JP2004290979A - Rolling method for thick steel plate - Google Patents

Rolling method for thick steel plate Download PDF

Info

Publication number
JP2004290979A
JP2004290979A JP2003082800A JP2003082800A JP2004290979A JP 2004290979 A JP2004290979 A JP 2004290979A JP 2003082800 A JP2003082800 A JP 2003082800A JP 2003082800 A JP2003082800 A JP 2003082800A JP 2004290979 A JP2004290979 A JP 2004290979A
Authority
JP
Japan
Prior art keywords
rolling
pass
reverse
schedule
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082800A
Other languages
Japanese (ja)
Other versions
JP4311058B2 (en
Inventor
Keitoku Yuge
佳徳 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003082800A priority Critical patent/JP4311058B2/en
Publication of JP2004290979A publication Critical patent/JP2004290979A/en
Application granted granted Critical
Publication of JP4311058B2 publication Critical patent/JP4311058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling method with which even in the case of setting a rolling-reduction schedule for completing the last pass at non-desirable stage in a reverse rolling mill, the lowering of operating ratio of the reverse rolling mill is restrained and the lowering of productivity of a thick steel plate can be restrained. <P>SOLUTION: In the case of setting the rolling-reduction schedule for completing the reverse-rolling at the desirable stage in the reverse rolling mill, the reverse-rolling is performed according to the set rolling-reduction schedule. Then, in the case of setting the rolling-reduction schedule for completing the reverse-rolling at the non-desirable stage in the reverse rolling mill, this rolling schedule supplements one pass at a step for broadside rolling. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼スラブをリバース圧延機に装入して厚鋼板を製造する圧延方法に関するものである。
【0002】
【従来の技術】
厚鋼板を製造する際には、素材となる鋼スラブを加熱した後、圧延を繰り返し行なって圧下を施し、所定の厚さの厚鋼板を製造する。
すなわち、まず高温の鋼スラブがリバース圧延機に装入されて圧下(パスともいう)され、リバース圧延機の反対側へ排出される。ここでは、リバース圧延機における第1パスの装入側を前面,第1パスの排出側を後面と記す。
【0003】
また、鋼スラブに圧下を施したものを、素材である鋼スラブと区別するために、圧延材と記す。さらに、圧延により所定の製品寸法に仕上げたものを厚鋼板と記す。
鋼スラブに第1パスを施してリバース圧延機の後面に排出すると、圧延ロールの間隔を調整した後、搬送ローラを逆転させて、圧延材をリバース圧延機の後面から装入して第2パスの圧下を施す。次いで、圧延ロールの間隔を調整した後、搬送ローラを逆転させて、圧延材をリバース圧延機の前面から装入して第3パスの圧下を施す。
【0004】
このようにして、圧下を繰り返し施して、所定の製品寸法の厚鋼板に仕上げて、後工程に送給する。
鋼スラブから厚鋼板に到るまでの各パスの圧下量は、操業実績や実験結果に基づいて計算により設定されており、その一連の圧下量の設定は圧下スケジュールあるいはパススケジュールと呼ばれている。ただし、ここでは圧下スケジュールと記す。
【0005】
圧下スケジュールの設定については、荷重モデルの計算式を用いてスケジュール計算を行なう方法(たとえば特許文献1参照)や板形状を予測してスケジュール計算を行なう方法(たとえば特許文献2参照)等が提案されている。厚板圧延では、使用するリバース圧延機に適した方法で設定した圧下スケジュールにしたがって圧延ロールの間隔を調整して圧下を施す。
【0006】
これらの複数回のパスは、その目的に応じて3段階に区分される。まず成形圧延と呼ばれる段階で、通常スラブには表面の手入れ跡などの厚み偏差があるため、幅出圧延の前にスラブ厚を均一にして、次に続く幅出圧延での幅出し精度を高める目的で行なう。 平面形状改善のため最終パスで長さ方向に所定の板厚差を与えて圧延する場合もある。
【0007】
成形圧延が終了すると、所定の圧延幅を得るために圧延材を水平面内に90°回転させて成形圧延と直角方向に圧延を行なう幅出圧延を行なう。ここでも平面形状改善のため最終パスで長さ方向に所定の板厚差を与えて圧延する場合もある。幅出圧延が終了すると、再度水平面内に90°回転させて所定の厚さまで圧延する仕上げ圧延を行なう。
【0008】
通常は、上記した成形圧延,幅出圧延,厚出圧延の3段階の圧延が広く行なわれている。ただし、鋼スラブの材質や寸法に応じて、2段階の圧延を行なう場合がある。
2段階の圧延においては成形圧延を省略し、幅出圧延と厚出圧延を行なう。すなわち3段階の圧延と同様に、幅出圧延では鋼スラブの長手方向に対して垂直な方向にリバース圧延機に装入し、厚出圧延では鋼スラブの長手方向に平行にリバース圧延機に装入して、圧延を行なう。
【0009】
