JP2004290835A - Urea water and denitrification apparatus using it - Google Patents

Urea water and denitrification apparatus using it Download PDF

Info

Publication number
JP2004290835A
JP2004290835A JP2003087210A JP2003087210A JP2004290835A JP 2004290835 A JP2004290835 A JP 2004290835A JP 2003087210 A JP2003087210 A JP 2003087210A JP 2003087210 A JP2003087210 A JP 2003087210A JP 2004290835 A JP2004290835 A JP 2004290835A
Authority
JP
Japan
Prior art keywords
urea water
urea
precipitation
ppm
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087210A
Other languages
Japanese (ja)
Other versions
JP4401669B2 (en
Inventor
Ritsuko Shinozaki
律子 篠▲崎▼
Yoshihisa Takeda
好央 武田
Shinichi Saito
真一 斎藤
Kenichi Kiyono
健一 清野
Tatsuyuki Tsukui
達之 津久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Fuso Truck and Bus Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Fuso Truck and Bus Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Fuso Truck and Bus Corp, Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003087210A priority Critical patent/JP4401669B2/en
Publication of JP2004290835A publication Critical patent/JP2004290835A/en
Application granted granted Critical
Publication of JP4401669B2 publication Critical patent/JP4401669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide urea water with urea precipitation controlled and a highly reliable denitrification apparatus using the urea water. <P>SOLUTION: In a SCR system 1 in which by the reduction effect of the urea water (ammonia) supplied from a urea water addition nozzle 5, NOx contained in exhaust gas 8 from an engine 2 is purified in an SCR catalyst 3, as the urea water to be used, urea water added with formaldehyde for controlling the precipitation of urea is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、尿素析出を抑制した尿素水及びそれを用いた内燃機関の脱硝装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンから排出される排気ガスには、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)及びPM(Particulate Matter:パティキュレート)等の汚染物質が含まれる。これらの汚染物質の中でもNOxは、酸化触媒やガソリン自動車で実用化されている三元触媒では浄化が難しく、NOxを浄化することができる有望な触媒として選択還元型NOx触媒(以下、SCR触媒という)の開発が行われている。
【0003】
SCR触媒はTiOあるいはSiO−TiO、WO−TiO、SiO−TiOなどの二元系複合酸化物、または、WO−SiO−TiO、Mo−SiO−TiOなどの三元系複合酸化物などの担体に、V,Cr,Mo,Mn,Fe,Ni,Cu,Ag,Au,Pd,Y,Ce,Nd,W,In,Irなどの活性成分を担持してなるハニカム構造を有し、アンモニアなどの還元剤の存在下でNOxを浄化する触媒である。尿素水タンクからSCR触媒の上流側の排気系に添加された尿素水は、排気ガスの熱により加水分解されアンモニアを生成する。このアンモニアが還元剤として働き、排気ガス中のNOxと反応することにより排気ガス中のNOxが浄化される。
【0004】
ここで、前述するようにNOxがアンモニアと反応することによりNOx浄化が行われるため、尿素水の供給が途絶えるとSCR触媒が浄化作用を発揮しなくなる。尿素水の供給が途絶える場合としては、例えばタンクに貯蔵された尿素水がなくなった場合があり、このような事態のときには、タンクに設置されたレベルセンサによりドライバーに警告し、尿素水の補給を促すような方法が考えられる。
【0005】
しかしながら、尿素水の供給が途絶える場合としては前述したほかに、尿素水がタンクから排気系に添加されるまでに通過する供給管において、尿素水が目詰まりを起こしてしまう場合が挙げられる。これは尿素水中に溶解した尿素が温度や濃度の変化等により析出し、供給管を閉塞してしまうためである。
【0006】
したがって、尿素水の供給を円滑に行うためには、尿素水中の尿素析出を抑制するという根本的な対処が必要となる。従来、この課題を解決する手段は知られていないが、類似する技術として、ジメチロール尿素またはトリメチロール尿素に対して2〜5倍モル量のホルムアルデヒドを添加して、尿素体の固結傾向を減少させる技術がある(例えば、特許文献1参照)。
【0007】
【特許文献1】
特公昭50−34536号公報
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の技術は粉状の尿素が経時変化により硬い固体の塊となってしまうことを抑制する技術であり、尿素水中における結晶析出を抑制する方法とは異なる。また、SCR触媒等の脱硝装置において使用可能な還元剤は尿素(すなわち、加水分解により生じるアンモニア)であり、ジメチロール尿素またはトリメチロール尿素ではない。さらに、特許文献1に記載するような主成分(ジメチロール尿素等)に対して2〜5倍モル量という多量の添加剤(ホルムアルデヒド)を添加する方法では、脱硝装置における使用に際しては不適当な添加範囲である。
【0009】
本発明は上記状況に鑑みてなされたもので、尿素水中の尿素の析出を抑制すると共に、尿素の析出が抑制された尿素水を用いることで、信頼性を高めた脱硝装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
前述した課題を解決する第1の発明は、尿素と、当該尿素の析出を抑制する析出抑制剤とを含有することを特徴とする尿素水である。
【0011】
尿素水に析出抑制剤を添加することで、尿素水における尿素の析出を抑制する。
【0012】
前述した課題を解決する第2の発明は、第1の発明に係る尿素水において、前記析出抑制剤は、ホルムアルデヒド、メタノール、アセトン及びアセトアルデヒドからなる群から選ばれる、少なくとも一種以上であることを特徴とする尿素水である。
【0013】
尿素の析出抑制剤として、ホルムアルデヒド、メタノール、アセトンまたはアセトアルデヒドを尿素水に添加することで、効果的に尿素の析出を抑制する。この析出抑制剤は単独で添加しても、複数種の析出抑制剤を混ぜて添加しても同様の効果を得ることができる。
【0014】
前述した課題を解決する第3の発明は、第1又は第2の発明に係る尿素水において、前記析出抑制剤の含有量は、前記尿素水の体積の3.3×10−6倍以上、10×10−2倍未満であることを特徴とする尿素水である。
【0015】
尿素水量(体積)を基準として析出抑制剤の含有量(体積)を適切な範囲に規定することにより、効率よく尿素の析出を抑制する。過剰量の添加剤の添加をなくして、尿素水の製造コストを低減させる。
【0016】
前述した課題を解決する第4の発明は、第1又は第2の発明に係る尿素水において、前記析出抑制剤の含有量は、前記尿素水の体積の3.3×10−6倍以上、5×10−2倍以下であることを特徴とする尿素水である。
【0017】
尿素水量(体積)を基準として析出抑制剤の含有量(体積)を更に適切な範囲に規定することにより、更に効率よく尿素の析出を抑制する。更に過剰量の添加剤の添加をなくして、尿素水の製造コストを更に低減させる。
【0018】
前述した課題を解決する第5の発明は、第1ないし第4のいずれかの発明に係る尿素水において、前記尿素の濃度が25〜45重量%であることを特徴とする尿素水である。
【0019】
下記第9の発明における脱硝装置用の尿素水として、尿素水中の尿素濃度を最適化する。
【0020】
前述した課題を解決する第6の発明は、第1ないし第4のいずれかの発明に係る尿素水において、前記尿素の濃度が30〜40重量%であることを特徴とする尿素水である。
【0021】
下記第9の発明における脱硝装置用の尿素水として、尿素水中の尿素濃度を更に最適化する。
【0022】
前述した課題を解決する第7の発明は、第1ないし6のいずれかの発明に係る尿素水を還元脱硝用尿素水として使用することを特徴とする尿素水。
【0023】
前述した課題を解決する第8の発明は、アンモニアを還元剤として用いるNOx還元触媒において、アンモニア源として、第1ないし第7のいずれかの発明に係る尿素水を用いることを特徴とする内燃機関排気処理用NOx還元触媒。
【0024】
前述した課題を解決する第9の発明は、内燃機関の排気系に設けられ、アンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系における前記NOx触媒の上流側に還元剤を供給する還元剤供給手段とを有する脱硝装置において、前記還元剤は、第1ないし第6のいずれかの発明に係る尿素水であることを特徴とする脱硝装置である。
【0025】
尿素の析出を抑制した尿素水を用いた脱硝装置とすることで、尿素析出による装置の不具合、例えば析出尿素による装置内配管の目詰まり等を防止し、脱硝装置の確実な運転を確保する。
【0026】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を具体的に説明するが、以下の実施形態は本発明を限定するものではない。
【0027】
図1は、本発明の実施形態に係る内燃機関のSCRシステムを示した構成図である。同図に示すように、SCRシステム1は、エンジン2の排気系に設けられたNOx触媒であるSCR触媒3と、還元剤である尿素水を貯蔵する尿素水タンク4と、尿素水タンク4内の尿素水を供給管14に供給する尿素水供給部16と、供給管14により送液される尿素水を排気系に供給する尿素水添加ノズル5と、エンジン2の回転数、燃料噴射量等を制御するエンジンECU6と、SCR触媒3を通過する前後の排気ガス8の温度を検出する温度センサ7と、これらの装置を制御するコントロールユニット10とからなる。
【0028】
尿素水タンク4には尿素水の量を検出するレベルセンサ11が設けられている。また、尿素水タンク4内の尿素水は、尿素水供給部16にて尿素水の添加量が制御され供給管14を通過後、尿素水添加ノズル5からSCR触媒3の上流側の排気系に添加される。
【0029】
SCRシステム1の作動方法に関しては、コントロールユニット10が統括制御を行う。まず、エンジンECU6が管理するエンジン2の運転状態(回転数、燃料噴射量等)、エンジンECU6にプログラムされたマップからのNOx推定排出量、SCR触媒3の前後における排気ガス温度および前記マップからのNOx浄化率等に基づいて尿素水添加量を算出する。次に、算出された添加量に基づいて尿素水供給部16を駆動制御することにより尿素水と圧縮エアとを混合し、尿素水添加ノズル5から尿素水を噴霧する。
【0030】
排気系に供給された尿素水は、排気ガスの熱で加水分解されアンモニアとなる。このアンモニアが還元剤として働くことで、排気ガス中のNOxを浄化する。
【0031】
ここで、尿素水供給部16内の尿素水通路は径が細く、また尿素水添加ノズル5の噴孔径も小さいため、これらの箇所等の通路径が小さい部分で尿素水中の尿素が析出し目詰まりが起こるおそれがある。尿素水が適切に供給されなくなると、前述するように、SCR触媒3はNOxを浄化する機能が低下したり、浄化することができなくなってしまう。
【0032】
そこで、本実施例では、下記詳細に説明するように、SCRシステム1に使用する尿素水を尿素が析出しにくい尿素水としている。尿素が析出しにくい尿素水とすることで、前述する尿素水供給部16内や尿素水添加ノズル5等における目詰まりをなくすことができる。
【0033】
表1は、本実施形態に係る尿素水の尿素析出試験の結果であり、尿素水に析出抑制剤としてホルムアルデヒドを添加したときの試験結果である。
【0034】
【表1】

Figure 2004290835
【0035】
尿素析出試験は次のようにして行った。まず、試液の調製については、ホルムアルデヒドは市販ではホルマリンとして入手できるため、ホルマリン水と尿素水との混合により調製した。ホルマリン水とは、ホルムアルデヒドを36〜38%の割合、メタノールを5〜10%の割合で含有する水溶液である。ここで、ホルムアルデヒドとして体積濃度が0ppm(BLANK),3.3ppm,10ppm,100ppm,1000ppm,10000ppm,50000ppmとなるように尿素濃度32.5重量%の尿素水を調製した。
【0036】
次に、調製した試液5mlを50mlビーカーに入れて、室温で放置し、時間経過による尿素の析出の有無を観察した。
【0037】
試験の結果、表1に示すように、尿素水単独(BLANK)では試験開始後118時間で尿素が析出したのに対し、ホルムアルデヒドが3.3ppmとなるようにホルマリン水を加えた場合では、118時間では尿素の析出は観察されず、125時間経過後に析出が観察された。また、ホルムアルデヒド濃度を高くすることにより、尿素の析出は更に抑制され、10ppmでは125時間、100ppmまたは1000ppmでは145時間、10000ppmまたは50000ppmでは162時間で初めて析出が観察された。
【0038】
また、図1に示すSCRシステム1にホルムアルデヒドを添加した尿素水を用いて運転試験をおこなったところ、ホルムアルデヒド添加量が3.3ppm以上において、更に100ppm以上において、特に10000ppm以上において長期間にわたって尿素の析出を抑制し、尿素水の送液経路内における目詰まりを防止することができた。
【0039】
次に、表2は、尿素水に析出抑制剤としてメタノールを添加したときの尿素析出試験の結果である。
【0040】
【表2】
Figure 2004290835
【0041】
尿素析出試験は次のようにして行った。まず、試液の調製については、メタノールと尿素水との混合により調製した。ここで、メタノール体積濃度が0ppm(BLANK),3.3ppm,10ppm,100ppm,1000ppm,10000ppm,50000ppmとなるように尿素濃度32.5重量%の尿素水を調製した。次に、調製した試液5mlを50mlビーカーに入れて、室温で放置し、時間経過による尿素の析出の有無を観察した。
【0042】
試験の結果、表2に示すように、尿素水単独(BLANK)では試験開始後118時間で尿素が析出したのに対し、メタノール濃度を3.3ppmとした場合では、118時間では析出が観察されず、138時間経過後に析出が観察された。また、メタノール濃度を高くすることにより、尿素の析出は更に抑制され、10ppmでは138時間、100ppm〜50000ppmでは162時間で初めて析出が観察された。
【0043】
また、図1に示すSCRシステム1にメタノールを添加した尿素水を用いて運転試験をおこなったところ、メタノール添加量が3.3ppm以上において、更に100ppm以上において長期間にわたって尿素の析出を抑制し、尿素水の送液経路内における目詰まりを防止することができた。
【0044】
次に、表3は、尿素水に析出抑制剤としてアセトンを添加したときの尿素析出試験の結果である。
【0045】
【表3】
Figure 2004290835
【0046】
尿素析出試験は次のようにして行った。まず、試液の調製については、アセトンと尿素水との混合により調製した。ここで、アセトン体積濃度が0ppm(BLANK),3.3ppm,10ppm,100ppm,1000ppm,10000ppm,50000ppmとなるように尿素濃度32.5重量%の尿素水を調製した。次に、調製した試液5mlを50mlビーカーに入れて、室温で放置し、時間経過による尿素の析出の有無を観察した。
【0047】
試験の結果、表3に示すように、尿素水単独(BLANK)では試験開始後118時間で尿素が析出したのに対し、アセトン濃度を3.3ppmとした場合では、118時間では析出が観察されず、138時間経過後に析出が観察された。また、アセトン濃度を高くすることにより、尿素の析出は更に抑制され、10ppmでは138時間、100ppm〜50000ppmでは162時間で初めて析出が観察された。
【0048】
また、図1に示すSCRシステム1にアセトンを添加した尿素水を用いて運転試験をおこなったところ、アセトン添加量が3.3ppm以上において、更に100ppm以上において長期間にわたって尿素の析出を抑制し、尿素水の送液経路内における目詰まりを防止することができた。
【0049】
次に、表4は、尿素水に析出抑制剤としてアセトアルデヒドを添加したときの尿素析出試験の結果である。
【0050】
【表4】
Figure 2004290835
【0051】
尿素析出試験は次のようにして行った。まず、試液の調製については、アセトアルデヒドと尿素水との混合により調製した。ここで、アセトアルデヒド体積濃度が0ppm(BLANK),3.3ppm,10ppm,100ppm,1000ppm,10000ppm,50000ppmとなるように尿素濃度32.5重量%の尿素水を調製した。次に、調製した試液5mlを50mlビーカーに入れて、室温で放置し、時間経過による尿素の析出の有無を観察した。
【0052】
試験の結果、表4に示すように、尿素水単独(BLANK)では試験開始後118時間で尿素が析出し、アセトアルデヒド濃度を3.3ppm〜100ppmとした場合においても、同様に118時間で析出が観察された。一方、1000ppm以上において、アセトアルデヒド濃度を高くすることにより、尿素の析出は抑制され、1000ppm、10000ppmでは138時間、50000ppmでは162時間で初めて析出が観察された。
【0053】
また、図1に示すSCRシステム1にアセトアルデヒドを添加した尿素水を用いて運転試験をおこなったところ、アセトアルデヒド添加量が1000ppm以上において、更に50000ppm以上において長期間にわたって尿素の析出を抑制し、尿素水の送液経路内における目詰まりを防止することができた。
【0054】
また、表5は、尿素水に析出抑制剤としてエタノールを添加したときの尿素析出試験の結果である。
【0055】
【表5】
Figure 2004290835
【0056】
尿素析出試験は次のようにして行った。まず、試液の調製については、エタノールと尿素水との混合により調製した。ここで、エタノール体積濃度が0ppm(BLANK),3.3ppm,10ppm,100ppm,1000ppm,10000ppm,50000ppmとなるように尿素濃度32.5重量%の尿素水を調製した。次に、調製した試液5mlを50mlビーカーに入れて、室温で放置し、時間経過による尿素の析出の有無を観察した。
【0057】
試験の結果、表5に示すように、尿素水単独(BLANK)では試験開始後118時間で尿素が析出し、エタノール濃度を3.3ppm〜1000ppmとした場合においても、同様に118時間で析出が観察された。エタノール濃度が10000ppm以上では、尿素の析出は若干抑制され、10000ppm、50000ppmでは125時間で初めて析出が観察された。
【0058】
また、図1に示すSCRシステム1にエタノールを添加した尿素水を用いて運転試験をおこなったところ、エタノール添加量が10000ppm以上において長期間にわたって尿素の析出を抑制し、尿素水の送液経路内における目詰まりを防止することができた。
【0059】
以上より、尿素水にホルムアルデヒド、メタノール、アセトン、アセトアルデヒド、エタノールを添加することで、尿素の析出を抑制できることが分かった。この結果、SCRシステムにおける尿素水の送液経路内における目詰まりを防止することができた。また、メタノールとアセトンは最も少量の添加で尿素析出を抑制することが分かった。一方、エタノールを除き、その他の析出抑制剤では50000ppm添加において同等の抑制効果があることが分かった。なお、上記析出抑制剤が尿素の析出を抑制するメカニズムについては、析出抑制剤の添加により尿素の水に対する溶解度が向上するためであると考えられる。よって、析出抑制剤としては、尿素の水に対する溶解度を向上させることができるものであれば良く、前述した有機溶媒に限られない。
【0060】
上記試験結果は、析出抑制剤として効率の良い添加範囲における試験結果であり、50000ppm以上の添加においても同様に尿素の析出を抑制する効果がある。しかしながら、10%の析出抑制剤を添加した場合の析出試験を行った結果、抑制効果が得られないことが確認されており、添加量の上限としては、10%(100000ppm)である。10%以上の添加では、添加量の増加に伴い、尿素水の製造コストが高くなったり、析出抑制剤がSCRシステムに悪影響を及ぼすおそれが出てくる。
【0061】
また、尿素水の尿素濃度は、尿素水が最も凍結しにくい濃度である32.5重量%が一般的である。図2は、尿素水中の尿素濃度及び尿素水の温度の変化に伴う尿素水の状態を示す状態図である。同図に示すように、尿素濃度の上昇に伴い、尿素水の凝固点が降下し、尿素濃度0重量%(すなわち、水)において凝固点0℃であったものが尿素濃度32.5重量%において最低の凝固点マイナス10℃となることが分かる。また、32.5重量%以上の濃度では尿素が析出し始める温度が上昇していく(析出しやすくなる)ことが分かる。すなわち、一般的な尿素水については、マイナス10℃まで完全な液体状態を保つことができるように約32.5重量%の濃度とし調製している。
【0062】
しかしながら、本発明ではこれに限られず、尿素濃度を25〜45重量%、好ましくは30〜40重量%とすることができる。これは、用途によっては、マイナス10℃までの環境耐性を必要としない場合があるためである。例えば、尿素濃度40重量%の場合には約0℃までは液体状態を保つことができるため、室内に設置される定置式脱硝装置等に適用することが可能である。
【0063】
なお、本実施形態では、各析出抑制剤を単独で尿素水に添加した例を示したが、本発明はこれに限られるものではなく、各析出抑制剤を複数種混合して添加してもよい。また、SCRシステムのみでなく、一般にディーゼルエンジンの脱硝装置であれば、本実施例に係る尿素水を適用することが可能である。
【0064】
【発明の効果】
第1の発明では、尿素と、当該尿素の析出を抑制する析出抑制剤とを含有する尿素水としたので、尿素水における尿素の析出を抑制することができる。また、例えば、アンモニアを必要とする脱硝装置に適用した場合には、尿素析出による装置動作の不具合のおそれをなくすことができる。
【0065】
第2の発明では、析出抑制剤を、ホルムアルデヒド、メタノール、アセトン及びアセトアルデヒドからなる群から選ばれる、少なくとも一種以上であることとしたので、効果的に尿素の析出を抑制することができる。
【0066】
第3の発明では、析出抑制剤の含有量を、尿素水の体積の3.3×10−6倍以上、10×10−2倍未満とし、尿素水量を基準として析出抑制剤の添加量を適切な範囲に規定したので、尿素の析出を効率よく抑制することができると共に、過剰量の添加剤の添加をなくして、尿素水の製造コストを低減することができる。
【0067】
第4の発明では、析出抑制剤の含有量を、尿素水の体積の3.3×10−6倍以上、5×10−2倍以下とし、尿素水量を基準として析出抑制剤の添加量を更に適切な範囲に規定したので、尿素の析出を更に効率よく抑制するとができると共に、尿素水の製造コストを更に低減することができる。
【0068】
第5の発明では、尿素の濃度が25〜45重量%の尿素水としたので、下記第9の発明における脱硝装置用の尿素水として適用することができる。
【0069】
第6の発明では、尿素の濃度が30〜40重量%の尿素水としたので、下記第9の発明における脱硝装置用の尿素水として適用することができる。
【0070】
第7の発明では、第1ないし6のいずれかの発明に係る尿素水を還元脱硝用尿素水として使用することとしたので、尿素水を使用する脱硝装置等の尿素析出による不具合を改善することができる。
【0071】
第8の発明では、アンモニアを還元剤として用いるNOx還元触媒において、アンモニア源として、第1ないし第7のいずれかの発明に係る尿素水を用いることとしたので、尿素析出による不具合を改善したNOx還元触媒とすることができる。
【0072】
第9の発明では、内燃機関の排気系に設けられ、アンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系における前記NOx触媒の上流側に還元剤を供給する還元剤供給手段とを有する脱硝装置において、前記還元剤を、第1ないし第6のいずれかの発明に係る尿素水とし、尿素の析出を抑制した尿素水を用いた脱硝装置としたので、尿素析出による装置の不具合、例えば析出尿素による装置内配管の目詰まり等を防止し、脱硝装置の確実な運転を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る内燃機関の排気浄化装置を示した構成図である。
【図2】尿素水中の尿素濃度及び尿素水の温度の変化に伴う尿素水の状態を示す状態図である。
【符号の説明】
1 SCRシステム
2 エンジン
3 SCR触媒
4 尿素水タンク
5 尿素水添加ノズル
6 エンジンECU
7 温度センサ
8 排ガス
10 コントロールユニット
11 レベルセンサ
14 供給管
16 尿素水供給部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to urea water in which urea precipitation is suppressed and a denitration device for an internal combustion engine using the same.
[0002]
[Prior art]
Exhaust gas discharged from a diesel engine includes contaminants such as HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), and PM (particulate matter). Among these pollutants, NOx is difficult to purify with an oxidation catalyst or a three-way catalyst put to practical use in gasoline automobiles. As a promising catalyst capable of purifying NOx, a selective reduction type NOx catalyst (hereinafter referred to as SCR catalyst). ) Is being developed.
[0003]
SCR catalysts are TiO 2 or SiO 2 -TiO 2, WO 3 -TiO 2, binary composite oxide such as SiO 2 -TiO 2, or, WO 3 -SiO 2 -TiO 2, Mo 3 -SiO 2 -TiO Active components such as V, Cr, Mo, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, W, In, and Ir are supported on a carrier such as a ternary complex oxide such as 2. It is a catalyst having a honeycomb structure that is supported and purifying NOx in the presence of a reducing agent such as ammonia. The urea water added from the urea water tank to the exhaust system upstream of the SCR catalyst is hydrolyzed by the heat of the exhaust gas to generate ammonia. This ammonia acts as a reducing agent and reacts with NOx in the exhaust gas to purify NOx in the exhaust gas.
[0004]
Here, as described above, NOx purification is performed by the reaction of NOx with ammonia. Therefore, when the supply of urea water is interrupted, the SCR catalyst does not exhibit the purification action. The supply of urea water may be interrupted, for example, when there is no urea water stored in the tank. In such a situation, the driver is warned by a level sensor installed in the tank and the urea water is replenished. Possible ways to encourage it.
[0005]
However, in addition to the case where the supply of the urea water is interrupted, there is a case where the urea water is clogged in the supply pipe through which the urea water passes from the tank to the exhaust system. This is because urea dissolved in urea water precipitates due to changes in temperature, concentration, etc., and closes the supply pipe.
[0006]
Therefore, in order to smoothly supply the urea water, it is necessary to take a fundamental measure of suppressing urea precipitation in the urea water. Conventionally, no means for solving this problem is known, but as a similar technique, 2-5 times molar amount of formaldehyde is added to dimethylol urea or trimethylol urea to reduce the tendency of the urea body to solidify. There is a technique (see, for example, Patent Document 1).
[0007]
[Patent Document 1]
Japanese Patent Publication No. 50-34536 [0008]
[Problems to be solved by the invention]
However, the technique described in Patent Document 1 is a technique for suppressing powdered urea from becoming a hard solid mass due to a change over time, and is different from a method for suppressing crystal precipitation in urea water. In addition, a reducing agent that can be used in a denitration apparatus such as an SCR catalyst is urea (that is, ammonia generated by hydrolysis), and is not dimethylol urea or trimethylol urea. Furthermore, in the method of adding a large amount of an additive (formaldehyde) of 2 to 5 times the molar amount with respect to the main component (such as dimethylol urea) as described in Patent Document 1, an inappropriate addition is required for use in a denitration apparatus. It is a range.
[0009]
The present invention has been made in view of the above circumstances, and provides a denitration device that has improved reliability by using urea water in which precipitation of urea is suppressed while suppressing precipitation of urea in urea water. Objective.
[0010]
[Means for Solving the Problems]
1st invention which solves the subject mentioned above is urea water characterized by containing urea and the precipitation inhibitor which suppresses precipitation of the said urea.
[0011]
By adding a precipitation inhibitor to the urea water, precipitation of urea in the urea water is suppressed.
[0012]
A second invention that solves the above-described problem is characterized in that, in the urea water according to the first invention, the precipitation inhibitor is at least one selected from the group consisting of formaldehyde, methanol, acetone, and acetaldehyde. And urea water.
[0013]
Addition of formaldehyde, methanol, acetone or acetaldehyde as urea precipitation inhibitor to urea water effectively suppresses urea precipitation. Even if this precipitation inhibitor is added alone or plural kinds of precipitation inhibitors are mixed and added, the same effect can be obtained.
[0014]
Third invention for solving the problems described above, the urea water according to the first or second invention, the content of the precipitation inhibitor, the urea water volume of 3.3 × 10 -6 times or more, It is urea water characterized by being less than 10 × 10 −2 times.
[0015]
By prescribing the content (volume) of the precipitation inhibitor to an appropriate range based on the urea water amount (volume), precipitation of urea is efficiently suppressed. The production cost of urea water is reduced by eliminating the addition of an excessive amount of additive.
[0016]
4th invention which solves the subject mentioned above WHEREIN: Content of the said precipitation inhibitor in the urea water which concerns on 1st or 2nd invention is 3.3x10 < -6 > times or more of the volume of the said urea water, It is urea water characterized by being 5 × 10 −2 times or less.
[0017]
By prescribing the content (volume) of the precipitation inhibitor in a more appropriate range based on the urea water amount (volume), the precipitation of urea is more efficiently suppressed. Furthermore, the production cost of urea water is further reduced by eliminating the addition of an excessive amount of additive.
[0018]
A fifth invention that solves the above-described problem is the urea water according to any one of the first to fourth inventions, wherein the urea concentration is 25 to 45% by weight.
[0019]
The urea concentration in the urea water is optimized as the urea water for the denitration device in the ninth invention below.
[0020]
A sixth invention for solving the above-described problem is the urea water according to any one of the first to fourth inventions, wherein the urea concentration is 30 to 40% by weight.
[0021]
The urea concentration in the urea water is further optimized as the urea water for the denitration device in the ninth invention below.
[0022]
A seventh invention that solves the above-described problem is a urea water characterized in that the urea water according to any one of the first to sixth inventions is used as urea water for reducing denitration.
[0023]
An eighth invention for solving the above-described problem is an internal combustion engine characterized in that, in the NOx reduction catalyst using ammonia as a reducing agent, the urea water according to any one of the first to seventh inventions is used as the ammonia source. NOx reduction catalyst for exhaust treatment.
[0024]
A ninth invention that solves the above-described problem is provided in an exhaust system of an internal combustion engine, and selectively reduces NOx in exhaust gas using ammonia as a reducing agent, upstream of the NOx catalyst in the exhaust system. A denitration apparatus having a reducing agent supply means for supplying a reducing agent, wherein the reducing agent is urea water according to any one of the first to sixth inventions.
[0025]
By using a denitration apparatus using urea water that suppresses the precipitation of urea, it is possible to prevent malfunction of the apparatus due to urea precipitation, for example, clogging of piping in the apparatus due to precipitated urea, and to ensure reliable operation of the denitration apparatus.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. However, the following embodiments do not limit the present invention.
[0027]
FIG. 1 is a configuration diagram showing an SCR system for an internal combustion engine according to an embodiment of the present invention. As shown in the figure, an SCR system 1 includes an SCR catalyst 3 that is a NOx catalyst provided in an exhaust system of an engine 2, a urea water tank 4 that stores urea water that is a reducing agent, and a urea water tank 4. The urea water supply unit 16 that supplies the urea water to the supply pipe 14, the urea water addition nozzle 5 that supplies the urea water fed by the supply pipe 14 to the exhaust system, the rotational speed of the engine 2, the fuel injection amount, and the like The engine ECU 6 controls the temperature, the temperature sensor 7 detects the temperature of the exhaust gas 8 before and after passing through the SCR catalyst 3, and the control unit 10 that controls these devices.
[0028]
The urea water tank 4 is provided with a level sensor 11 for detecting the amount of urea water. Further, the urea water in the urea water tank 4 passes through the supply pipe 14 after the urea water supply amount is controlled by the urea water supply unit 16, and then enters the exhaust system upstream of the SCR catalyst 3 from the urea water addition nozzle 5. Added.
[0029]
As for the operating method of the SCR system 1, the control unit 10 performs overall control. First, the operating state (rotation speed, fuel injection amount, etc.) of the engine 2 managed by the engine ECU 6, the estimated NOx emission from the map programmed in the engine ECU 6, the exhaust gas temperature before and after the SCR catalyst 3, and the above map The urea water addition amount is calculated based on the NOx purification rate and the like. Next, the urea water supply unit 16 is driven and controlled based on the calculated addition amount to mix urea water and compressed air, and spray the urea water from the urea water addition nozzle 5.
[0030]
The urea water supplied to the exhaust system is hydrolyzed by the heat of the exhaust gas to become ammonia. This ammonia acts as a reducing agent to purify NOx in the exhaust gas.
[0031]
Here, since the urea water passage in the urea water supply unit 16 has a small diameter and the nozzle hole diameter of the urea water addition nozzle 5 is small, urea in the urea water precipitates at portions where the passage diameter is small, such as these portions. There is a risk of clogging. If the urea water is not properly supplied, the SCR catalyst 3 has a reduced function of purifying NOx or cannot be purified as described above.
[0032]
Therefore, in this embodiment, as will be described in detail below, the urea water used in the SCR system 1 is urea water in which urea does not easily precipitate. By using urea water in which urea does not easily precipitate, clogging in the urea water supply unit 16 and the urea water addition nozzle 5 described above can be eliminated.
[0033]
Table 1 shows the results of the urea precipitation test of urea water according to the present embodiment, and shows the test results when formaldehyde is added to the urea water as a precipitation inhibitor.
[0034]
[Table 1]
Figure 2004290835
[0035]
The urea precipitation test was performed as follows. First, regarding the preparation of the test solution, since formaldehyde is commercially available as formalin, it was prepared by mixing formalin water and urea water. Formalin water is an aqueous solution containing formaldehyde in a proportion of 36-38% and methanol in a proportion of 5-10%. Here, urea water having a urea concentration of 32.5% by weight was prepared so that the volume concentration of formaldehyde was 0 ppm (BLANK), 3.3 ppm, 10 ppm, 100 ppm, 1000 ppm, 10000 ppm, and 50000 ppm.
[0036]
Next, 5 ml of the prepared test solution was placed in a 50 ml beaker and allowed to stand at room temperature, and the presence or absence of urea precipitation over time was observed.
[0037]
As a result of the test, as shown in Table 1, urea water alone (BLANK) precipitated urea at 118 hours after the start of the test, whereas when formalin water was added so that formaldehyde was 3.3 ppm, No precipitation of urea was observed over time, and precipitation was observed after 125 hours. Moreover, the precipitation of urea was further suppressed by increasing the formaldehyde concentration, and precipitation was observed for the first time in 125 hours at 10 ppm, 145 hours at 100 ppm or 1000 ppm, and 162 hours at 10000 ppm or 50000 ppm.
[0038]
In addition, when an operation test was performed using urea water added with formaldehyde to the SCR system 1 shown in FIG. Precipitation was suppressed and clogging in the urea water feeding path could be prevented.
[0039]
Next, Table 2 shows the results of a urea precipitation test when methanol was added as a precipitation inhibitor to urea water.
[0040]
[Table 2]
Figure 2004290835
[0041]
The urea precipitation test was performed as follows. First, the sample solution was prepared by mixing methanol and urea water. Here, urea water having a urea concentration of 32.5 wt% was prepared so that the methanol volume concentration was 0 ppm (BLANK), 3.3 ppm, 10 ppm, 100 ppm, 1000 ppm, 10000 ppm, and 50000 ppm. Next, 5 ml of the prepared test solution was placed in a 50 ml beaker and allowed to stand at room temperature, and the presence or absence of urea precipitation over time was observed.
[0042]
As a result of the test, as shown in Table 2, urea was precipitated 118 hours after the start of the test with urea water alone (BLANK), whereas when methanol concentration was 3.3 ppm, precipitation was observed at 118 hours. In addition, precipitation was observed after 138 hours. Further, by increasing the methanol concentration, urea precipitation was further suppressed, and precipitation was observed for the first time at 138 hours at 10 ppm and at 162 hours at 100 ppm to 50000 ppm.
[0043]
In addition, when an operation test was performed using urea water added with methanol to the SCR system 1 shown in FIG. 1, urea precipitation was suppressed over a long period of time when methanol addition amount was 3.3 ppm or more, and further 100 ppm or more, It was possible to prevent clogging in the urea water feeding path.
[0044]
Next, Table 3 shows the results of a urea precipitation test when acetone is added to urea water as a precipitation inhibitor.
[0045]
[Table 3]
Figure 2004290835
[0046]
The urea precipitation test was performed as follows. First, the sample solution was prepared by mixing acetone and aqueous urea. Here, urea water having a urea concentration of 32.5 wt% was prepared so that the acetone volume concentration was 0 ppm (BLANK), 3.3 ppm, 10 ppm, 100 ppm, 1000 ppm, 10000 ppm, and 50000 ppm. Next, 5 ml of the prepared test solution was placed in a 50 ml beaker and allowed to stand at room temperature, and the presence or absence of urea precipitation over time was observed.
[0047]
As a result of the test, as shown in Table 3, urea water alone (BLANK) precipitated urea at 118 hours after the start of the test, whereas when the acetone concentration was 3.3 ppm, precipitation was observed at 118 hours. In addition, precipitation was observed after 138 hours. Further, by increasing the acetone concentration, urea precipitation was further suppressed, and precipitation was observed for the first time at 138 hours at 10 ppm and at 162 hours at 100 ppm to 50000 ppm.
[0048]
In addition, when an operation test was performed using urea water added with acetone to the SCR system 1 shown in FIG. 1, the precipitation of urea was suppressed over a long period of time when the amount of acetone added was 3.3 ppm or more, and further 100 ppm or more, It was possible to prevent clogging in the urea water feeding path.
[0049]
Next, Table 4 shows the results of a urea precipitation test when acetaldehyde was added as a precipitation inhibitor to urea water.
[0050]
[Table 4]
Figure 2004290835
[0051]
The urea precipitation test was performed as follows. First, the sample solution was prepared by mixing acetaldehyde and urea water. Here, urea water having a urea concentration of 32.5% by weight was prepared so that the volume concentration of acetaldehyde was 0 ppm (BLANK), 3.3 ppm, 10 ppm, 100 ppm, 1000 ppm, 10000 ppm, and 50000 ppm. Next, 5 ml of the prepared test solution was placed in a 50 ml beaker and allowed to stand at room temperature, and the presence or absence of urea precipitation over time was observed.
[0052]
As a result of the test, as shown in Table 4, urea water alone (BLANK) precipitates 118 hours after the start of the test, and even when the acetaldehyde concentration is 3.3 ppm to 100 ppm, the precipitation is similarly performed in 118 hours. Observed. On the other hand, by increasing the acetaldehyde concentration at 1000 ppm or more, precipitation of urea was suppressed, and precipitation was observed for the first time at 138 hours at 1000 ppm and 10,000 ppm and at 162 hours at 50000 ppm.
[0053]
Further, when an operation test was performed using urea water to which acetaldehyde was added to the SCR system 1 shown in FIG. It was possible to prevent clogging in the liquid feeding path.
[0054]
Table 5 shows the results of a urea precipitation test when ethanol was added as a precipitation inhibitor to urea water.
[0055]
[Table 5]
Figure 2004290835
[0056]
The urea precipitation test was performed as follows. First, the sample solution was prepared by mixing ethanol and urea water. Here, urea water having a urea concentration of 32.5% by weight was prepared so that the ethanol volume concentration was 0 ppm (BLANK), 3.3 ppm, 10 ppm, 100 ppm, 1000 ppm, 10000 ppm, and 50000 ppm. Next, 5 ml of the prepared test solution was placed in a 50 ml beaker and allowed to stand at room temperature, and the presence or absence of urea precipitation over time was observed.
[0057]
As a result of the test, as shown in Table 5, urea water alone (BLANK) precipitated urea at 118 hours after the start of the test, and even when the ethanol concentration was 3.3 ppm to 1000 ppm, precipitation occurred at 118 hours. Observed. When the ethanol concentration was 10,000 ppm or more, urea precipitation was slightly suppressed, and at 10,000 ppm and 50000 ppm, precipitation was observed for the first time in 125 hours.
[0058]
In addition, when an operation test was performed using urea water added with ethanol to the SCR system 1 shown in FIG. 1, urea precipitation was suppressed over a long period of time when the ethanol addition amount was 10,000 ppm or more, and the urea water supply path was It was possible to prevent clogging.
[0059]
As mentioned above, it turned out that precipitation of urea can be suppressed by adding formaldehyde, methanol, acetone, acetaldehyde, and ethanol to urea water. As a result, it was possible to prevent clogging of the urea water feeding path in the SCR system. It was also found that methanol and acetone suppress urea precipitation with the smallest addition. On the other hand, with the exception of ethanol, other precipitation inhibitors were found to have the same inhibitory effect when added to 50000 ppm. In addition, it is thought that it is because the solubility with respect to the water of urea improves about the mechanism in which the said precipitation inhibitor suppresses precipitation of urea by addition of a precipitation inhibitor. Therefore, any precipitation inhibitor may be used as long as it can improve the solubility of urea in water, and is not limited to the organic solvent described above.
[0060]
The above test results are test results in an addition range that is efficient as a precipitation inhibitor, and the addition of 50000 ppm or more has an effect of similarly suppressing precipitation of urea. However, as a result of conducting a precipitation test in the case of adding 10% precipitation inhibitor, it has been confirmed that the suppression effect cannot be obtained, and the upper limit of the addition amount is 10% (100,000 ppm). When the addition amount is 10% or more, the production cost of urea water increases as the addition amount increases, and the precipitation inhibitor may adversely affect the SCR system.
[0061]
The urea concentration of urea water is generally 32.5% by weight, which is the concentration at which urea water is most difficult to freeze. FIG. 2 is a state diagram showing the state of the urea water accompanying changes in the urea concentration in the urea water and the temperature of the urea water. As shown in the figure, as the urea concentration increases, the freezing point of the urea water decreases, and when the urea concentration is 0% by weight (ie, water), the freezing point is the lowest at the urea concentration of 32.5% by weight. It turns out that it becomes the freezing point minus 10 ° C. In addition, it can be seen that the temperature at which urea begins to precipitate increases at a concentration of 32.5% by weight or more (is likely to precipitate). That is, general urea water is prepared at a concentration of about 32.5% by weight so that a complete liquid state can be maintained up to minus 10 ° C.
[0062]
However, the present invention is not limited to this, and the urea concentration can be 25 to 45% by weight, preferably 30 to 40% by weight. This is because environmental resistance up to minus 10 ° C. may not be required depending on the application. For example, when the urea concentration is 40% by weight, the liquid state can be maintained up to about 0 ° C., so that it can be applied to a stationary denitration apparatus or the like installed indoors.
[0063]
In this embodiment, an example in which each precipitation inhibitor is added to urea water alone has been shown. However, the present invention is not limited to this, and a plurality of each precipitation inhibitor may be mixed and added. Good. In addition to the SCR system, the urea water according to this embodiment can be applied to a denitration device for a diesel engine in general.
[0064]
【The invention's effect】
In the first invention, since urea water containing urea and a precipitation inhibitor that suppresses precipitation of the urea is used, precipitation of urea in the urea water can be suppressed. Further, for example, when applied to a denitration apparatus that requires ammonia, it is possible to eliminate the risk of malfunction of the apparatus due to urea precipitation.
[0065]
In the second invention, since the precipitation inhibitor is at least one selected from the group consisting of formaldehyde, methanol, acetone and acetaldehyde, precipitation of urea can be effectively suppressed.
[0066]
In the third aspect of the invention, the content of the precipitation inhibitor, urea water volume of 3.3 × 10 -6 times or more, and less than 10 × 10 -2 times, the amount of precipitation inhibitor, based on the urea water Since it is regulated within an appropriate range, precipitation of urea can be efficiently suppressed, and addition of an excessive amount of additive can be eliminated to reduce the production cost of urea water.
[0067]
In the fourth invention, the content of the precipitation inhibitor is 3.3 × 10 −6 times or more and 5 × 10 −2 times or less of the volume of urea water, and the addition amount of the precipitation inhibitor is based on the amount of urea water. Furthermore, since it is defined within an appropriate range, urea precipitation can be suppressed more efficiently, and the production cost of urea water can be further reduced.
[0068]
In the fifth invention, the urea water has a urea concentration of 25 to 45% by weight, so that it can be applied as urea water for a denitration apparatus in the ninth invention described below.
[0069]
In the sixth aspect of the invention, the urea solution has a urea concentration of 30 to 40% by weight, so that it can be applied as a urea solution for a denitration apparatus in the ninth aspect of the invention described below.
[0070]
In the seventh invention, since the urea water according to any one of the first to sixth inventions is used as the urea water for reductive denitration, it is possible to improve the problems caused by urea precipitation in a denitration apparatus that uses urea water. Can do.
[0071]
In the eighth invention, in the NOx reduction catalyst using ammonia as a reducing agent, the urea water according to any one of the first to seventh inventions is used as the ammonia source. It can be a reduction catalyst.
[0072]
In a ninth aspect of the invention, a NOx catalyst that is provided in an exhaust system of an internal combustion engine and selectively reduces NOx in exhaust gas using ammonia as a reducing agent, and a reducing agent that supplies the reducing agent to the upstream side of the NOx catalyst in the exhaust system. In the denitration apparatus having the agent supply means, the reducing agent is urea water according to any one of the first to sixth inventions, and the denitration apparatus uses urea water in which precipitation of urea is suppressed. It is possible to prevent malfunction of the apparatus due to, for example, clogging of piping in the apparatus due to precipitated urea, and to ensure reliable operation of the denitration apparatus.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a state diagram showing a state of urea water accompanying a change in urea concentration in urea water and temperature of urea water.
[Explanation of symbols]
1 SCR system 2 Engine 3 SCR catalyst 4 Urea water tank 5 Urea water addition nozzle 6 Engine ECU
7 Temperature sensor 8 Exhaust gas 10 Control unit 11 Level sensor 14 Supply pipe 16 Urea water supply section

Claims (9)

尿素と、当該尿素の析出を抑制する析出抑制剤とを含有することを特徴とする尿素水。A urea aqueous solution containing urea and a precipitation inhibitor that suppresses precipitation of the urea. 請求項1に記載の尿素水において、
前記析出抑制剤は、ホルムアルデヒド、メタノール、アセトン及びアセトアルデヒドからなる群から選ばれる、少なくとも一種以上であることを特徴とする尿素水。
In the urea water according to claim 1,
The urea water, wherein the precipitation inhibitor is at least one selected from the group consisting of formaldehyde, methanol, acetone and acetaldehyde.
請求項1又は2に記載の尿素水において、
前記析出抑制剤の含有量は、前記尿素水の体積の3.3×10−6倍以上、10×10−2倍未満であることを特徴とする尿素水。
In the urea water according to claim 1 or 2,
The urea water, wherein the content of the precipitation inhibitor is 3.3 × 10 −6 times or more and less than 10 × 10 −2 times the volume of the urea water.
請求項1又は2に記載の尿素水において、
前記析出抑制剤の含有量は、前記尿素水の体積の3.3×10−6倍以上、5×10−2倍以下であることを特徴とする尿素水。
In the urea water according to claim 1 or 2,
The urea water, wherein the content of the precipitation inhibitor is 3.3 × 10 −6 times or more and 5 × 10 −2 times or less of the volume of the urea water.
請求項1ないし4のいずれかに記載の尿素水において、
前記尿素の濃度が25〜45重量%であることを特徴とする尿素水。
In the urea water according to any one of claims 1 to 4,
The urea water, wherein the urea concentration is 25 to 45% by weight.
請求項1ないし4のいずれかに記載の尿素水において、
前記尿素の濃度が30〜40重量%であることを特徴とする尿素水。
In the urea water according to any one of claims 1 to 4,
The urea water, wherein the urea concentration is 30 to 40% by weight.
請求項1ないし6のいずれかに記載する尿素水を還元脱硝用尿素水として使用することを特徴とする尿素水。A urea water characterized by using the urea water according to any one of claims 1 to 6 as a urea water for reductive denitration. アンモニアを還元剤として用いるNOx還元触媒において、
アンモニア源として、請求項1ないし7のいずれかに記載する尿素水を用いることを特徴とする内燃機関排気処理用NOx還元触媒。
In a NOx reduction catalyst using ammonia as a reducing agent,
A NOx reduction catalyst for exhaust gas treatment of an internal combustion engine, wherein the urea water according to any one of claims 1 to 7 is used as an ammonia source.
内燃機関の排気系に設けられ、アンモニアを還元剤として排気ガス中のNOxを選択還元するNOx触媒と、前記排気系における前記NOx触媒の上流側に還元剤を供給する還元剤供給手段とを有する脱硝装置において、
前記還元剤は、請求項1ないし6のいずれかに記載する尿素水であることを特徴とする脱硝装置。
A NOx catalyst which is provided in an exhaust system of the internal combustion engine and selectively reduces NOx in exhaust gas using ammonia as a reducing agent; and a reducing agent supply means which supplies the reducing agent to the upstream side of the NOx catalyst in the exhaust system. In denitration equipment,
A denitration apparatus, wherein the reducing agent is urea water according to any one of claims 1 to 6.
JP2003087210A 2003-03-27 2003-03-27 Urea water for reducing denitration and denitration apparatus using the same Expired - Fee Related JP4401669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087210A JP4401669B2 (en) 2003-03-27 2003-03-27 Urea water for reducing denitration and denitration apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087210A JP4401669B2 (en) 2003-03-27 2003-03-27 Urea water for reducing denitration and denitration apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004290835A true JP2004290835A (en) 2004-10-21
JP4401669B2 JP4401669B2 (en) 2010-01-20

Family

ID=33401637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087210A Expired - Fee Related JP4401669B2 (en) 2003-03-27 2003-03-27 Urea water for reducing denitration and denitration apparatus using the same

Country Status (1)

Country Link
JP (1) JP4401669B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298828A (en) * 2005-04-21 2006-11-02 Mitsui Chemicals Inc Production method of high-purity urea water
JP2007039393A (en) * 2005-08-04 2007-02-15 Nissan Diesel Motor Co Ltd Aqueous solution of urea
JP2008013529A (en) * 2006-07-10 2008-01-24 Nippon Kasei Chem Co Ltd Method for removing oil in oil-containing solid urea
JP2008049258A (en) * 2006-08-24 2008-03-06 Mitsui Chemicals Inc Nox reducing agent for treating internal combustion engine exhaust gas
JP2008519195A (en) * 2004-10-29 2008-06-05 フィリップ・モリス・ユーエスエイ・インコーポレイテッド Reductant metering system for NOx reduction in lean burn internal combustion engines
WO2009008408A1 (en) * 2007-07-06 2009-01-15 Mitsui Mining & Smelting Co., Ltd. Liquid freezing point identifying device, freezing preventing apparatus for liquid storage tank utilizing the same, and automobile exhaust gas reducing apparatus
JP2010168978A (en) * 2009-01-22 2010-08-05 Mazda Motor Corp Exhaust emission control device for engine
CN102397749A (en) * 2010-09-11 2012-04-04 中国第一汽车集团公司 Composition of urea reducing agent capable of improving atomization effect
JP2014037357A (en) * 2012-08-13 2014-02-27 Nippon Kasei Chem Co Ltd High-purity urea water and method for producing the same
EP2815803A1 (en) * 2013-06-17 2014-12-24 Deere & Company Diesel exhaust fluid formulation that reduces urea deposits in exhaust systems
WO2021198579A1 (en) * 2020-03-30 2021-10-07 Totalenergies Marketing Services Use of a composition for removing pollutants from exhaust gases produced by heat engines
KR20240036811A (en) 2022-09-14 2024-03-21 한국화학연구원 NOx reducing agent including ammonium formate, ammonium acetate or mixtures thereof, exhaust gas purification apparatus including the same, and method for reducing NOx using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416427A (en) * 1977-06-09 1979-02-07 Azote Sa Cie Neerlandaise Improved method of glanulating urea
JPS56109882A (en) * 1980-01-31 1981-08-31 Ube Industries Urea fluidized granuation
JPH08259442A (en) * 1995-03-17 1996-10-08 Shiseido Co Ltd Composition containing urea at high concentration and prevention of crystal deposition of urea
JP2002001066A (en) * 2000-06-20 2002-01-08 Mitsui Chemicals Inc REDUCING AGENT FOR ELIMINATING NOx
JP2002530575A (en) * 1998-11-23 2002-09-17 モービル・オイル・コーポレイション Liquid urea additive for exhaust gas treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416427A (en) * 1977-06-09 1979-02-07 Azote Sa Cie Neerlandaise Improved method of glanulating urea
JPS56109882A (en) * 1980-01-31 1981-08-31 Ube Industries Urea fluidized granuation
JPH08259442A (en) * 1995-03-17 1996-10-08 Shiseido Co Ltd Composition containing urea at high concentration and prevention of crystal deposition of urea
JP2002530575A (en) * 1998-11-23 2002-09-17 モービル・オイル・コーポレイション Liquid urea additive for exhaust gas treatment
JP2002001066A (en) * 2000-06-20 2002-01-08 Mitsui Chemicals Inc REDUCING AGENT FOR ELIMINATING NOx

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904281B2 (en) * 2004-10-29 2012-03-28 フィリップ・モリス・ユーエスエイ・インコーポレイテッド Reductant metering system for NOx reduction in lean burn internal combustion engines
JP2008519195A (en) * 2004-10-29 2008-06-05 フィリップ・モリス・ユーエスエイ・インコーポレイテッド Reductant metering system for NOx reduction in lean burn internal combustion engines
JP2006298828A (en) * 2005-04-21 2006-11-02 Mitsui Chemicals Inc Production method of high-purity urea water
JP4545631B2 (en) * 2005-04-21 2010-09-15 三井化学株式会社 Method for producing high-purity urea water
JP2007039393A (en) * 2005-08-04 2007-02-15 Nissan Diesel Motor Co Ltd Aqueous solution of urea
JP2008013529A (en) * 2006-07-10 2008-01-24 Nippon Kasei Chem Co Ltd Method for removing oil in oil-containing solid urea
JP2008049258A (en) * 2006-08-24 2008-03-06 Mitsui Chemicals Inc Nox reducing agent for treating internal combustion engine exhaust gas
WO2009008408A1 (en) * 2007-07-06 2009-01-15 Mitsui Mining & Smelting Co., Ltd. Liquid freezing point identifying device, freezing preventing apparatus for liquid storage tank utilizing the same, and automobile exhaust gas reducing apparatus
JP2010168978A (en) * 2009-01-22 2010-08-05 Mazda Motor Corp Exhaust emission control device for engine
CN102397749A (en) * 2010-09-11 2012-04-04 中国第一汽车集团公司 Composition of urea reducing agent capable of improving atomization effect
JP2014037357A (en) * 2012-08-13 2014-02-27 Nippon Kasei Chem Co Ltd High-purity urea water and method for producing the same
EP2815803A1 (en) * 2013-06-17 2014-12-24 Deere & Company Diesel exhaust fluid formulation that reduces urea deposits in exhaust systems
CN104226108A (en) * 2013-06-17 2014-12-24 迪尔公司 diesel exhaust fluid formulation that reduces urea deposits in exhaust systems
WO2021198579A1 (en) * 2020-03-30 2021-10-07 Totalenergies Marketing Services Use of a composition for removing pollutants from exhaust gases produced by heat engines
KR20240036811A (en) 2022-09-14 2024-03-21 한국화학연구원 NOx reducing agent including ammonium formate, ammonium acetate or mixtures thereof, exhaust gas purification apparatus including the same, and method for reducing NOx using the same

Also Published As

Publication number Publication date
JP4401669B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
KR101890838B1 (en) Method and system for controlling nitrogen oxide emissions from a combustion engine
KR101060125B1 (en) Exhaust system for lean burn IC engines
AU2008268742B2 (en) NOx purification system, and method for control of NOx purification system
CN101809255B (en) Method for reducing emission of nitrogen oxide in a motor vehicle having an internal combustion engine operating in a lean fashion
CN108412589A (en) Apparatus for diagnosis of abnormality and diagnostic method, the internal-combustion engine system and its control method of the emission-control equipment of internal combustion engine
US8304366B2 (en) System for remediating emissions and method of use
CN102465738B (en) Nox absorber regeneration system and method
JP4401669B2 (en) Urea water for reducing denitration and denitration apparatus using the same
CN102454453B (en) There is the SO of reduction 3the discharge SCR NO of the durability produced and improve xafter-treatment system
CN104061046A (en) Compact Exhaust Gas Treatment Systems For Diesel Devices
US20130064744A1 (en) Heated injection system for diesel engine exhaust systems
JP2005002968A (en) Exhaust emission control device of internal combustion engine
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2007145796A (en) Urea water and denitrification apparatus using the same
WO2011142028A1 (en) Exhaust gas purification system for internal combustion engine
JP7129976B2 (en) Exhaust gas pollution control fluid containing soluble basic metal carbonate, its preparation process, and its use in internal combustion engines
WO2006006441A1 (en) System and method for purification of exhaust gas
JP2005273509A (en) NOx REMOVAL EQUIPMENT AND NOx REMOVING METHOD
CN102985649B (en) Exhaust gas purification apparatus for internal combustion engine
KR102157716B1 (en) Exhaust treatment system and exhaust gas stream treatment method
JP2007205267A (en) Exhaust emission control device
RU2573547C2 (en) System for postprocessing of used gases with addition of activating material to be added to catalytic neutraliser
CN101614147B (en) Exhaust purification apparatus of internal-combustion engine
JP2005248924A (en) Exhaust emission control device of engine
JP2010261328A (en) Method for detecting abnormality in reducing agent

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees