitates on the surface of the SiC thin film 12 due to mass transfer from the SiC powder particles 16 in contact with the SiC thin film 12. The precipitated crystals undergo a phase transition to α-SiC, which is a high-temperature stable phase, during the heating process. Thus, a high-quality 4H or 6H single crystal can be obtained while using 3C-SiC as a seed crystal.
[0024]
In the form using the thin film seed crystal, when the C powder-containing SiC powder compact is disposed on the back surface of the Si substrate, in the heat treatment process, the Si melted in the temperature raising process reacts with the excess C by the reaction. A SiC microcrystal is formed, and a 4H or 6H single crystal is similarly obtained by the above-described process.
[0025]
In the form using the thin film seed crystal, the compact does not shrink in the temperature range at the stage where Si is melted, so even if the Si on the substrate is dissolved, newly generated SiC functions as a base material, Can be used as a seed crystal without destruction.
[0026]
In a desirable mode using a thin film seed crystal, β-SiC powder is used as a raw material powder. The β → α phase transition during the temperature raising process not only promotes the growth, but also stabilizes the polymorph of the grown crystal to 4H or 6H.
[0027]
In the embodiment using the thin film seed crystal, it is desirable that the heat treatment be performed in a first stage performed at a temperature of 1240 to 1600 ° C. and a second stage performed at a temperature of 1800 to 2100 ° C. In the first stage, the SiC of the substrate Si can be sufficiently promoted, the distortion of the SiC thin film can be reduced, and the quality of the single crystal grown in the second stage can be improved. The first stage heat treatment temperature is set to 1420 ° C. or higher, which is just above the melting point of Si, and set to 1600 ° C. or lower in order not to dissipate Si. The heat treatment temperature in the second stage is set to 1800 ° C. or higher to generate the polymorph 4H, and to 2100 ° C. or lower to prevent decomposition and oxidative volatilization of SiC.
[0028]
【Example】
[Example 1]
According to the method of the present invention, a SiC single crystal was manufactured using a bulk Rayleigh crystal as a seed crystal. Table 1 shows the composition of the raw material powder and the processing conditions.
[0029]
[Table 1]
Figure 2004323293
[0030]
Each component powder constituting the raw material powder shown in Table 1 was ball-milled in an ethanol dispersion medium (1 L). A silicon nitride pot and a silicon nitride ball were used as the mixing media, and the mixing time was 48 hours.
[0031]
The slurry obtained by mixing was volatilized to remove the dispersion medium in a hot water bath, dried at 80 ° C. × 2 h in a degreasing furnace, and pulverized with a 250 μm sieve to obtain a raw material powder.
[0032]
The obtained raw material powder (12 g) is filled in a carbon die, preliminarily formed with an upper punch, the upper punch is pulled out, and a SiC seed crystal (Rayleigh crystal) is placed on the upper surface of the green compact in the die. It was filled, an upper punch was inserted, and pressure molding was performed at room temperature at a surface pressure of 8.3 MPa.
[0033]
The obtained green compact was sintered by a heat treatment at 2050 ° C. × 2 h. The heat treatment atmosphere was Ar 0.01 MPa.
[0034]
However, as shown in Table 1, for the sample B-3, the above pressure molding was performed as a hot press with a surface pressure of 40 MPa under heating of 2050 ° C. × 2 h, and the obtained sintered body was heated to 1900 ° C. × Heat treatment was performed for 24 hours. The atmosphere of the pressure molding and the heat treatment was Ar 0.01 MPa.
[0035]
For each of the obtained samples, a cross section of a joint (including a growth layer) between the seed crystal and the polycrystal was cut out, mirror-polished, and observed under a microscope. Thus, the total thickness of the single crystal portion is measured, the growth thickness is calculated by subtracting the thickness of the seed crystal measured in advance, and this is calculated as the total value of the heating holding time (pressure molding + heat treatment). The value thus divided was defined as the growth rate. The results are shown in Table 2 and FIG.
[0036]
[Table 2]
Figure 2004323293
[0037]
First, the following results were obtained when pressure molding was performed at room temperature and the obtained green compact was heat-treated.
[0038]
From the results of Sample A-0, it can be seen that a SiC single crystal grew from a seed crystal according to the present invention.
[0039]
From the results of Sample B-0, it can be seen that when β-SiC is used as the SiC raw material powder, the growth rate is approximately doubled as compared with Sample A-0 using α-SiC.
[0040]
Next, from the results of Samples A-1 and A-2, it can be seen that the growth rate was significantly increased by the addition of Al 2 O 3 which forms a liquid phase under heating or by the addition of C in addition thereto. This tendency was the same for the samples B-1 and B-2.
[0041]
Further, it can be seen that the sample of B-3, which was subjected to pressure molding under heating and the obtained sintered body was heat-treated, had grown from a seed crystal by the method of the present invention. In this case, the growth rate was lower than when pressure molding was performed at room temperature. The reason has not been fully elucidated at this time, but it is probably the result of the fact that the raw material powder particles became dense due to the sintering by pressing, that is, hot pressing under heating, and the raw material powder particles adhered to each other without intervening voids It is presumed that this is because the crystal growth reaction mainly proceeded only by mass transfer in the solid phase. Rather, as in the other samples, it is better to carry out pressure molding at room temperature without excessively increasing the density, leaving a space between the raw material powder particles and mixing the solid phase / gas phase / liquid phase. It seems that the progress of the single crystal growth process in the subsequent heat treatment is promoted.
[0042]
<Amount of additive>
As described above, it was found that the addition of the oxide powder or the oxide powder and the carbon powder to the SiC raw material powder promoted the growth of the SiC single crystal. Therefore, it is important to optimize the amounts of these additives. Therefore, in the above experiment, a preliminary experiment was actually performed by changing the amount of addition variously.
[0043]
FIG. 4 shows the relationship between the amount of Al 2 O 3 added and the growth rate of the SiC single crystal. However, α-SiC is the result when only Al 2 O 3 is added, and β-SiC is the result when Al 2 O 3 and C are added. As shown in the figure, regardless of whether α-SiC or β-SiC is used as the SiC raw material powder, the additive amount of Al 2 O 3 is set to 0.5 wt% or more, so The growth rate is improved about twice or more in comparison. In particular, the growth rate is maximized when the added amount of Al 2 O 3 is around 2 wt%. On the other hand, if it is added in excess of 10 wt%, the effect of improving the growth rate only decreases gradually. Based on this result, the amount of Al 2 O 3 added was set to 2 wt% as shown in Table 1 in the above experiment.
[0044]
The mixing ratio between Al 2 O 3 and the rare earth oxide is such that when the rare earth oxide is Y 2 O 3 , a liquid phase can be formed in the temperature range of 1800 ° C. to 2000 ° C. which is the heating temperature range of the present invention. , Al 2 O 3 / Y 2 O 3 = 1 / 0.6 to 1 / 2.5. Based on this, as shown in Table 1 in the above-described experiment, 5 wt% Y 2 O 3 was used for 2 wt% Al 2 O 3 (Al 2 O 3 / Y 2 O 3 = 1 / 2.5). .
[0045]
FIG. 5 shows the relationship between the C addition amount and the SiC single crystal growth rate. However, 2 wt% of Al 2 O 3 was added for α-SiC, and 2 wt% of Al 2 O 3 and 5 wt% of Y 2 O 3 were added for β-SiC. As shown in the figure, the growth rate is higher in both cases where α-SiC and β-SiC are used as the SiC raw material powder than in the case where no C is added, up to 5 wt%. In particular, the growth rate becomes maximum at a C content of about 2 wt%. Based on this result, the amount of C added was set to 2 wt% as shown in Table 1 in the above experiment.
[0046]
[Example 2]
According to the present invention, an SiC single crystal was manufactured using a 3C-SiC thin film on a Si substrate as a seed crystal. The Si substrate had a thickness of 380 μm, and the SiC thin film had a thickness of 20 μm. Table 3 shows the composition of the raw material powder and the processing conditions.
[0047]
[Table 3]
Figure 2004323293
[0048]
A green compact was formed by pressing at room temperature in the pressing method of Example 1, and a heat treatment shown in Table 3 was performed. The heat treatment atmosphere was Ar 0.01 MPa. The results are shown in Table 4 and FIG.
[0049]
[Table 4]
Figure 2004323293
[0050]
In sample B-6 in which the heat treatment was performed in only one stage and in sample B-7 in which the same compact as the thin film was disposed on the back surface of the Si substrate, no single crystal was observed. This is because, after the Si substrate was dissolved, the SiC was not sufficiently formed as solid SiC, and the thin-film SiC having poor self-sustainability collapsed.
[0051]
On the other hand, in each of the samples A-3, B-4, and B-5 according to the present invention, the growth of the SiC single crystal was observed starting from the SiC thin film. Furthermore, in Samples B-4 and B-5, the polymorph was 4H different from the seed crystal.
[0052]
【The invention's effect】
According to the present invention, there is provided a method for stably producing a SiC single crystal without using a temperature gradient.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating the principle of a process for producing a SiC single crystal according to the present invention.
FIG. 2 is a cross-sectional view illustrating the principle of a SiC single crystal manufacturing process using a SiC thin film formed on a Si substrate as a seed crystal in one embodiment of the present invention.
FIG. 3 is a graph comparing the growth rates of SiC single crystals under various conditions of the present invention.
FIG. 4 is a graph showing the relationship between the amount of Al 2 O 3 powder added to α-SiC powder or β-SiC powder and the growth rate of SiC single crystal in the present invention.
FIG. 5 is a graph showing the relationship between the amount of C powder added to α-SiC powder or β-SiC powder and the growth rate of SiC single crystal in the present invention.
FIG. 6 is a graph showing a comparison of growth rates of SiC single crystals manufactured under various conditions using the thin film seed crystal shown in FIG. 2;

Claims (8)

原料粉末を種結晶に接触させて常温にて加圧し、得られた圧粉体を常圧下で熱処理することを特徴とするSiC単結晶の製造方法。A method for producing a SiC single crystal, comprising: bringing a raw material powder into contact with a seed crystal, pressing the raw material powder at normal temperature, and heat-treating the obtained green compact under normal pressure. 原料粉末を種結晶に接触させて加熱下で加圧し、得られた焼結体を常圧下で熱処理することを特徴とするSiC単結晶の製造方法。A method for producing a SiC single crystal, comprising: bringing a raw material powder into contact with a seed crystal, pressing the raw material powder under heating, and heat-treating the obtained sintered body under normal pressure. 請求項1または2において、上記原料粉末として、α−SiC粉末と0.5〜10wt%のAl粉末との混合粉末を用いることを特徴とする方法。3. The method according to claim 1, wherein a mixed powder of α-SiC powder and 0.5 to 10 wt% Al 2 O 3 powder is used as the raw material powder. 請求項1または2において、上記原料粉末として、β−SiC粉末と0.5〜10wt%のAl粉末と10wt%以下の希土類酸化物粉末との混合粉末を用いることを特徴とする方法。3. The method according to claim 1, wherein a mixed powder of β-SiC powder, 0.5 to 10 wt% Al 2 O 3 powder, and 10 wt% or less rare earth oxide powder is used as the raw material powder. . 請求項3または4において、上記混合粉末が更に、5wt%以下のC粉末を含むことを特徴とする方法。The method according to claim 3 or 4, wherein the mixed powder further comprises 5 wt% or less of C powder. 請求項1または2において、Si基板の前面に形成された3C−SiC薄膜を上記種結晶として用い、該Si基板の背面にSiC焼結体またはC粉末含有SiC粉末圧粉体を接触させた状態で前記原料粉末を該種結晶に接触させることを特徴とする方法。3. The state according to claim 1 or 2, wherein the 3C-SiC thin film formed on the front surface of the Si substrate is used as the seed crystal, and the back surface of the Si substrate is brought into contact with the SiC sintered body or the SiC powder compact containing C powder. Contacting said raw material powder with said seed crystal. 請求項6において、上記原料粉末としてβ−SiC粉末を用いることを特徴とする方法。The method according to claim 6, wherein β-SiC powder is used as the raw material powder. 請求項6または7において、上記熱処理を、1420〜1600℃の温度で行なう第1段階と、1800〜2100℃の温度で行なう第2段階とにより行なうことを特徴とする方法。The method according to claim 6 or 7, wherein the heat treatment is performed by a first step performed at a temperature of 1240 to 1600 ° C and a second step performed at a temperature of 1800 to 2100 ° C.
JP2003119952A 2003-04-24 2003-04-24 METHOD OF PRODUCING SiC SINGLE CRYSTAL Pending JP2004323293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119952A JP2004323293A (en) 2003-04-24 2003-04-24 METHOD OF PRODUCING SiC SINGLE CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119952A JP2004323293A (en) 2003-04-24 2003-04-24 METHOD OF PRODUCING SiC SINGLE CRYSTAL

Publications (1)

Publication Number Publication Date
JP2004323293A true JP2004323293A (en) 2004-11-18

Family

ID=33499015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119952A Pending JP2004323293A (en) 2003-04-24 2003-04-24 METHOD OF PRODUCING SiC SINGLE CRYSTAL

Country Status (1)

Country Link
JP (1) JP2004323293A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028475A (en) * 2011-07-27 2013-02-07 Kyocera Corp Single crystal substrate and semiconductor element using the same
JP2015003836A (en) * 2013-06-19 2015-01-08 日本碍子株式会社 Single crystal body manufacturing method
KR20150087965A (en) * 2014-01-23 2015-07-31 엘지이노텍 주식회사 Preparing method of silicon carbide powder
WO2020195196A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2020195197A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2021149598A1 (en) * 2020-01-24 2021-07-29 日本碍子株式会社 Biaxially-oriented sic composite substrate and composite substrate for semiconductor device
WO2022168372A1 (en) * 2021-02-05 2022-08-11 日本碍子株式会社 Rare earth-containing sic substrate, and sic composite substrate using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028475A (en) * 2011-07-27 2013-02-07 Kyocera Corp Single crystal substrate and semiconductor element using the same
JP2015003836A (en) * 2013-06-19 2015-01-08 日本碍子株式会社 Single crystal body manufacturing method
KR20150087965A (en) * 2014-01-23 2015-07-31 엘지이노텍 주식회사 Preparing method of silicon carbide powder
KR102237931B1 (en) 2014-01-23 2021-04-08 엘지이노텍 주식회사 Preparing method of silicon carbide powder
WO2020195196A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2020195197A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Sic composite substrate and composite substrate for semiconductor device
WO2021149598A1 (en) * 2020-01-24 2021-07-29 日本碍子株式会社 Biaxially-oriented sic composite substrate and composite substrate for semiconductor device
CN114761629A (en) * 2020-01-24 2022-07-15 日本碍子株式会社 Biaxially oriented SiC composite substrate and composite substrate for semiconductor device
US20220278206A1 (en) * 2020-01-24 2022-09-01 Ngk Insulators, Ltd. BIAXIALLY ORIENTED SiC COMPOSITE SUBSTRATE AND SEMICONDUCTOR DEVICE COMPOSITE SUBSTRATE
CN114761629B (en) * 2020-01-24 2024-06-25 日本碍子株式会社 Biaxially oriented SiC composite substrate and composite substrate for semiconductor device
WO2022168372A1 (en) * 2021-02-05 2022-08-11 日本碍子株式会社 Rare earth-containing sic substrate, and sic composite substrate using same

Similar Documents

Publication Publication Date Title
EP3333288B1 (en) Sic crucible, method of making the crucible and method of producing sic single crystal
KR101235772B1 (en) Method for growing silicon carbide single crystal
CN101796227B (en) Process for growing single-crystal silicon carbide
TWI747834B (en) Manufacturing method of silicon carbide single crystal
KR101152857B1 (en) Method for growing silicon carbide single crystal
EP3406769B1 (en) Silicon-based molten composition and method for manufacturing silicon carbide single crystal using the same
JP5850490B2 (en) Method for producing SiC single crystal
CN101307496B (en) Gadolinium illinium scandium gallium garnet crystal GYSGG and its smelt method crystal growth method
JP2004323293A (en) METHOD OF PRODUCING SiC SINGLE CRYSTAL
JP3541789B2 (en) Method for growing single crystal SiC
CN115974591B (en) Silicon carbide ink composite crucible and preparation method and application thereof
Kamei et al. LPE growth of AlN from Cu–Al–Ti solution under nitrogen atmosphere
JP6719718B2 (en) Si ingot crystal manufacturing method and manufacturing apparatus thereof
JP2020152632A (en) Manufacturing method of ingot, raw material for ingot growth, and its manufacturing method
CN103124693B (en) Silicon ingot manufacturing vessel
JP4591183B2 (en) Method for producing AlN single crystal
JP4078996B2 (en) Method for producing nitride single crystal
CN117305986B (en) Raw material for growing monocrystalline silicon carbide, method for growing monocrystalline silicon carbide, and monocrystalline silicon carbide
US20020071803A1 (en) Method of producing silicon carbide power
JP2000001399A (en) SINGLE CRYSTAL SiC AND ITS PRODUCTION
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor
JP2917149B1 (en) Single crystal SiC and method for producing the same
EP1612300B1 (en) Method for producing a single crystal of AlN.
CN100447310C (en) Nitride single-crystal and production process thereof
JP4608970B2 (en) Method for producing nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Effective date: 20080925

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A02 Decision of refusal

Effective date: 20090324

Free format text: JAPANESE INTERMEDIATE CODE: A02