このような3段階あるいは2段階の圧延を行なうにあたって、設定された圧下スケジュールにしたがって圧延を行なうと、リバース圧延機の後面で最終パスが終了する場合と、前面で最終パスが終了する場合がある。
最終パスが終了すると、厚鋼板は後工程(すなわちレベラーと呼ばれる矯正機)に送給される。この矯正機はリバース圧延機の後面に設けられるので、最終パスがリバース圧延機の後面で終了する圧下スケジュールが設定された場合に、通常は厚鋼板を矯正機に支障なく送給できる。
【0010】
ところが、最終パスがリバース圧延機の前面で終了する圧下スケジュールが設定された場合には、厚鋼板を矯正機に送給するために、リバース圧延機の前面から後面へ圧下を施さずに通過させなければならない。これはダミーパスと呼ばれており、圧延ロールの間隔を厚鋼板の厚さに比べて大きく開いて、圧下を施さずに厚鋼板を通過させるものである。
【0011】
このようにして最終パスに引き続きダミーパスを追加すると、リバース圧延機の稼動率の低下すなわち厚鋼板の生産性の低下を招く。
つまり、厚板圧延における最終パスは厚出圧延の段階に属するパスであり、前記した通り、 長手方向に平行にリバース圧延機に装入される。このとき、厚鋼板は、鋼スラブから厚鋼板に到るまでの過程の中で最も長い状態であるから、厚鋼板を長手方向に通過させるに要する時間は長くなる。さらに圧延ロールの間隔を開くのに要する時間も加わるので、ダミーパスには長時間を要することになる。その結果、リバース圧延機の稼動率の低下すなわち厚鋼板の生産性の低下を招く。
【0012】
しかもリバース圧延機の自動制御に用いる厚さ測定装置は、通常、リバース圧延機の後面に設置されるので、 最終パスがリバース圧延機の前面で終了する圧下スケジュールが設定された場合には、厚さの測定値と目標値の差をフィードバックさせ、ロール間隔をコントロールする板厚制御(モニタリングAGC)が適用できない。その結果、厚鋼板の寸法精度が低下するという問題が生じる。
【0013】
一方、 圧延材成分,寸法によっては、圧下時に先端部が変形する場合がある。変形が上反りの場合には、ライン上の搬送は可能であるが、上反りの程度によっては矯正機に噛み込ませられずライン停止となる場合がある。これに対し、リバース圧延機の前面で最終パスを終了させれば、ダミーパスを使っても、矯正機には変形のない後端部から噛み込ませられるので、ライン停止は回避できる。
【0014】
つまり、リバース圧延機の後面および前面のいずれも所望される場合がある。しかしながら圧下スケジュールにより、リバース圧延機の所望する面で必ずしも圧延終了とはならないという問題があったのである。
【0015】
【特許文献1】
特開昭59−10408号公報
【特許文献2】
特開2001−212607 号公報
【0016】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、厚鋼板を圧延を行なって製造するにあたって、リバース圧延機の所望しない面で最終パスが終了する圧下スケジュールが設定された場合にも、リバース圧延機の稼動率の低下を抑制し、厚鋼板の生産性の低下を抑制できる圧延方法を提供することを目的とする。
【0017】
また、本発明の圧延方法を適用することによって、厚鋼板の寸法精度の向上も達成できる。
【0018】
【課題を解決するための手段】
本発明は、リバース圧延機を用いて、成形圧延,幅出圧延および厚出圧延の3段階圧延、あるいは幅出圧延および厚出圧延の2段階圧延を行ない厚鋼板を製造する圧延方法において、リバース圧延機の所望する面で厚出圧延が終了する圧下スケジュールが設定された場合は、設定された圧下スケジュールの通りリバース圧延を行ない、リバース圧延機の所望しない面で厚出圧延が終了する圧下スケジュールが設定された場合は、幅出圧延の段階で1パス追加することによってリバース圧延機の所望する面でリバース圧延を終了させる厚鋼板の圧延方法である。
【0019】
前記した発明においては、板厚精度を向上させるための好適態様として、所望する面が前記圧延機の後面であることが好ましい。
【0020】
【発明の実施の形態】
本発明の実施の形態について、所望する面が後面である場合について詳述する。
本発明においては、使用するリバース圧延機で従来から適用しているスケジュール計算にしたがって圧下スケジュールを設定する。その結果、厚出圧延の最終パスがリバース圧延機の後面で終了する圧下スケジュールが設定された場合は、その圧下スケジュールの通り圧延を行なう。つまり、厚出圧延が終了して厚鋼板が後面に排出されるので、厚鋼板を支障なく矯正機へ送給できる。
【0021】
ところが従来から適用しているスケジュール計算にしたがって圧下スケジュールを設定した結果、図2に示すように、厚出圧延の最終パスがリバース圧延機の前面で終了する圧下スケジュールが設定された場合は、厚鋼板3が前面に排出されて厚出圧延が終了する。なお図2には、成形圧延,幅出圧延および厚出圧延の3段階圧延を行なう圧延の例を示す。図2において、成形圧延は第1〜2パス(合計2パス),幅出圧延は第3〜6パス(合計4パス),厚出圧延は第7〜14パス(合計8パス)である。
【0022】
図2において、リバース圧延機の前面に排出された厚鋼板3を矯正機へ送給するためには、第14パス(すなわち最終パス)に引き続き、点線で図示したダミーパスを追加せざるを得ない。ダミーパスは、圧延ロールの間隔を厚鋼板3の厚さに比べて大きく開いて、圧下を施すものである。したがってダミーパスにおいて、厚鋼板3をその長手方向に通過させると長時間を要する。
【0023】
そこで本発明では、従来から適用しているスケジュール計算にしたがって圧下スケジュールを設定して、厚出圧延の最終パスがリバース圧延機の前面で終了する圧下スケジュールが設定された場合には、幅出圧延の段階で1パス追加して圧延を行なう。その圧下スケジュールの例を図1に示す。すなわち、従来のスケジュール計算で設定された図2の圧下スケジュールに対して、幅出圧延の段階で1パス追加したものである。そのため、図1では、成形圧延が第1〜2パス(合計2パス),幅出圧延が第3〜7パス(合計5パス),厚出圧延は第7〜15パス(合計8パス)となっている。
【0024】
幅出圧延では、鋼スラブ1の長手方向に対して垂直な方向にリバース圧延機に装入する。したがって、図1に示すように、幅出圧延の段階で追加された1パスに要する時間は、図2に示すような厚出圧延の終了後で追加されるダミーパスの所要時間に比べて、短時間で圧延材2を通過させることができる。
なお本発明を適用する鋼スラブ1の製造方法は特定の技術に限定せず、従来から知られている連続鋳造法や造塊法等によって製造した鋼スラブ1に支障なく適用できる。
【0025】
このようにして幅出圧延の段階で1パス追加すると、幅出圧延の各パスの圧下量は、それぞれ減少する。その結果、圧下量が小さくなりすぎると、リバース圧延機の操業に支障をきたす。つまり、リバース圧延機ではロードセル等を用いて圧延荷重を測定しながら操業しているので、圧下量が小さくなると、圧延荷重が減少して、圧延荷重の測定に誤差が生じたり、あるいは測定が困難になるのである。そのような場合には、従来から適用しているスケジュール計算で設定された圧下スケジュールの通り幅出圧延を行ない、幅出圧延が終了した後でダミーパスを追加して、圧下を施さずに圧延材2を通過させる。
【0026】
幅出圧延の終了後で追加されたダミーパスに要する時間は、図2に示すような厚出圧延の終了後で追加されるダミーパスの所要時間に比べて、短時間で圧延材2を通過させることができる。ダミーパスの終了後、圧延材2を90°回転して、厚出圧延を行なう。
以上に説明したように圧延を行なって厚鋼板3を製造する際に本発明を適用すると、常にリバース圧延機の後面で最終パスを終了させ、かつ鋼スラブ1から厚鋼板3を製造するまでの所要時間を短縮できる。その結果、リバース圧延機の稼動率の低下を抑制し、厚鋼板3の生産性の低下を抑制でき、しかもリバース圧延中の温度低下による圧延材2の収縮を抑制して厚鋼板3の寸法精度の向上も達成できる。
【0027】
図1および図2には、成形圧延,幅出圧延および厚出圧延の3段階圧延を行なう例を示した。しかしながら鋼スラブ1の材質や寸法に応じて、成形圧延を省略し、幅出圧延および厚出圧延の2段階圧延を行なう場合がある。2段階圧延においても、リバース圧延機の前面で最終パスが終了する圧下スケジュールに対して、幅出圧延の段階で1パス追加して圧延を行なう。
【0028】
2段階圧延における幅出圧延の段階で1パス追加することによって得られる作用や効果は、上記した3段階圧延における幅出圧延の段階で追加する1パスと同じであるから説明を省略する。
また、所望する面が前面である場合は、「後面」を「前面」と置き換えれば良い。
【0029】
【実施例】
連続鋳造法で製造した鋼スラブ(厚さ215mm )をリバース圧延機に装入して、厚鋼板(厚さ13.1mm)を製造した。その際、従来から適用されているスケジュール計算にしたがって圧下スケジュールを設定したところ、図2に示すような、リバース圧延機の前面で最終パスが終了する圧下スケジュールが設定された。
【0030】
そこで幅出圧延の段階で1パス追加して、図1に示すような3段階圧延を行ない、リバース圧延機の後面で厚出圧延を終了させた。これを発明例とする。
図1に示す発明例の各パス終了後の板厚(mm),各パスの所要時間(秒),パス間の所要時間(秒)は表1に示す通りである。
【0031】
【表1】

Figure 2004290979
【0032】
表1に示すように、連続鋳造法で製造した鋼スラブ1(厚さ 215mm)を長手方向(すなわち鋳込み方向)に平行にリバース圧延機に装入し、第1パスで板厚を 199.6mmとした。第1パスに要した時間は 2.2秒であった。次いで圧延ロールの間隔を調整(所要時間 5.3秒)して第2パスを施し、板厚を 184.2mmとした。第2パスに要した時間は 2.6秒であった。これらの第1〜2パスが成形圧延である。
【0033】
成形圧延の終了後(すなわち第2パスの終了後)、圧延ロールの間隔を調整し、かつ圧延材2を90°回転して、長手方向に対して垂直な方向にリバース圧延機に装入し、第3パスを施した。この第2パスと第3パスのパス間の所要時間は、14.9秒であった。第3パス終了後の板厚は 183.1mm、第3パスに要した時間は 1.1秒であった。表1では第3〜7パスが幅出圧延である。
【0034】
表1中の第4パス以降の記載については、上記と同様にデータを示しているので、詳細な説明を省略する。
幅出圧延の終了後(すなわち第7パスの終了後)、圧延ロールの間隔を調整し、かつ圧延材2を再度90°回転して、長手方向に平行にリバース圧延機に装入して、第8パスを施した。この第7パスと第8パスのパス間の所要時間は、13.5秒であった。第8パス終了後の板厚は95.4mm、第8パスに要した時間は 2.2秒であった。表1では第8〜15パスが厚出圧延である。
【0035】
このようにして発明例では第15パスが終了すると、13.1mmの厚さに仕上げられた厚鋼板3はリバース圧延機の後面に排出された。このリバース圧延に要した時間は、表1に示す通り、合計 127.4秒であった。
一方、比較例1として、連続鋳造法で製造した鋼スラブ(厚さ215mm )をリバース圧延機に装入して、図2に示すような3段階圧延を行ない、厚鋼板(厚さ13.1mm)を製造した。その際、従来から適用されているスケジュール計算にしたがって圧下スケジュールを設定して、リバース圧延機の前面で厚出圧延を終了させた。
【0036】
図2に示す比較例1の各パス終了後の板厚(mm),各パスの所要時間(秒),パス間の所要時間(秒)は表2に示す通りである。
【0037】
【表2】
Figure 2004290979
【0038】
表2に示したパス終了後の板厚,パスに要する時間,パス間の所要時間は、表1と同様にデータを示しているので、詳細な説明を省略する。
表2では第1〜2パスが成形圧延、第3〜6パスが幅出圧延、第7〜14パスが厚出圧延である。
このようにして比較例1では第14パスが終了すると、13.1mmの厚さに仕上げられた厚鋼板3はリバース圧延機の前面に排出された。そこで第14パスの終了後、ダミーパスを追加して、厚鋼板3をリバース圧延機の後面に排出した。この圧延に要した時間は、表2に示す通り、ダミーパスを含めて合計 128.9秒であった。
【0039】
さらに、比較例2として、連続鋳造法で製造した鋼スラブ(厚さ215mm )をリバース圧延機に装入して、図3に示すような3段階圧延を行ない、厚鋼板(厚さ13.1mm)を製造した。なお図3の圧下スケジユールは、図2の厚下スケジュールに対して厚出圧延の段階で1パス追加して、リバース圧延機の後面で厚出圧延を終了させたものである。
【0040】
図3に示す比較例2の各パス終了後の板厚(mm),各パスの所要時間(秒),パス間の所要時間(秒)は表3に示す通りである。
【0041】
【表3】
Figure 2004290979
【0042】
表3に示したパス終了後の板厚,パスに要する時間,パス間の所要時間は、表1と同様にデータを示しているので、詳細な説明を省略する。
表3では第1〜2パスが成形圧延、第3〜6パスが幅出圧延、第7〜15パスが厚出圧延である。
このようにして発明例では第15パスが終了すると、13.1mmの厚さに仕上げられた厚鋼板3はリバース圧延機の後面に排出された。このリバース圧延に要した時間は、表3に示す通り、合計 130.3秒であった。
【0043】
発明例と比較例1,2について、リバース圧延に要した時間を比べると、発明例は 127.4秒であったのに対して、比較例1,2は 128.9〜130.3 秒であった。したがって本発明を適用することによって、常にリバース圧延機の後面で最終パスを終了させ、かつ鋼スラブから厚鋼板を製造するまでの所要時間を短縮できることが確かめられた。
【0044】
【発明の効果】
本発明によれば、常にリバース圧延機の所望の面で最終パスを終了させることができる。特に後面で最終パスを終了させた場合は、鋼スラブから厚鋼板を製造するまでの所要時間を短縮できる。その結果、リバース圧延機の稼動率の低下を抑制し、厚鋼板の生産性の低下を抑制でき、しかもリバース圧延中の温度低下による圧延材の収縮を抑制して厚鋼板の寸法精度の向上も達成できる。
【図面の簡単な説明】
【図1】本発明の圧下スケジュールの例を模式的に示す図である。
【図2】従来の圧下スケジュールの例を模式的に示す図である。
【図3】圧下スケジュールの他の例を模式的に示す図である。
【符号の説明】
1 鋼スラブ
2 圧延材
3 厚鋼板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling method for manufacturing a thick steel plate by charging a steel slab into a reverse rolling mill.
[0002]
[Prior art]
When manufacturing a thick steel plate, after heating a steel slab serving as a material, rolling is repeatedly performed to perform reduction, thereby manufacturing a thick steel plate having a predetermined thickness.
That is, a high-temperature steel slab is first charged into a reverse rolling mill, reduced (also referred to as a pass), and discharged to the opposite side of the reverse rolling mill. Here, the charging side of the first pass in the reverse rolling mill is referred to as a front surface, and the discharge side of the first pass is referred to as a rear surface.
[0003]
Further, a steel slab subjected to a reduction is referred to as a rolled material in order to distinguish it from a steel slab as a material. Furthermore, what finished to predetermined | prescribed product dimensions by rolling is described as a thick steel plate.
When the steel slab is subjected to the first pass and discharged to the rear face of the reverse rolling mill, the interval between the rolling rolls is adjusted, the transport rollers are reversed, and the rolled material is charged from the rear face of the reverse rolling mill and the second pass is performed. The pressure is reduced. Next, after adjusting the interval between the rolling rolls, the conveying rollers are reversed, the rolled material is loaded from the front of the reverse rolling mill, and the third pass is reduced.
[0004]
In this way, the rolling is repeatedly performed to finish a steel plate having a predetermined product size, and is sent to a subsequent process.
The amount of reduction in each pass from the steel slab to the thick steel plate is set by calculation based on operation results and experimental results, and the series of reduction settings is called the reduction schedule or pass schedule . However, here, it is described as a rolling schedule.
[0005]
Regarding the setting of the rolling schedule, a method of calculating a schedule using a calculation formula of a load model (for example, see Patent Literature 1) and a method of performing a schedule calculation by predicting a plate shape (for example, see Patent Literature 2) have been proposed. ing. In plate rolling, rolling is performed by adjusting the interval between rolling rolls according to a rolling schedule set by a method suitable for the reverse rolling mill to be used.
[0006]
These multiple passes are divided into three stages according to the purpose. First, at the stage called forming rolling, slabs usually have thickness deviations such as traces on the surface, so make the slab thickness uniform before tent rolling, and increase the tentering accuracy in the subsequent tent rolling. Perform for purpose. In some cases, rolling is performed with a predetermined thickness difference in the length direction in the final pass to improve the planar shape.
[0007]
When the forming rolling is completed, the rolling material is rotated by 90 ° in a horizontal plane to obtain a predetermined rolling width, and the width rolling is performed to perform rolling in a direction perpendicular to the forming rolling. Also in this case, rolling may be performed with a predetermined thickness difference in the length direction in the final pass in order to improve the planar shape. When the tentering rolling is completed, finish rolling is performed in which the steel sheet is again rotated by 90 ° in a horizontal plane and rolled to a predetermined thickness.
[0008]
Usually, the three-stage rolling of the above-described forming rolling, width rolling, and thickness rolling is widely performed. However, depending on the material and dimensions of the steel slab, rolling may be performed in two stages.
In the two-stage rolling, forming rolling is omitted, and width rolling and thickness rolling are performed. That is, similarly to the three-stage rolling, in the width rolling, the steel slab is loaded into the reverse rolling mill in a direction perpendicular to the longitudinal direction of the steel slab, and in the thick rolling, the material is loaded into the reverse rolling mill in parallel with the longitudinal direction of the steel slab. And rolling is performed.
[0009]
In performing such three-stage or two-stage rolling, if rolling is performed according to a set rolling schedule, the final pass may be completed on the rear side of the reverse rolling mill or may be completed on the front side. .
When the final pass is completed, the steel plate is fed to a post-process (ie, a straightening machine called a leveler). Since this straightening machine is provided on the rear face of the reverse rolling mill, when a rolling schedule in which the final pass ends on the rear face of the reverse rolling mill is set, the steel plate can be normally fed to the straightening machine without any trouble.
[0010]
However, when a rolling schedule in which the final pass ends at the front of the reverse rolling mill is set, in order to feed the thick steel plate to the straightening machine, the steel sheet is passed from the front to the rear of the reverse rolling mill without rolling. There must be. This is called a dummy pass, in which the distance between the rolling rolls is made larger than the thickness of the thick steel plate, and the thick steel plate is passed without any reduction.
[0011]
If a dummy pass is added subsequent to the final pass in this way, a reduction in the operation rate of the reverse rolling mill, that is, a reduction in productivity of thick steel plates is caused.
In other words, the final pass in the plate rolling is a pass belonging to the step of the thick rolling, and as described above, is loaded into the reverse rolling mill in parallel with the longitudinal direction. At this time, since the thick steel plate is the longest in the process from the steel slab to the thick steel plate, the time required for passing the thick steel plate in the longitudinal direction becomes long. Further, the time required for increasing the interval between the rolling rolls is added, so that the dummy pass requires a long time. As a result, the operation rate of the reverse rolling mill is reduced, that is, the productivity of the steel plate is reduced.
[0012]
Moreover, since the thickness measuring device used for the automatic control of the reverse rolling mill is usually installed on the rear face of the reverse rolling mill, if the rolling schedule in which the final pass ends at the front face of the reverse rolling mill is set, The thickness control (monitoring AGC) that controls the roll interval by feeding back the difference between the measured value and the target value cannot be applied. As a result, there arises a problem that the dimensional accuracy of the thick steel plate is reduced.
[0013]
On the other hand, depending on the components and dimensions of the rolled material, the tip may be deformed during rolling. If the deformation is a warpage, transport on the line is possible, but depending on the degree of the warp, the straightening machine may not stop the line and stop the line. On the other hand, if the final pass is completed on the front side of the reverse rolling mill, even if a dummy pass is used, the straightening machine can be bitten from the rear end portion where there is no deformation, so that a line stop can be avoided.
[0014]
That is, both the rear surface and the front surface of the reverse rolling mill may be desired. However, there was a problem that rolling was not necessarily completed on a desired surface of the reverse rolling mill due to the rolling schedule.
[0015]
[Patent Document 1]
JP-A-59-10408 [Patent Document 2]
JP 2001-212607 A
[Problems to be solved by the invention]
The present invention solves the above-described problems, and when rolling and manufacturing a thick steel plate, even when a rolling schedule in which the final pass is completed on an undesirable surface of the reverse rolling mill is set, the reverse rolling mill is An object of the present invention is to provide a rolling method capable of suppressing a decrease in the operation rate and suppressing a decrease in productivity of a thick steel plate.
[0017]
In addition, by applying the rolling method of the present invention, it is possible to achieve an improvement in dimensional accuracy of a thick steel plate.
[0018]
[Means for Solving the Problems]
The present invention relates to a rolling method for producing a thick steel sheet by performing a three-stage rolling of forming rolling, tent rolling and bulging rolling, or a two-stage rolling of tent rolling and bulging rolling using a reverse rolling mill. If the rolling schedule in which the thickening rolling is completed on the desired surface of the rolling mill is set, reverse rolling is performed according to the set rolling schedule, and the rolling schedule in which the thickening rolling is completed on the undesired surface of the reverse rolling mill. Is set, this is a method of rolling a thick steel plate in which reverse rolling is completed on a desired surface of a reverse rolling mill by adding one pass at the stage of tentative rolling.
[0019]
In the above-mentioned invention, as a preferred mode for improving the thickness accuracy, it is preferable that a desired surface is a rear surface of the rolling mill.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described in detail when a desired surface is a rear surface.
In the present invention, the rolling schedule is set according to the schedule calculation conventionally applied in the reverse rolling mill to be used. As a result, when a rolling schedule in which the final pass of the thick rolling is completed on the rear surface of the reverse rolling mill is set, rolling is performed according to the rolling schedule. That is, since the thick steel plate is discharged to the rear surface after the end of the thick rolling, the thick steel plate can be fed to the straightening machine without any trouble.
[0021]
However, as a result of setting the reduction schedule according to the schedule calculation conventionally applied, as shown in FIG. 2, when the reduction schedule in which the final pass of the thickening rolling ends at the front of the reverse rolling mill is set, The steel sheet 3 is discharged to the front side, and the thick rolling is completed. FIG. 2 shows an example of rolling in which three-stage rolling of forming rolling, width rolling and thickness rolling is performed. In FIG. 2, forming rolling includes first and second passes (total 2 passes), tentering rolling includes third to sixth passes (total 4 passes), and thickening rolling includes 7-14 passes (total 8 passes).
[0022]
In FIG. 2, in order to feed the steel plate 3 discharged to the front of the reverse rolling mill to the straightening machine, a dummy pass shown by a dotted line must be added following the 14th pass (that is, the final pass). . In the dummy pass, the gap between the rolling rolls is larger than the thickness of the thick steel plate 3 to reduce the pressure. Therefore, it takes a long time to pass the thick steel plate 3 in the longitudinal direction in the dummy pass.
[0023]
Therefore, in the present invention, the drafting schedule is set according to the schedule calculation conventionally applied, and when the drafting schedule in which the final pass of the thickening rolling ends at the front of the reverse rolling mill is set, the tentative rolling is performed. Rolling is performed by adding one pass at the stage. FIG. 1 shows an example of the rolling schedule. That is, one pass is added to the rolling schedule of FIG. 2 set by the conventional schedule calculation at the stage of the tentative rolling. Therefore, in FIG. 1, forming rolling is performed in the first and second passes (total 2 passes), width rolling is performed in the third to seventh passes (total 5 passes), and thickening rolling is performed in the 7th to 15th passes (total 8 passes). Has become.
[0024]
In the tent rolling, the steel slab 1 is charged into a reverse rolling mill in a direction perpendicular to the longitudinal direction. Therefore, as shown in FIG. 1, the time required for one pass added at the stage of the tent rolling is shorter than the time required for the dummy pass added after the end of the thick rolling as shown in FIG. The rolled material 2 can be passed in time.
In addition, the manufacturing method of the steel slab 1 to which the present invention is applied is not limited to a specific technique, and the present invention can be applied to a steel slab 1 manufactured by a conventionally known continuous casting method, ingot making method, or the like without any trouble.
[0025]
When one pass is added at the tent rolling stage in this way, the rolling reduction of each pass of the tent rolling decreases. As a result, when the rolling reduction is too small, the operation of the reverse rolling mill is hindered. In other words, since the reverse rolling mill operates while measuring the rolling load using a load cell or the like, when the rolling reduction is small, the rolling load decreases, and an error occurs in the measurement of the rolling load or the measurement is difficult. It becomes. In such a case, tentative rolling is performed according to the rolling schedule set in the schedule calculation that has been conventionally applied, and a dummy pass is added after fining rolling is completed, and the rolled material is not subjected to rolling. Pass through 2.
[0026]
The time required for the dummy pass added after the end of the tent rolling is shorter than the time required for the dummy pass added after the end of the thick rolling as shown in FIG. Can be. After the completion of the dummy pass, the rolled material 2 is rotated by 90 ° to perform thick rolling.
As described above, when the present invention is applied when rolling is performed to manufacture the thick steel plate 3, the final pass is always completed at the rear surface of the reverse rolling mill, and until the thick steel plate 3 is manufactured from the steel slab 1. The required time can be reduced. As a result, a reduction in the operation rate of the reverse rolling mill can be suppressed, and a reduction in the productivity of the thick steel plate 3 can be suppressed. Further, the shrinkage of the rolled material 2 due to a temperature decrease during the reverse rolling is suppressed, and the dimensional accuracy of the thick steel plate 3 can be suppressed. Can also be improved.
[0027]
FIG. 1 and FIG. 2 show an example in which three-stage rolling of forming rolling, width rolling and thickness rolling is performed. However, depending on the material and dimensions of the steel slab 1, there is a case where the forming rolling is omitted and the two-stage rolling of the width rolling and the thickness rolling is performed. Also in the two-stage rolling, one pass is added to the rolling schedule in which the final pass is completed at the front of the reverse rolling mill in the tentative rolling stage, and rolling is performed.
[0028]
The functions and effects obtained by adding one pass at the tent-rolling stage in the two-stage rolling are the same as those of the one-pass added at the tent-rolling stage in the three-stage rolling described above, and therefore description thereof is omitted.
When the desired surface is the front surface, the “rear surface” may be replaced with the “front surface”.
[0029]
【Example】
A steel slab (215 mm thick) manufactured by the continuous casting method was charged into a reverse rolling mill to manufacture a thick steel plate (13.1 mm thick). At this time, when the rolling schedule was set in accordance with the conventionally applied schedule calculation, a rolling schedule in which the final pass was completed on the front surface of the reverse rolling mill as shown in FIG. 2 was set.
[0030]
Therefore, one pass was added at the stage of the tentering rolling, and the three-stage rolling as shown in FIG. 1 was performed, and the thick rolling was completed on the rear surface of the reverse rolling mill. This is an invention example.
Table 1 shows the plate thickness (mm) after each pass, the required time (seconds) of each pass, and the required time (seconds) between passes in the example of the invention shown in FIG.
[0031]
[Table 1]
Figure 2004290979
[0032]
As shown in Table 1, a steel slab 1 (with a thickness of 215 mm) manufactured by a continuous casting method was charged into a reverse rolling mill in parallel with a longitudinal direction (that is, a casting direction), and a plate thickness was 199.6 mm in a first pass. And The time required for the first pass was 2.2 seconds. Next, the interval between the rolling rolls was adjusted (required time: 5.3 seconds), and a second pass was performed, so that the plate thickness was set to 184.2 mm. The time required for the second pass was 2.6 seconds. These first and second passes are forming rolling.
[0033]
After the forming and rolling (ie, after the completion of the second pass), the interval between the rolling rolls is adjusted, and the rolled material 2 is rotated by 90 ° and charged into a reverse rolling mill in a direction perpendicular to the longitudinal direction. And a third pass. The time required between the second pass and the third pass was 14.9 seconds. The thickness after the third pass was 183.1 mm, and the time required for the third pass was 1.1 seconds. In Table 1, the third to seventh passes are tent-rolling.
[0034]
Since the data after the fourth pass in Table 1 shows data in the same manner as described above, detailed description will be omitted.
After the end of the tent rolling (that is, after the end of the seventh pass), the interval between the rolling rolls is adjusted, and the rolled material 2 is again rotated by 90 ° and charged into a reverse rolling mill in parallel with the longitudinal direction. An eighth pass was performed. The time required between the seventh pass and the eighth pass was 13.5 seconds. The plate thickness after the completion of the eighth pass was 95.4 mm, and the time required for the eighth pass was 2.2 seconds. In Table 1, the 8th to 15th passes are thick rolling.
[0035]
Thus, in the invention example, when the fifteenth pass was completed, the thick steel plate 3 finished to a thickness of 13.1 mm was discharged to the rear surface of the reverse rolling mill. The time required for this reverse rolling was 127.4 seconds as shown in Table 1.
On the other hand, as Comparative Example 1, a steel slab (215 mm thick) manufactured by a continuous casting method was charged into a reverse rolling mill, and three-stage rolling was performed as shown in FIG. 2 to obtain a thick steel plate (13.1 mm thick). ) Manufactured. At this time, a rolling reduction schedule was set in accordance with a conventionally applied schedule calculation, and the thick rolling was completed at the front of the reverse rolling mill.
[0036]
Table 2 shows the plate thickness (mm) after each pass, the required time (sec) of each pass, and the required time (sec) between passes in Comparative Example 1 shown in FIG.
[0037]
[Table 2]
Figure 2004290979
[0038]
The plate thickness after the pass shown in Table 2, the time required for the pass, and the time required between passes are shown in the same manner as in Table 1, and thus detailed description is omitted.
In Table 2, the first and second passes are forming rolling, the third to sixth passes are tent rolling, and the seventh to 14th passes are thick rolling.
When the fourteenth pass was completed in Comparative Example 1 in this way, the thick steel plate 3 finished to a thickness of 13.1 mm was discharged to the front of the reverse rolling mill. Therefore, after the end of the fourteenth pass, a dummy pass was added to discharge the thick steel plate 3 to the rear surface of the reverse rolling mill. The time required for this rolling was 128.9 seconds in total including the dummy pass, as shown in Table 2.
[0039]
Further, as Comparative Example 2, a steel slab (thickness: 215 mm 2) manufactured by a continuous casting method was charged into a reverse rolling mill, and three-stage rolling was performed as shown in FIG. ) Manufactured. The rolling schedule of FIG. 3 is obtained by adding one pass at the stage of the thickening rolling to the thickening schedule of FIG. 2 and finishing the thickening rolling at the rear surface of the reverse rolling mill.
[0040]
Table 3 shows the plate thickness (mm) after completion of each pass, the required time (seconds) of each pass, and the required time (seconds) between passes in Comparative Example 2 shown in FIG.
[0041]
[Table 3]
Figure 2004290979
[0042]
The sheet thickness after the end of the pass, the time required for the pass, and the time required between passes shown in Table 3 are shown in the same manner as in Table 1, and thus detailed description is omitted.
In Table 3, the first and second passes are forming rolling, the third to sixth passes are tent rolling, and the seventh to fifteenth passes are thick rolling.
Thus, in the invention example, when the fifteenth pass was completed, the thick steel plate 3 finished to a thickness of 13.1 mm was discharged to the rear surface of the reverse rolling mill. The time required for this reverse rolling was 130.3 seconds as shown in Table 3.
[0043]
When the time required for the reverse rolling was compared between the invention example and the comparative examples 1 and 2, the invention example was 127.4 seconds, whereas the comparative examples 1 and 2 were 128.9 to 130.3 seconds. there were. Therefore, it has been confirmed that by applying the present invention, the final pass can always be completed at the rear surface of the reverse rolling mill, and the time required to produce a thick steel plate from a steel slab can be reduced.
[0044]
【The invention's effect】
According to the present invention, the final pass can always be completed on a desired surface of the reverse rolling mill. In particular, when the final pass is completed on the rear surface, the time required for manufacturing a thick steel plate from a steel slab can be reduced. As a result, a reduction in the operation rate of the reverse rolling mill can be suppressed, and a reduction in the productivity of the thick steel plate can be suppressed. Can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating an example of a rolling schedule according to the present invention.
FIG. 2 is a diagram schematically illustrating an example of a conventional rolling schedule.
FIG. 3 is a diagram schematically showing another example of a rolling schedule.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel slab 2 Rolled material 3 Steel plate

Claims (2)

リバース圧延機を用いて、成形圧延、幅出圧延および厚出圧延の3段階圧延、あるいは幅出圧延および厚出圧延の2段階圧延を行ない厚鋼板を製造する圧延方法において、前記リバース圧延機の所望する面で厚出圧延が終了する圧下スケジュールが設定された場合は、設定された圧下スケジュールの通り圧延を行ない、前記リバース圧延機の所望しない面で厚出圧延が終了する圧下スケジュールが設定された場合は、前記幅出圧延の段階で1パス追加することによって前記リバース圧延機の所望する面で厚出圧延を終了させることを特徴とする厚鋼板の圧延方法。In a rolling method for producing a thick steel plate by performing a three-stage rolling of forming rolling, tent rolling and bulging rolling, or a two-stage rolling of tent rolling and bulging rolling using a reverse rolling mill, If the rolling schedule in which the thickening rolling is finished on the desired surface is set, rolling is performed according to the set rolling schedule, and the rolling schedule in which the thickening rolling is finished on the undesired surface of the reverse rolling mill is set. A method of rolling a thick steel plate, wherein the thick rolling is completed on a desired surface of the reverse rolling mill by adding one pass at the stage of the width rolling. 請求項1において、所望する面が前記リバース圧延機の後面である板厚精度の良好な厚鋼板の圧延方法。2. The method according to claim 1, wherein the desired surface is a rear surface of the reverse rolling mill and has a good thickness accuracy.
JP2003082800A 2003-03-25 2003-03-25 Thick steel plate rolling method Expired - Lifetime JP4311058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082800A JP4311058B2 (en) 2003-03-25 2003-03-25 Thick steel plate rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082800A JP4311058B2 (en) 2003-03-25 2003-03-25 Thick steel plate rolling method

Publications (2)

Publication Number Publication Date
JP2004290979A true JP2004290979A (en) 2004-10-21
JP4311058B2 JP4311058B2 (en) 2009-08-12

Family

ID=33398465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082800A Expired - Lifetime JP4311058B2 (en) 2003-03-25 2003-03-25 Thick steel plate rolling method

Country Status (1)

Country Link
JP (1) JP4311058B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272439A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Ind Ltd Production method of thick steel strip and its manufacturing apparatus
JP2010149192A (en) * 2010-03-29 2010-07-08 Sumitomo Metal Ind Ltd Method for manufacturing thick steel plate, and reverse rolling mill for thick steel plate
WO2011096456A1 (en) * 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
WO2011099408A1 (en) * 2010-02-15 2011-08-18 新日本製鐵株式会社 Production method for thick steel plate
JP2016078026A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate
JP2016078028A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate
JP2016078027A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate
JP2016078025A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272439A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Ind Ltd Production method of thick steel strip and its manufacturing apparatus
JP4507946B2 (en) * 2005-03-30 2010-07-21 住友金属工業株式会社 Manufacturing method and apparatus for manufacturing thick steel plate
WO2011096456A1 (en) * 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
JP4874435B2 (en) * 2010-02-08 2012-02-15 新日本製鐵株式会社 Thick steel plate manufacturing method
CN102666885B (en) * 2010-02-15 2013-08-07 新日铁住金株式会社 Production method for thick steel plate
WO2011099408A1 (en) * 2010-02-15 2011-08-18 新日本製鐵株式会社 Production method for thick steel plate
JP4874434B1 (en) * 2010-02-15 2012-02-15 新日本製鐵株式会社 Thick steel plate manufacturing method
CN102666885A (en) * 2010-02-15 2012-09-12 新日本制铁株式会社 Production method for thick steel plate
JP4609596B2 (en) * 2010-03-29 2011-01-12 住友金属工業株式会社 Thick steel plate manufacturing method and thick steel plate reverse rolling mill
JP2010149192A (en) * 2010-03-29 2010-07-08 Sumitomo Metal Ind Ltd Method for manufacturing thick steel plate, and reverse rolling mill for thick steel plate
JP2016078026A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate
JP2016078028A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate
JP2016078027A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate
JP2016078025A (en) * 2014-10-10 2016-05-16 Jfeスチール株式会社 Rolling method for hot rolled steel plate

Also Published As

Publication number Publication date
JP4311058B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP2009542441A (en) Method and apparatus for controlling roll gap
JP2004290979A (en) Rolling method for thick steel plate
JP6172109B2 (en) Hot rolled steel sheet rolling method
JP4507946B2 (en) Manufacturing method and apparatus for manufacturing thick steel plate
JP2019038035A (en) Hat-shaped steel sheet pile, manufacturing method of hat-shaped steel sheet pile, and manufacturing facility therefor
JPS63140701A (en) Edging method for slab
JP5949691B2 (en) Plate width control method and plate width control device
JP6680284B2 (en) Rolling mill leveling setting method, rolling mill leveling setting device, and steel plate manufacturing method
CN114029345A (en) Method for controlling tail plate shape of hot-rolled rough-rolled intermediate billet
JP4609596B2 (en) Thick steel plate manufacturing method and thick steel plate reverse rolling mill
JP2005014041A (en) Method for manufacturing hot-rolled steel strip
JP2016078026A (en) Rolling method for hot rolled steel plate
JP6394625B2 (en) Width reduction device and side guide position control method of width reduction device
JPS63188402A (en) Width sizing method for hot slab
JP2010005659A (en) Method of manufacturing magnesium sheet
JP2010075977A (en) Method of forming slab with sizing press
JP2010194601A (en) Method of rolling hot-rolled steel strip
JP2021164926A (en) Method for rolling thick steel plate and method for producing the thick steel plate
JP3690240B2 (en) Hot-rolled steel strip rolling method
JP2016078028A (en) Rolling method for hot rolled steel plate
RU2336961C2 (en) Method of production of strips from low-alloyed steel
JP4400988B2 (en) Rolling pass schedule setting method and apparatus
JPH04300007A (en) Method for rolling
JPS5658920A (en) Direct hardening method of steel plate
RU2398641C2 (en) Method of producing hot-rolled stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4311058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term