JP2004290930A - Method for treating soil contaminated by heavy metal such as selenium - Google Patents

Method for treating soil contaminated by heavy metal such as selenium Download PDF

Info

Publication number
JP2004290930A
JP2004290930A JP2003090668A JP2003090668A JP2004290930A JP 2004290930 A JP2004290930 A JP 2004290930A JP 2003090668 A JP2003090668 A JP 2003090668A JP 2003090668 A JP2003090668 A JP 2003090668A JP 2004290930 A JP2004290930 A JP 2004290930A
Authority
JP
Japan
Prior art keywords
selenium
soil
contaminated
treating
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090668A
Other languages
Japanese (ja)
Other versions
JP4146260B2 (en
Inventor
Yasuo Suzuki
康夫 鈴木
Miyoko Yuuki
三世子 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Engineering Co Ltd
Original Assignee
Asahi Glass Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Engineering Co Ltd filed Critical Asahi Glass Engineering Co Ltd
Priority to JP2003090668A priority Critical patent/JP4146260B2/en
Publication of JP2004290930A publication Critical patent/JP2004290930A/en
Application granted granted Critical
Publication of JP4146260B2 publication Critical patent/JP4146260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating a contaminated soil, capable of treating the contaminated soil containing a high concentration selenium whose eluting concentration is several tens of mg/L, without requiring a curing period for curing the treated soil, nor having to worry about a secondary pollution. <P>SOLUTION: The method for treating a soil contaminated by a heavy metal such as selenium, comprises a first step of adding phosphoric acid into a selenium-containing soil, a second step of adding a water-soluble salt of bivalent iron ion, and a third step of adding a moisture absorber containing a calcium oxide, in this order. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は汚染土壌の処理方法に関し、特にセレンを効果的に不溶化処理する方法に関する。本発明によればヒ素、鉛等の重金属が存在する場合においてもセレンを効果的に不溶化することが可能であり、同時にヒ素、鉛の処理方法としても有用である。
【0002】
【従来の技術】
平成11年3月に告示された環境庁水質保全局による土壌・地下水環境基準によれば「土壌中の重金属が基準値を超過する場合には、重金属を除去又は不溶化させること」が義務づけられている。この基準値には、「土壌環境基準」、「溶出量値II」及び「含有参考値」の3種類があり、「土壌環境基準」と「溶出量値II」は基本的に環境庁告示第46号による試験方法による値で、例えば「溶出量値II」についてセレン、鉛、ヒ素はそれぞれ0.3mg/Lと定められている。
これら重金属による汚染土壌については掘削除去、封じ込め、セメントによる固化・不溶化及び鉄酸化物等による不溶化処理対策がとられてきた。しかし、これらの方法では溶出金属濃度が1mg/Lといった低濃度領域でしか処理ができないという問題などがあげられていた。これに対し例えば、酸化マグネシウムに塩化第二鉄、リン酸などの酸性固化助剤を処理pHが所定の範囲となるよう加えた土壌中性固化剤を用いる方法(特許文献1参照)、汚染土壌をまず塩化鉄(II)などの還元剤で処理し、キレート化剤にリン酸あるいはリン酸塩を添加したものとセメントでさらに処理する複合重金属汚染土壌の重金属不溶化工法(特許文献2参照)などが提案されている。
【0003】
しかし前者の方法では、調整されたpH領域以外では不溶化できないという問題がある。また、後者の方法では、セメントによる固化・不溶化では処理がセメントの養生期間に左右されるため、養生期間中の二次的環境汚染が懸念される。
【0004】
【特許文献1】
特開2002−206090号公報(0009〜0012段落、0027〜0032段落)
【特許文献2】
特開2001−293462号公報(0008〜0009段落)
【0005】
【発明が解決しようとする課題】
上記特許文献1記載の技術に対し、本発明は、pH調整が不要であるセレン等重金属汚染土壌の処理方法を提供することを目的とする。
【0006】
さらに上記特許文献2記載の技術に対し、本発明は、セレン等重金属の溶出濃度が数十mg/Lといった高濃度のセレン等重金属を含有する汚染土壌にも対応できる、汚染土壌の処理方法を提供することを目的とする。また、セメントを使用せず、処理土壌の養生期間が不要であり、二次的汚染の心配がないセレン等重金属汚染土壌の処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題は以下の発明により解決された。
【0008】
(1)セレンを含む土壌に、リン酸を添加する第1工程、2価の鉄イオンの水溶性塩を添加する第2工程、生石灰を含有する吸湿剤を添加する第3工程をこの順で有するセレン等重金属汚染土壌の処理方法。
(2)アパタイトが形成されてセレンが不溶化することを特徴とする前記(1)記載のセレン等重金属汚染土壌の処理方法。
なお、本発明における「セレンを含む土壌」とは、セレン回収工程またはセレン産業利用の工程を持つ工場敷地内の土壌またはセレン散布による汚染土壌等が挙げられる。セレンは主に(1)銅精錬の残渣からの副産物として、(2)亜鉛精錬の副産物として、(3)硫化鉱から硫酸を得る場合の副産物として、回収される。また、産業用としては(1)ガラス・セラミックス・プラスチック用の顔料、(2)ガラスの消色剤、(3)冶金利用、(4)低セレン土壌への散布、(5)自動車用バッテリー、といったものから(6)栄養補助食品まで、幅広く利用される。
また、本発明において「セレン等重金属」とは、セレンを必須成分とし、他の重金属を含んでいてもよいことを意味し、他の重金属としては例えば鉛、ヒ素があげられる。
【0009】
【発明の実施の形態】
本発明における各工程では、次のような機構によって、セレンを含む土壌が処理されるものと考えられる。セレンを含む土壌にリン酸を添加する第1工程では、汚染土壌が流動化され、セレン等重金属が土壌より抽出される。第2工程では、抽出したセレン等重金属が2価の鉄イオンで還元・不溶化処理される。第3工程では、生石灰を含有する吸湿剤により被処理土壌が固定化・細粒化される。
第2工程における還元とは、セレンについて6価セレンを4価セレンとすることをさし、不溶化とは上述の溶出試験による溶出を抑えることをいう。
【0010】
上記第1工程では、リン酸を汚染土壌に対し好ましくは1〜15質量%(HPO換算)、さらに好ましくは3〜10質量%、必要に応じ水と共に、添加し、混練する。リン酸としては、工業用リン酸が好ましい。工業用リン酸とは、試薬ではなく、一般的に工業用として販売されているもので、その濃度は主として85質量%以上のものである。リン酸の添加量はセレンの含有量にもより、溶出値で1mg/L以下であれば1〜5質量%程度が好ましく、数十mg/Lを示す場合は7〜15質量%が好ましい。リン酸が過多であるとセレンが再溶出する可能性があり、過少であるとアパタイトを形成できず本発明の効果が得られない。
第1工程において水を添加する場合、その添加量は汚染土壌に対して5質量%以下が、さらに好ましくは3質量%以下が好ましい。これらの添加により汚染土壌を流動化する。本発明においては添加する薬品を汚染土壌と均一に混合するために、第1工程において土壌が流動様を呈することが好ましい。ここでいう流動様とは、全体に水分が行き渡りそのままでは浮き出ない程度であって、棒などでかき混ぜられる程度のゆるさを有する状態をいう。第1工程では、セレン等重金属は土壌中から液相中へ抽出される。固体中での反応は難しいため、液相側へイオンの形で抽出し、以降の反応を行わせるためである。混練時間は全体が完全に混合されれば良く、混練機器にもよるが、概ね5〜10分で十分である。
【0011】
次いで第2工程では、2価の鉄イオンの水溶性塩として、例えば硫酸鉄(II)、塩化鉄(II)などを、汚染土壌に対し好ましくは0.1〜5質量%(Fe2+イオン換算)、さらに好ましくは0.5〜4質量%添加し、混練する。添加量が過多であると効果が飽和するので経済的でなく、過少であると、本発明の効果が得られない。また、セレンの濃度にもよるが、2価の鉄イオンの添加量はリン酸の添加量の10分の1程度とするのが好ましい。混練は第1工程と同様に、概ね5〜10分で十分である。水溶性塩は、固体として添加するのが好ましい。
【0012】
さらに第3工程では、汚染土壌に対して生石灰を含有する吸湿剤を添加し、水和反応を利用して流動化した上記処理土壌から脱水・細粒化を行う。上記吸湿剤は、生石灰そのものか、もしくは生石灰を含んでなる複合物であって、実質的に水和反応を起こすことのできる物質である。吸湿剤の添加量は、汚染土壌に対し生石灰の量で3〜12質量%が好ましく、5〜10質量%がさらに好ましい。生石灰が過多であると、系のpHが上昇し、鉛が溶出する。このため、前記の量の生石灰のみでは十分な吸湿が行えない場合は他の吸湿性物質を添加するのが好ましい。また、過少であると、アパタイトを形成できず、本発明の効果が得られない。アパタイト形成に必要な各成分の量は、想定される化学式からは、リン酸:2価鉄イオン:生石灰の質量比で10:3:5であり、吸湿剤には、この比率の生石灰が含まれているのが好ましい。他の吸湿性物質としては、消石灰や軽量気泡コンクリートの破砕粉末等、土壌の細粒化が可能なものが好ましい。
リン酸と生石灰を添加することにより一般的にアパタイトが形成されるが、本発明ではさらに鉄イオンを添加することにより、より溶解度の低い鉄含有アパタイトを形成すると考えられる。セレン等重金属が不溶化するメカニズムは明確なものではないが、上記低溶解度のアパタイト中に吸着ないしは形成されるイオンと置換されてアパタイト中にとりこまれて不溶化するものと思われる。
上記のように吸湿剤中の生石灰は第1工程で添加するリン酸と第2工程で添加する2価の鉄イオンの存在下で難溶性のアパタイトを形成する。このため、同様に吸湿剤として利用可能な酸化マグネシウムと比較して、生石灰を使用するのが良い。
【0013】
本発明では、流動化した土壌に生石灰を含有する吸湿剤を添加することにより、不溶化処理された土壌を細粒化した塊とすることで、取り扱い及び運搬を容易にすることができる。
本発明の処理で不溶化できるのは重金属汚染土壌中のセレンであり、鉛、ヒ素が存在する場合にはこれらも不溶化することができる。
【0014】
次に本発明の処理方法の一実施態様を、図1を参照して説明する。
図1は本発明の方法の一実施態様を模式的に示した説明図である。セレン等で汚染された土壌はまず、ガラ処理機1において処理され、鉄クズ等土壌以外のものが除かれる。この処理が済んだ汚染土壌はコンベア3を通じて混練槽2に送られ、ここで、上記第1〜第3工程の処理を混練しつつ行い、最終的にはセレン等重金属が不溶化した土壌の細粒化した塊を得ることができる。
【0015】
【実施例】
以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
なお、本発明は、以下の実施例によって限定されるものではない。
【0016】
(実施例1〜4、比較例1〜11)
セレン等で汚染された土壌に工業用リン酸(濃度85質量%)と硫酸鉄(II)(Fe2+イオン換算)を汚染土壌に対する質量%で表1に示す量となるように順次添加し混練した。同様に表1に示す量の生石灰又は酸化マグネシウムを混合した後、環境庁告示第46号による試験方法でセレン、鉛、ヒ素の溶出量を測定したところ、表1のような結果が得られた。なお、比較例1は未処理のデータである。
【0017】
表1より明らかなように、リン酸と生石灰を順次添加した比較例2〜4の結果を実施例1、2と比較すると、2価の鉄イオンを添加することがセレンの不溶化に有効なことがわかる。また、比較例1と比べて比較例5及び6は、2価の鉄イオンを添加することによってセレン等の溶出は減少しているものの、リン酸及び生石灰を使用していないため十分な不溶化効果は得られていない。
さらに、比較例7〜10は2価の鉄イオンの添加に先立ちリン酸を添加することによって、比較例2及び3よりはセレン等の不溶化効果が現れているが、十分なものではない。比較例8、10、11からわかるように、生石灰ではなくMgOを使用した場合にセレンの溶出量は減少しているが、十分な不溶化効果は得られていない。
これに対し実施例1〜4はいずれも、環境庁告示第46号による試験方法による「溶出量値II」として定められた値(0.3mg/L)を下回るセレン、鉛、ヒ素の溶出量とすることができた。なお、処理後の土壌は細粒化した塊として得ることができた。
【0018】
【表1】

Figure 2004290930
【0019】
【発明の効果】
以上詳述した通り、本発明によれば、高濃度でセレンにより汚染された土壌に対してもセレンを効果的に不溶化しその溶出を有効に防止することができ、かつ、土壌を細粒化した塊とすることができるので運搬等の取り扱いを容易にすることができる。また、本発明によれば、土壌がセレンとともに鉛、ヒ素で汚染されている場合には、セレンと同時に鉛、ヒ素も有効に不溶化することができる。さらに本発明の土壌処理方法は、セメント使用による養生期間の二次汚染の懸念もなく、従来法で必要であったpH調整も必要でない。
【図面の簡単な説明】
【図1】本発明のセレン等重金属汚染土壌の処理方法の一実施態様を模式的に示す説明図である。
【符号の説明】
1 ガラ処理機
2 混練槽
3 コンベア[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating contaminated soil, and more particularly to a method for effectively insolubilizing selenium. According to the present invention, selenium can be effectively insolubilized even when heavy metals such as arsenic and lead are present, and at the same time, it is also useful as a method for treating arsenic and lead.
[0002]
[Prior art]
According to the Soil and Groundwater Environmental Standards issued by the Environment Agency, Water Quality Conservation Bureau in March 1999, it is mandatory to remove or insolubilize heavy metals in soil when they exceed the standard value. I have. There are three types of standard values: “Soil environment standard”, “Eluted value II” and “Containment reference value”. “Soil environment standard” and “Eluted value II” are basically the For example, the “elution amount value II” is determined to be 0.3 mg / L for selenium, lead, and arsenic, respectively, based on the test method according to No. 46.
Excavation removal, containment, solidification / insolubilization with cement, and insolubilization treatment with iron oxides and the like have been taken for these soils contaminated by heavy metals. However, these methods have a problem that the treatment can be performed only in a low concentration region such as a concentration of the dissolved metal of 1 mg / L. On the other hand, for example, a method using a soil neutral solidifying agent obtained by adding an acidic solidifying aid such as ferric chloride and phosphoric acid to magnesium oxide so that the treatment pH is within a predetermined range (see Patent Document 1), Is first treated with a reducing agent such as iron (II) chloride, and then phosphoric acid or phosphate is added to a chelating agent and further treated with cement. Has been proposed.
[0003]
However, the former method has a problem that it cannot be insolubilized outside of the adjusted pH range. Further, in the latter method, the solidification and insolubilization by the cement depends on the curing period of the cement, so that there is a concern about secondary environmental pollution during the curing period.
[0004]
[Patent Document 1]
JP 2002-206090 A (paragraphs 0009 to 0012, paragraphs 0027 to 0032)
[Patent Document 2]
JP 2001-293462 A (paragraphs 0008 to 0009)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for treating soil contaminated with heavy metals such as selenium, which does not require pH adjustment, relative to the technique described in Patent Document 1.
[0006]
Further, in contrast to the technology described in Patent Document 2, the present invention provides a method for treating contaminated soil that can cope with contaminated soil containing a high concentration of heavy metal such as selenium such as tens of mg / L of heavy metal such as selenium. The purpose is to provide. It is another object of the present invention to provide a method for treating soil contaminated with heavy metals such as selenium, which does not use cement, does not require a curing period for treated soil, and has no fear of secondary pollution.
[0007]
[Means for Solving the Problems]
The above problem has been solved by the following invention.
[0008]
(1) A first step of adding phosphoric acid to a soil containing selenium, a second step of adding a water-soluble salt of divalent iron ion, and a third step of adding a hygroscopic agent containing quicklime. Of soil contaminated with heavy metals such as selenium.
(2) The method for treating soil contaminated with heavy metals such as selenium according to (1), wherein apatite is formed to insolubilize selenium.
In addition, the "soil containing selenium" in the present invention includes soil on a factory site having a selenium recovery step or a selenium industrial use step, or soil contaminated by selenium spraying. Selenium is mainly recovered as (1) as a by-product from the residue of copper refining, (2) as a by-product of zinc refining, and (3) as a by-product when sulfuric acid is obtained from sulfide ores. For industrial use, (1) pigments for glass, ceramics and plastics, (2) decolorizing agents for glass, (3) metallurgical use, (4) spraying on low selenium soil, (5) automotive batteries, And (6) dietary supplements.
In the present invention, “heavy metal such as selenium” means that selenium is an essential component and other heavy metals may be contained, and examples of other heavy metals include lead and arsenic.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In each step in the present invention, it is considered that selenium-containing soil is treated by the following mechanism. In the first step of adding phosphoric acid to selenium-containing soil, contaminated soil is fluidized and heavy metals such as selenium are extracted from the soil. In the second step, the extracted heavy metal such as selenium is reduced and insolubilized with divalent iron ions. In the third step, the soil to be treated is fixed and refined by the hygroscopic agent containing quicklime.
The term “reduction” in the second step refers to converting hexavalent selenium into tetravalent selenium with respect to selenium, and the term “insolubilization” refers to suppressing elution by the elution test described above.
[0010]
In the first step, phosphoric acid is preferably added to the contaminated soil in an amount of 1 to 15% by mass (in terms of H 3 PO 4 ), more preferably 3 to 10% by mass, and if necessary, together with water, and kneaded. As phosphoric acid, industrial phosphoric acid is preferred. The industrial phosphoric acid is not a reagent but generally sold for industrial use, and its concentration is mainly 85% by mass or more. The addition amount of phosphoric acid is preferably about 1 to 5% by mass when the elution value is 1 mg / L or less, and is preferably 7 to 15% by mass when showing several tens of mg / L, depending on the selenium content. If the amount of phosphoric acid is too large, selenium may be re-eluted. If the amount is too small, apatite cannot be formed and the effect of the present invention cannot be obtained.
When water is added in the first step, the amount of addition is preferably 5% by mass or less, more preferably 3% by mass or less based on the contaminated soil. These additions fluidize the contaminated soil. In the present invention, in order to uniformly mix the chemical to be added with the contaminated soil, it is preferable that the soil exhibits a fluid state in the first step. Here, the flow-like state refers to a state in which the water has spread all over the body and does not emerge as it is, but has such a looseness that it can be agitated with a stick or the like. In the first step, heavy metals such as selenium are extracted from the soil into the liquid phase. This is because the reaction in a solid is difficult, so that it is extracted in the form of ions to the liquid phase and the subsequent reaction is performed. The kneading time only needs to be completely mixed as a whole, and although it depends on the kneading equipment, generally 5 to 10 minutes is sufficient.
[0011]
Next, in the second step, as a water-soluble salt of divalent iron ion, for example, iron sulfate (II), iron chloride (II), or the like is preferably added to the contaminated soil in an amount of 0.1 to 5% by mass (in terms of Fe 2+ ion). ), More preferably 0.5 to 4% by mass, and kneading. If the amount is too large, the effect saturates, so that it is not economical. Further, although it depends on the concentration of selenium, the amount of divalent iron ion added is preferably about one-tenth of the amount of phosphoric acid added. About 5 to 10 minutes are sufficient for the kneading as in the first step. The water-soluble salt is preferably added as a solid.
[0012]
Further, in the third step, a desiccant containing quicklime is added to the contaminated soil, and dehydration and granulation are performed from the fluidized treated soil using a hydration reaction. The hygroscopic agent is quick lime itself or a composite containing quick lime, and is a substance capable of substantially causing a hydration reaction. The amount of the hygroscopic agent to be added is preferably 3 to 12% by mass, more preferably 5 to 10% by mass based on the amount of quicklime based on the contaminated soil. If the amount of quicklime is excessive, the pH of the system rises and lead is eluted. Therefore, if the amount of quick lime alone cannot achieve sufficient moisture absorption, it is preferable to add another hygroscopic substance. If the amount is too small, apatite cannot be formed, and the effects of the present invention cannot be obtained. According to the assumed chemical formula, the amount of each component necessary for apatite formation is 10: 3: 5 by mass ratio of phosphoric acid: ferrous iron ion: quick lime, and the hygroscopic agent contains quick lime in this ratio. It is preferred that As the other hygroscopic substance, a substance that can make the soil finer, such as slaked lime or crushed powder of lightweight cellular concrete, is preferable.
Apatite is generally formed by adding phosphoric acid and quicklime, but in the present invention, it is considered that by further adding iron ions, an iron-containing apatite having lower solubility is formed. The mechanism by which heavy metals such as selenium are insolubilized is not clear, but it is considered that they are substituted with ions adsorbed or formed in the low-solubility apatite and taken into the apatite to be insolubilized.
As described above, quicklime in the desiccant forms poorly soluble apatite in the presence of phosphoric acid added in the first step and divalent iron ions added in the second step. For this reason, it is better to use quicklime compared to magnesium oxide, which can also be used as a hygroscopic agent.
[0013]
In the present invention, handling and transportation can be facilitated by adding a moisture absorbent containing quicklime to fluidized soil to make the insolubilized soil into a finely divided mass.
The selenium in the soil contaminated with heavy metals can be insolubilized by the treatment of the present invention, and when lead and arsenic are present, these can also be insolubilized.
[0014]
Next, an embodiment of the processing method of the present invention will be described with reference to FIG.
FIG. 1 is an explanatory view schematically showing one embodiment of the method of the present invention. The soil contaminated with selenium and the like is first treated in the waste treatment machine 1 to remove iron scraps and other non-soil. The contaminated soil after this treatment is sent to the kneading tank 2 through the conveyor 3, where the first to third processes are performed while kneading, and finally the fine particles of the soil in which heavy metals such as selenium are insolubilized. A clumped mass can be obtained.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
The present invention is not limited by the following embodiments.
[0016]
(Examples 1 to 4, Comparative Examples 1 to 11)
Industrial phosphoric acid (concentration: 85% by mass) and iron (II) sulfate (in terms of Fe 2+ ion) are sequentially added to the soil contaminated with selenium or the like so as to have the amount shown in Table 1 in terms of% by mass based on the contaminated soil and kneaded. did. Similarly, after mixing the amount of quicklime or magnesium oxide shown in Table 1, the elution amounts of selenium, lead, and arsenic were measured by the test method according to the Environment Agency Notification No. 46, and the results shown in Table 1 were obtained. . Note that Comparative Example 1 is unprocessed data.
[0017]
As is clear from Table 1, when the results of Comparative Examples 2 to 4 in which phosphoric acid and quick lime were sequentially added were compared with Examples 1 and 2, it was found that the addition of divalent iron ions was effective in insolubilizing selenium. I understand. In Comparative Examples 5 and 6 as compared with Comparative Example 1, although the elution of selenium and the like was reduced by adding divalent iron ions, a sufficient insolubilizing effect was obtained because phosphoric acid and quicklime were not used. Has not been obtained.
Further, Comparative Examples 7 to 10 show a more insolubilizing effect of selenium and the like than Comparative Examples 2 and 3 by adding phosphoric acid prior to the addition of divalent iron ions, but are not sufficient. As can be seen from Comparative Examples 8, 10, and 11, when MgO was used instead of quicklime, the elution amount of selenium was reduced, but a sufficient insolubilizing effect was not obtained.
On the other hand, in all of Examples 1 to 4, the elution amounts of selenium, lead, and arsenic are lower than the value (0.3 mg / L) determined as the “elution amount value II” by the test method according to the Environment Agency Notification No. 46. And could be. The soil after the treatment could be obtained as a finely divided mass.
[0018]
[Table 1]
Figure 2004290930
[0019]
【The invention's effect】
As described above in detail, according to the present invention, selenium can be effectively insolubilized even in soil contaminated with selenium at a high concentration, and elution thereof can be effectively prevented, and the soil can be refined. Since it can be made into a lump, handling such as transportation can be facilitated. Further, according to the present invention, when the soil is contaminated with lead and arsenic together with selenium, lead and arsenic can be effectively insolubilized simultaneously with selenium. Furthermore, the soil treatment method of the present invention has no concern about secondary contamination during the curing period due to the use of cement, and does not require the pH adjustment required by the conventional method.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing one embodiment of a method for treating soil contaminated with heavy metals such as selenium of the present invention.
[Explanation of symbols]
1 Waste treatment machine 2 Kneading tank 3 Conveyor

Claims (2)

セレンを含む土壌に、リン酸を添加する第1工程、2価の鉄イオンの水溶性塩を添加する第2工程、生石灰を含有する吸湿剤を添加する第3工程をこの順で有するセレン等重金属汚染土壌の処理方法。Selenium having a first step of adding phosphoric acid to a soil containing selenium, a second step of adding a water-soluble salt of divalent iron ion, and a third step of adding a desiccant containing quicklime in this order. How to treat heavy metal contaminated soil. アパタイトが形成されてセレンが不溶化することを特徴とする請求項1記載のセレン等重金属汚染土壌の処理方法。2. The method for treating soil contaminated with heavy metals such as selenium according to claim 1, wherein apatite is formed to insolubilize selenium.
JP2003090668A 2003-03-28 2003-03-28 Treatment of selenium contaminated soil Expired - Fee Related JP4146260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090668A JP4146260B2 (en) 2003-03-28 2003-03-28 Treatment of selenium contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090668A JP4146260B2 (en) 2003-03-28 2003-03-28 Treatment of selenium contaminated soil

Publications (2)

Publication Number Publication Date
JP2004290930A true JP2004290930A (en) 2004-10-21
JP4146260B2 JP4146260B2 (en) 2008-09-10

Family

ID=33404237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090668A Expired - Fee Related JP4146260B2 (en) 2003-03-28 2003-03-28 Treatment of selenium contaminated soil

Country Status (1)

Country Link
JP (1) JP4146260B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072657A (en) * 2007-09-19 2009-04-09 Jikco Ltd Method for treating heavy metals in soil or soil slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072657A (en) * 2007-09-19 2009-04-09 Jikco Ltd Method for treating heavy metals in soil or soil slurry

Also Published As

Publication number Publication date
JP4146260B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4233923B2 (en) Treatment agent for heavy metal contaminated soil and soil treatment method using the same
JP6438888B2 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same
KR101835067B1 (en) Insolubilizing material for hazardous substances, and treatment method using same
CN107789787A (en) For repairing the stabilization agent and application method of arsenic-containing waste residue
JP2003225640A (en) Solidifying and insolubilizing agent for contaminated soil
CN106467745A (en) It is suitable for the steel slag and desulfurized gypsum base soil-solidified-agent of As polluted soil
JP2005238207A (en) Engineering method for cleaning contaminated soil
JP2002326081A (en) Method for making contaminated soil harmless
TWI646994B (en) Hazardous substance treatment agent
CN104927871A (en) Heavy metal stabilizer and method for stabilizing soil heavy metal through same
JP5092203B2 (en) Method for suppressing elution of fluorine and heavy metals from waste
CN113751488A (en) Wet detoxification and bioremediation combined method for chromium slag and chromium-contaminated soil
JP2007105669A (en) Method for insolubilizing and treating cyanide-contaminated system
JP2014117688A (en) Cleansing liquid composition for heavy metal-contaminated soil and method for cleansing heavy metal-contaminated soil
JP2005220249A (en) Elution-preventing agent and soil-treating agent
JP2005288378A (en) Treatment method of contaminated medium including heavy metals and treatment agent
WO2013147034A1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP4146260B2 (en) Treatment of selenium contaminated soil
JP3867002B2 (en) Detoxification method for contaminated soil
JP2005131574A (en) Insolubilization method of heavy metal contaminated soil
JP2007216069A (en) Treating method of contaminated soil
JP2001121132A (en) Insolubilizing method of soil and industrial waste containing cyan compound and soluble heavy metals
JP5667376B2 (en) Treatment agent for contaminated soil and method for treating contaminated soil
JP2001121109A (en) Detoxicating method for construction waste containing soluble 6-valent chromium
JP2012135727A (en) Method for reducing elution of heavy metal from contaminated soil and composition and kit for reducing elution of heavy metal from contaminated material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees