JP2004290810A - Hydrogen storage material and its manufacturing method - Google Patents

Hydrogen storage material and its manufacturing method Download PDF

Info

Publication number
JP2004290810A
JP2004290810A JP2003086298A JP2003086298A JP2004290810A JP 2004290810 A JP2004290810 A JP 2004290810A JP 2003086298 A JP2003086298 A JP 2003086298A JP 2003086298 A JP2003086298 A JP 2003086298A JP 2004290810 A JP2004290810 A JP 2004290810A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
carbonaceous material
metal
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086298A
Other languages
Japanese (ja)
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Kazuhiko Tokiyoda
和彦 常世田
Shigeru Matsuura
茂 松浦
Toyoyuki Kubokawa
豊之 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003086298A priority Critical patent/JP2004290810A/en
Publication of JP2004290810A publication Critical patent/JP2004290810A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material capable of stably storing a large amount of hydrogen even under a normal temperature and low pressure condition and having a low hydrogen discharge temperature, and its manufacturing method. <P>SOLUTION: The hydrogen storage material is constituted of a carbonaceous material micronized by mechanical grinding under a hydrogen gas atmosphere and a metal having a function for dissociating a hydrogen molecule into hydrogen atoms. Preferably, the hydrogen storage material is constituted by supporting the metal having the function for dissociating the hydrogen molecule into hydrogen atoms on the carbonaceous material micronized by mechanical grinding under the hydrogen gas atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、常温・低圧で多量の水素を貯蔵することができる水素貯蔵材およびその製造方法に関し、さらに詳しくは、グラファイト等の炭素質材料を用いて常温・低圧で多量の水素を貯蔵あるいは比較的低温で水素を放出する水素貯蔵材およびその製造方法に関する。
【0002】
【従来技術】
化石燃料の枯渇や地球環境問題から、化石燃料に替わる2次エネルギーとして自然エネルギーや再生可能エネルギーが有望視されている。特に、水素ガスは、エネルギーサイクルの中で重要な位置を占める物質として期待されている。
【0003】
水素の貯蔵方法としては、液体水素あるいは圧縮ガスとして貯蔵する方法や、水素吸蔵合金等による貯蔵が知られている。しかしながら、これらはいずれも以下のような欠点を有している。
【0004】
すなわち、水素を液体として貯蔵する方法は、水素を極低温まで冷却する必要があるため液化に必要なエネルギー消費が大きく、さらにボイルオフ(熱流入による液化水素の蒸発)による損失のため、水素を補充したまま長時間保存することができないといった欠点を有している。水素ガスを圧縮ガスとして貯蔵する方法は、水素貯蔵量を増加させるために高圧にする必要があるため、容器の重量が重くなる上に、バルブなどの耐圧性や信頼性に問題がある。水素を水素吸蔵合金に貯蔵する方法は、Mg、Ni等を主成分とする水素吸蔵合金に水素を吸蔵させるものであるが、この方法の場合、単位重量当たりの水素貯蔵量が少ないため、重量が重くなってしまう。
【0005】
最近、これらの問題を解決する水素貯蔵材料としてカーボンナノチューブ、活性炭等の炭素系材料が注目されており、盛んに研究が行われている。
【0006】
例えば、特許文献1には、カーボンナノチューブに水素を貯蔵する方法が提案されている。特許文献2には、活性炭による微細構造に水素を吸着させる方法が提案されている。また、本発明者が先に提案した特許文献3には、機械的粉砕によってナノ構造化されたグラファイトを用いた高い水素貯蔵能を有する水素貯蔵材が提案されている。
【0007】
【特許文献1】
特開平11−116219号公報
【特許文献2】
WO98/30496号公報
【特許文献3】
特開2001−302224号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1のカーボンナノチューブは熱分解反応によって製造するために収率が低く、さらに多量の水素を貯蔵できると報告されているが、再現性が得られないといった欠点を有しているため、工業的製造法として好ましくない。また、上記特許文献2の活性炭は、水素の貯蔵のためには温度−173℃以下、水素圧約5MPa程度という、極低温、高圧を必要とするために、やはり工業的製造法としては好ましくない。一方、上記特許文献3は、常温、低圧下で比較的多量の水素を貯蔵することができるものの、貯蔵した水素の放出温度が高いという欠点を有している。
【0009】
本発明はかかる事情に鑑みてなされたものであって、常温・低圧でも多量の水素を安定して貯蔵することができ、水素放出温度の低い水素貯蔵材およびその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明者らが検討を重ねた結果、特開2001−302224号公報に示された、水素ガス雰囲気下で機械的粉砕により微細化したグラファイト等の炭素質材料を用い、さらに水素分子を水素原子に解離させる機能を有する金属を用いることにより、常温・低圧でも多量の水素を安定して貯蔵することができ、かつ水素放出温度を低下させることができることを見出した。また、水素分子を水素原子に解離させる機能を有する金属を、炭素質材料を微細化する前ではなく微細化した後に担持させることにより、水素放出温度の低下効果をより高めることができるとともに、水素貯蔵量をより高めることができることを見出した。
【0011】
本発明は、本発明者らのこのような知見に基づいて完成されたものであり、以下の(1)〜(7)を提供する。
【0012】
(1)水素ガス雰囲気下で機械粉砕により微細化した炭素質材料と、水素分子を水素原子に解離させる機能を有する金属とを有することを特徴とする水素貯蔵材。
(2)水素ガス雰囲気下で機械粉砕により微細化した炭素質材料に、水素分子を水素原子に解離させる機能を有する金属を担持させたことを特徴とする水素貯蔵材。
(3)上記(2)において、前記微細化された炭素質材料の表面および/または内部に水素が貯蔵されることを特徴とする水素貯蔵材。
(4)上記(1)〜(3)において、前記金属が、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金であることを特徴とする水素貯蔵材。
(5)上記(1)〜(4)において、前記炭素質材料に対する前記水素分子を水素原子に解離させる機能を有する金属の含有量が0.3〜30.0mass%であることを特徴とする水素貯蔵材。
(6)炭素質材料を水素ガス雰囲気で機械的粉砕する工程と、機械的粉砕により微細化された炭素質材料に、水素分子を水素原子に解離させる機能を有する金属を担持させる工程とを具備し、前記炭素質材料の機械的粉砕の過程で炭素質材料の表面および/または内部に水素を貯蔵させることを特徴とする水素貯蔵材の製造方法。
(7)上記(6)において、前記水素ガスの圧力が、1MPa以下であることを特徴とする水素貯蔵材の製造方法。
【0013】
【発明の実態の形態】
以下、本発明の実施形態について説明する。
本発明においては、水素貯蔵材料として水素ガス雰囲気下で機械粉砕により微細化した炭素質材料を用い、さらに触媒成分として水素分子を水素原子に解離させる機能を有する金属を用いて水素貯蔵材を構成する。
【0014】
本発明においては、グラファイトに代表される炭素質材料を、水素ガス雰囲気下で機械粉砕により微細化する過程で、微細化された炭素質材料に水素が侵入し、微細化された炭素質材料の表面および/または内部に水素が貯蔵される。ここで内部とは、結晶粒子間、層間、欠陥をいう。水素の侵入の形態は、炭素水素共有結合をともなうものと、共有結合をともなわないものとがあるが、これらのうち主に共有結合をともなわない水素は可逆的に取り出し可能であり、貯蔵水素として有効である。
【0015】
炭素質材料としては、グラファイト、非晶質炭素、活性炭素等を用いることができる。その中でもグラファイトが水素貯蔵能が大きく好ましい。グラファイトの結晶は層状構造を有しているため、水素雰囲気中での粉砕過程でその表面および層間に多量の水素を貯蔵することができる。
【0016】
上記特許文献3(特開2001−302224号公報)に開示された技術では、このように水素雰囲気中でのグラファイトの粉砕過程で水素を貯蔵するものであり、貯蔵された水素の放出温度が300℃であり、水素貯蔵量が最大3mass%程度であるが、水素の表出温度の低下と水素貯蔵量のさらなる増加が求められる。
【0017】
そこで、本発明では、触媒成分として、水素分子を水素原子に解離させる機能を有する金属を用いる。このような金属の作用により、取り込まれた水素分子が水素原子に解離され、水素放出温度が低下し、かつ水素貯蔵量が増加するという効果が得られる。触媒成分としては、このような機能を有する金属または合金であれば特に制限はないが、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金であることが好ましい。これら金属のこれらの中ではPdが特に良好である。水素貯蔵合金は、基本的には、安定な水素化物を形成しやすい発熱型金属A(例えば、Ti、Zr、ミッシュメタル(Mm)、Ca等)と水素との親和力を持たない吸熱型金属B(例えば、Ni、Fe、Co、Mn等)から構成されており、AB型(LaNiやMmNi等)、AB型(例えば、Ti1.2Mn1.8やTiCr1.8等)、AB型(TiFe等)、AB型(MgNiやMgCu等)を挙げることができる。
【0018】
以上のような触媒成分としての金属の含有量は、前記炭素質材料に対して0.3〜30.0mass%であることが好ましい。その量が0.3mass%未満では水素分子を水素に解離する機能を有効に発揮させることができず、30.0mass%を超えても効果が飽和するばかりか、コストが上昇してしまう。
【0019】
触媒成分としての水素分子を水素原子に解離させる機能を有する金属は、微粉砕された炭素質材料に担持させることが好ましい。炭素質材料を微粉砕する前に触媒成分となる金属を担持させると、炭素を微粉砕した際に炭素質材料が金属表面を厚く被覆してしまい、触媒としての機能が有効に発揮されないが、微粉砕後の炭素質材料に触媒成分となる金属を担持させることにより、金属表面を炭素質材料が厚く被覆することがなく、金属が水素と十分に接触して触媒機能を有効に発揮することができる。すなわち、水素が触媒成分としての金属表面に十分に接触することができ、そこで水素分子が水素原子に解離し、水素原子として炭素質材料中に貯蔵されるから、水素分子水素放出温度を低下させることができるとともに、水素貯蔵量を増加させることができる。炭素質材料としてグラファイトを用いた場合には、水素ガス圧力1MPaで、触媒成分を用いない時には水素放出開始温度:300〜320℃程度、水素貯蔵量:3mass%程度であったものが、微粉最後に触媒成分を担持させることにより水素放出開始温度:200℃程度、水素貯蔵量:3.5〜5.0mass%程度と著しく改善される。もちろん、微粉砕前に触媒成分を担持させても、触媒成分を用いない場合よりは効果がみられ、水素放出開始温度:270〜290℃程度、水素貯蔵量:3.0〜3.5mass%程度となる。
【0020】
炭素質材料を粉砕するときの水素ガスの圧力は1MPa以下であることが好ましい。1MPaを超えると設備の負担が大きくなってしまう。本発明の水素貯蔵材は1MPa以下でも十分に高い水素貯蔵能を発揮させることができる。また、炭素質材料を粉砕するときの温度は室温〜200℃程度が好ましい。本発明の水素貯蔵材は200℃程度で水素を放出させることができるため、貯蔵の際の温度はそれよりも低い温度であることが好ましい。本発明の水素貯蔵材は、室温でも十分に高い水素貯蔵能を有する利点がある。
【0021】
機械的粉砕は、上述したように、炭素質材料の結晶構造を破壊し、微細化された炭素質材料の表面および内部に水素を貯蔵させるために行われるが、その際の粉砕設備としては、遊星ボールミル、ロッドミル、振動ボールミル等、強力な粉砕能力を有するものが好適である。また、炭素質材料の微粉砕は水素雰囲気で行われるため、水素ガスを導入しやすいものを選択することが好ましい。
【0022】
【実施例】
以下、本発明の実施例について比較例と対比しつつ説明する。
【0023】
[実施例1〜10]
1.微粒化グラファイト調製
グラファイト粉末1.3g (キシダ化学社製人造グラファイト、平均粒径36μm)を250ccのジルコニア製ミル容器に入れ、ミル容器内を真空排気した後、水素ガスを1.0MPa導入した。ミリング容器を遊星型ボールミル装置で、室温下所定の時間ミリングを行った。なお、ボールには容器とほぼ同等の組成および硬度を有するジルコニア製ボールを使用した。ミリングの試料は、酸化と水分吸着の影響を最小限とするために、アルゴン雰囲気のグローブボックス内で取り出し、アルゴン雰囲気の試料瓶に移し、同じグローブボックス内で保管した。
【0024】
2.触媒担持
微粒化したグラファイト10.0gをビーカー中で最低量の水に浸し、攪拌した。微粒化したグラファイトに対して触媒となる金属が表1に示す割合になるように表1に示す化合物を所定量少量の水に溶かし、滴下ロートでゆっくり滴下した。溶液全体をエバポレーター用ナスフラスコに移し、回転させながら水浴中60℃で2時間加温し、十分に含浸させた。溶液を放冷した後、エバポレーターを回転・減圧にして水を除去した。その後、触媒を含浸させたグラファイトをナスフラスコからかきだし、乾燥機中に装入し、100℃で乾燥させた。流通系装置に充填し、窒素気流中400℃までゆっくりと加熱し4時間加熱分解した。室温に戻した後、水素気流中で再びゆっくりと450℃まで加熱し、5時間保持した。その後窒素気流中に切り替え、室温に戻した。取り出す前に1%の酸素を含む窒素気流中で不動態化を行った。
【0025】
3.水素貯蔵量測定
所定の触媒金属を担持した微粒化グラファイト500mgを容量50ccのガス容器に充填した。容器内を真空にし、所定温度にした。その後、1MPaおよび6MPa下で水素を導入し、導入した水素圧力および低下した圧力量から水素貯蔵量を算出した。
【0026】
4.水素放出開始温度の測定
各圧力で所定の触媒金属を担持した微粒化グラファイトを電気炉中で室温から900℃まで10℃/分の速度で加熱し、容量法により放出水素量を求めた。またTG−MASS測定から水素放出曲線を作成し、水素放出開始温度を求めた。
【0027】
(実施例11〜17)
1.触媒担持およびグラファイト微細化
グラファイト粉末10.0g(キシダ化学社製人造グラファイト、平均粒径36μm)をビーカー中で最低量の水に浸し、攪拌した。微粒化したグラファイトに対して触媒となる金属が表1に示す割合になるように表1に示す化合物を所定量少量の水に溶かし、滴下ロートでゆっくり滴下した。溶液全体をエバポレーター用ナスフラスコに移し、回転させながら水浴中60℃で2時間加温し、十分に含浸させた。溶液を放冷した後、エバポレーターを回転・減圧にして水を除去した。水を除去後、ナスフラスコからかきだし乾燥機中、100℃で乾燥させた。流通系装置に充填し、窒素気流中400℃までゆっくりと加熱し4時間加熱分解した。室温に戻した後、水素気流中で再びゆっくりと450℃まで加熱し、5時間保持した。その後窒素気流中に切り替え、室温に戻した。取り出す前に1%の酸素を含む窒素気流中で不動態化を行った。
【0028】
触媒担持したグラファイト粉末1.3gを250mLのジルコニア製ミル容器に入れ、ミル容器内を真空排気した後、水素ガスを1.0MPa導入した。ミリング容器を遊星型ボールミル装置で、室温下所定の時間ミリングを行った。なお、ボールには容器とほぼ同等の組成および硬度を有するジルコニア製ボールを使用した。
【0029】
2.水素貯蔵量測定
微粒化グラファイト500mgを容量50mLのガス容器に充填した。容器内を真空にした後、900℃まで昇温したと後、実施例1と同様に、容器内を真空にし、所定温度にした。その後、各圧力下で水素を導入し、導入した水素圧力および低下した圧力量から水素貯蔵量を算出した。
【0030】
3.水素放出開始温度の測定
実施例1〜10と同様、各圧力で所定の触媒金属を担持した微粒化グラファイトを電気炉中で室温から900℃まで10℃/分の速度で加熱し、容量法により放出水素量を求めた。またTG−MASS測定から水素放出曲線を作成し、水素放出開始温度を求めた。
【0031】
(比較例1)
1.微粒化グラファイト調製
グラファイト粉末1.3g(キシダ化学社製人造グラファイト、平均粒径36μm)を250mLのジルコニア製ミル容器に入れ、ミル容器内を真空排気した後、水素ガスを1.0MPa導入した。ミリング容器を遊星型ボールミル装置で、室温下所定の時間ミリングを行った。なお、ボールには容器とほぼ同等の組成および硬度を有するジルコニア製ボールを使用した。
【0032】
2.水素貯蔵量測定
実施例11〜17と同様、微粒化グラファイト500mgを容量50mLのガス容器に充填した。容器内を真空にした後、900℃まで昇温した後、実施例1と同様に、容器内を真空にし、所定温度にした。その後、各圧力下で水素を導入し、導入した水素圧力および低下した圧力量から水素貯蔵量を算出した。
【0033】
3.水素放出開始温度の測定
実施例1〜10と同様、各圧力で所定の触媒金属を担持した微粒化グラファイトを電気炉中で室温から900℃まで10℃/分の速度で加熱し、容量法により放出水素量を求めた。またTG−MASS測定から水素放出曲線を作成し、水素放出開始温度を求めた。
【0034】
以上の実施例1〜17および比較例1の水素貯蔵量の測定結果、および水素放出開始温度の測定結果を表1に併記する。なお、水素放出曲線の例として実施例3、実施例12、比較例1の水素放出曲線を図1に示す。図1に示す水素放出曲線の最初の立ち上がりの温度が水素放出開始温度である。また、650℃付近のピークは、炭素と共有結合している水素が放出されたことを示すものである。また、図1には併せて容量法による水素放出量の積算値を示す。なお、表1には、900℃までの水素放出量の積算値を水素貯蔵量として示している。
【0035】
【表1】

Figure 2004290810
【0036】
表1および図1に示すように、触媒を担持させた実施例1〜17は、常温・定圧でも十分に水素を貯蔵することができ、触媒を担持させなかった比較例1に比べて水素放出開始温度が低くなり水素貯蔵量も多くなることが確認された。
【0037】
また、実施例のうち、グラファイトの微細化前に触媒を担持させた実施例11〜17は、水素放出開始温度が270〜290℃、水素貯蔵量が圧力1MPaで2.88〜3.65mass%、6MPaで3.52〜4.27mass%であり、比較例1の水素放出開始温度315℃、水素貯蔵量1MPaで2.87〜3.30mass%、6MPaで3.46〜3.89mass%よりも小幅な改善であったのに対し、グラファイトを微細化後に触媒を担持させた実施例1〜10は、水素放出開始温度が200〜214℃、水素貯蔵量が1MPaで3.27〜5.09mass%、6MPaで3.93〜6.00mass%となり、水素放出温度および水素貯蔵量が大幅に改善されたことが確認された。
【0038】
実験に用いた触媒種の中では、Pdを用いた実施例9および10の効果が高く、水素放出開始温度が200℃、水素貯蔵量が1MPaで4.6〜5.1mass%程度、6MPaで5.5〜6.0mass%程度となった。
【0039】
【発明の効果】
以上説明したように、本発明によれば、水素貯蔵材料である水素ガス雰囲気下で機械粉砕により微細化した炭素質材料と、水素分子を水素原子に解離させる機能を有する触媒としての金属とを用いて水素貯蔵材を構成するので、常温・低圧でも多量の水素を安定して貯蔵することができ、かつ水素放出温度を低下させることができる。また、水素分子を水素原子に解離させる機能を有する金属を、炭素質材料を微細化する前ではなく微細化した後に担持させることにより、水素放出温度の低下効果をより高めることができるとともに、水素貯蔵量をより高めることができる。
【図面の簡単な説明】
【図1】実施例および比較例の水素放出曲線および水素貯蔵量の積算値を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage material capable of storing a large amount of hydrogen at normal temperature and low pressure, and a method for producing the same. More specifically, the present invention relates to a method for storing or comparing a large amount of hydrogen at normal temperature and low pressure using a carbonaceous material such as graphite. TECHNICAL FIELD The present invention relates to a hydrogen storage material that releases hydrogen at a relatively low temperature and a method for producing the same.
[0002]
[Prior art]
Due to the depletion of fossil fuels and global environmental problems, natural energy and renewable energy are promising as secondary energy alternatives to fossil fuels. In particular, hydrogen gas is expected to be an important material in the energy cycle.
[0003]
As a method of storing hydrogen, a method of storing as liquid hydrogen or a compressed gas, and a storage using a hydrogen storage alloy or the like are known. However, all of them have the following disadvantages.
[0004]
In other words, in the method of storing hydrogen as a liquid, it is necessary to cool the hydrogen to a very low temperature, so that the energy consumption required for liquefaction is large. It has the drawback that it cannot be stored for a long period of time. In the method of storing hydrogen gas as a compressed gas, it is necessary to increase the pressure to increase the amount of hydrogen stored. Therefore, the weight of the container is increased and the pressure resistance and reliability of valves and the like are problematic. A method of storing hydrogen in a hydrogen storage alloy is to store hydrogen in a hydrogen storage alloy containing Mg, Ni, or the like as a main component. In this method, however, the amount of hydrogen stored per unit weight is small. Becomes heavy.
[0005]
Recently, attention has been paid to carbon-based materials such as carbon nanotubes and activated carbon as hydrogen storage materials for solving these problems, and active research has been conducted.
[0006]
For example, Patent Document 1 proposes a method of storing hydrogen in carbon nanotubes. Patent Literature 2 proposes a method of adsorbing hydrogen on a fine structure using activated carbon. Further, Patent Document 3 proposed by the present inventor previously proposes a hydrogen storage material having high hydrogen storage capacity using graphite nanostructured by mechanical pulverization.
[0007]
[Patent Document 1]
JP-A-11-116219 [Patent Document 2]
WO98 / 30496 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2001-302224
[Problems to be solved by the invention]
However, although it is reported that the carbon nanotube of Patent Document 1 is produced by a thermal decomposition reaction and has a low yield and can store a large amount of hydrogen, it has a drawback that reproducibility cannot be obtained. Therefore, it is not preferable as an industrial production method. Further, the activated carbon of Patent Document 2 requires an extremely low temperature and a high pressure, such as a temperature of −173 ° C. or less and a hydrogen pressure of about 5 MPa, for storing hydrogen, which is not preferable as an industrial production method. On the other hand, Patent Document 3 described above can store a relatively large amount of hydrogen at normal temperature and under low pressure, but has a drawback that the temperature at which the stored hydrogen is released is high.
[0009]
The present invention has been made in view of such circumstances, and has as its object to provide a hydrogen storage material which can stably store a large amount of hydrogen even at ordinary temperature and low pressure, has a low hydrogen release temperature, and a method for producing the same. And
[0010]
[Means for Solving the Problems]
In order to solve the above problems, as a result of repeated studies by the present inventors, a carbonaceous material such as graphite, which is disclosed in Japanese Patent Application Laid-Open No. 2001-302224 and refined by mechanical pulverization under a hydrogen gas atmosphere, is used. It has been found that by using a metal having a function of dissociating hydrogen molecules into hydrogen atoms, a large amount of hydrogen can be stably stored even at room temperature and low pressure, and the hydrogen release temperature can be lowered. . In addition, by supporting a metal having a function of dissociating hydrogen molecules into hydrogen atoms after the carbonaceous material is refined rather than before the refinement, the effect of lowering the hydrogen release temperature can be further improved, and It has been found that the storage amount can be further increased.
[0011]
The present invention has been completed based on such findings of the present inventors, and provides the following (1) to (7).
[0012]
(1) A hydrogen storage material comprising: a carbonaceous material finely divided by mechanical pulverization in a hydrogen gas atmosphere; and a metal having a function of dissociating hydrogen molecules into hydrogen atoms.
(2) A hydrogen storage material characterized in that a metal having a function of dissociating hydrogen molecules into hydrogen atoms is supported on a carbonaceous material that has been refined by mechanical pulverization in a hydrogen gas atmosphere.
(3) The hydrogen storage material according to (2), wherein hydrogen is stored on the surface and / or inside of the fine carbonaceous material.
(4) In the above (1) to (3), the metal is Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir, Nd, La, Ca, V , Ti, Cr, Cu, Zn, Al, Si, Ru, and Ag, or a hydrogen storage alloy, or a hydrogen storage alloy.
(5) In the above (1) to (4), the content of a metal having a function of dissociating the hydrogen molecule into a hydrogen atom with respect to the carbonaceous material is 0.3 to 30.0 mass%. Hydrogen storage material.
(6) a step of mechanically pulverizing the carbonaceous material in a hydrogen gas atmosphere, and a step of supporting a metal having a function of dissociating hydrogen molecules into hydrogen atoms on the carbonaceous material refined by mechanical pulverization. A method for producing a hydrogen storage material, comprising storing hydrogen on the surface and / or inside of the carbonaceous material in the process of mechanically pulverizing the carbonaceous material.
(7) The method for producing a hydrogen storage material according to (6), wherein the pressure of the hydrogen gas is 1 MPa or less.
[0013]
Embodiment of the present invention
Hereinafter, embodiments of the present invention will be described.
In the present invention, a hydrogen storage material is formed by using a carbonaceous material finely divided by mechanical pulverization in a hydrogen gas atmosphere as a hydrogen storage material, and further using a metal having a function of dissociating hydrogen molecules into hydrogen atoms as a catalyst component. I do.
[0014]
In the present invention, in the process of pulverizing a carbonaceous material typified by graphite by mechanical pulverization in a hydrogen gas atmosphere, hydrogen penetrates the micronized carbonaceous material, and Hydrogen is stored on the surface and / or inside. Here, the term “inside” means between crystal grains, between layers, and in defects. There are two types of hydrogen invasion, one with a carbon-hydrogen covalent bond and the other without a covalent bond. Among these, hydrogen mainly without a covalent bond can be reversibly extracted and used as storage hydrogen. It is valid.
[0015]
As the carbonaceous material, graphite, amorphous carbon, activated carbon and the like can be used. Among them, graphite is preferable because of its large hydrogen storage capacity. Since graphite crystals have a layered structure, a large amount of hydrogen can be stored between the surfaces and between layers during the pulverization process in a hydrogen atmosphere.
[0016]
In the technique disclosed in Patent Document 3 (Japanese Patent Application Laid-Open No. 2001-302224), hydrogen is stored in the process of pulverizing graphite in a hydrogen atmosphere as described above. ° C, and the maximum amount of hydrogen storage is about 3 mass%. However, it is required to lower the expression temperature of hydrogen and further increase the amount of hydrogen storage.
[0017]
Therefore, in the present invention, a metal having a function of dissociating hydrogen molecules into hydrogen atoms is used as a catalyst component. By the action of such a metal, the taken-in hydrogen molecules are dissociated into hydrogen atoms, and the effect of reducing the hydrogen release temperature and increasing the hydrogen storage amount can be obtained. The catalyst component is not particularly limited as long as it is a metal or an alloy having such a function. Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir, Nd , La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru and Ag, or a hydrogen storage alloy. Of these metals, Pd is particularly good. Hydrogen storage alloys are basically endothermic metals B having no affinity between hydrogen and exothermic metals A (for example, Ti, Zr, misch metal (Mm), Ca, etc.) that easily form stable hydrides. (e.g., Ni, Fe, Co, Mn, etc.) are composed of, AB 5 type (LaNi 5 or MmNi 5, etc.), AB 2 type (e.g., Ti 1.2 Mn 1.8 and TiCr 1.8 etc. ), AB type (such as TiFe) and A 2 B type (such as Mg 2 Ni and Mg 2 Cu).
[0018]
The content of the metal as a catalyst component as described above is preferably 0.3 to 30.0 mass% with respect to the carbonaceous material. If the amount is less than 0.3 mass%, the function of dissociating hydrogen molecules into hydrogen cannot be effectively exhibited, and if it exceeds 30.0 mass%, not only the effect is saturated, but also the cost increases.
[0019]
A metal having a function of dissociating a hydrogen molecule into a hydrogen atom as a catalyst component is preferably supported on a finely pulverized carbonaceous material. If a metal serving as a catalyst component is supported before the carbonaceous material is finely pulverized, the carbonaceous material will cover the metal surface thickly when the carbon is finely pulverized, but the function as a catalyst is not effectively exhibited. By supporting the metal serving as a catalyst component on the carbonaceous material after pulverization, the metal surface is not sufficiently coated with the carbonaceous material, and the metal sufficiently comes into contact with hydrogen to exhibit the catalytic function effectively. Can be. That is, hydrogen can sufficiently contact the metal surface as a catalyst component, where hydrogen molecules dissociate into hydrogen atoms and are stored as hydrogen atoms in the carbonaceous material, thereby lowering the hydrogen molecule hydrogen release temperature. And the amount of hydrogen stored can be increased. When graphite was used as the carbonaceous material, the hydrogen gas pressure was 1 MPa, and when no catalyst component was used, the hydrogen release start temperature was about 300 to 320 ° C. and the hydrogen storage amount was about 3 mass%. When the catalyst component is supported on the substrate, the hydrogen release start temperature: about 200 ° C. and the hydrogen storage amount: about 3.5 to 5.0 mass% are remarkably improved. Of course, even if the catalyst component is supported before the pulverization, the effect is seen more than when the catalyst component is not used. The hydrogen release start temperature: about 270 to 290 ° C., and the hydrogen storage amount: 3.0 to 3.5 mass% About.
[0020]
The pressure of the hydrogen gas at the time of grinding the carbonaceous material is preferably 1 MPa or less. If it exceeds 1 MPa, the burden on the equipment will increase. The hydrogen storage material of the present invention can exhibit a sufficiently high hydrogen storage capacity even at 1 MPa or less. The temperature at which the carbonaceous material is pulverized is preferably from room temperature to about 200 ° C. Since the hydrogen storage material of the present invention can release hydrogen at about 200 ° C., the temperature at the time of storage is preferably lower than that. The hydrogen storage material of the present invention has an advantage of having a sufficiently high hydrogen storage capacity even at room temperature.
[0021]
As described above, mechanical pulverization is performed to destroy the crystal structure of the carbonaceous material and store hydrogen on the surface and inside of the finely-divided carbonaceous material. Those having a strong pulverizing ability, such as a planetary ball mill, a rod mill, and a vibrating ball mill, are preferable. Further, since the pulverization of the carbonaceous material is performed in a hydrogen atmosphere, it is preferable to select a material into which hydrogen gas can be easily introduced.
[0022]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
[0023]
[Examples 1 to 10]
1. 1.3 g of finely divided graphite prepared graphite powder (manufactured by Kishida Chemical Co., Ltd., artificial graphite, average particle size: 36 μm) was placed in a 250 cc zirconia mill container, and after evacuation of the inside of the mill container, hydrogen gas was introduced at 1.0 MPa. The milling container was milled for a predetermined time at room temperature using a planetary ball mill. Note that a zirconia ball having almost the same composition and hardness as the container was used as the ball. Milling samples were removed in an argon atmosphere glove box, transferred to a sample bottle under an argon atmosphere, and stored in the same glove box to minimize the effects of oxidation and moisture adsorption.
[0024]
2. 10.0 g of the catalyst-supported atomized graphite was immersed in a minimum amount of water in a beaker and stirred. A predetermined amount of the compound shown in Table 1 was dissolved in a small amount of water so that the metal serving as a catalyst became the ratio shown in Table 1 with respect to the atomized graphite, and the mixture was slowly dropped with a dropping funnel. The entire solution was transferred to an eggplant flask for an evaporator, and heated at 60 ° C. for 2 hours in a water bath while rotating to sufficiently impregnate the solution. After allowing the solution to cool, the evaporator was rotated and reduced in pressure to remove water. Thereafter, the graphite impregnated with the catalyst was scraped out of the eggplant flask, charged in a dryer, and dried at 100 ° C. It was charged into a flow system, slowly heated to 400 ° C. in a nitrogen stream, and thermally decomposed for 4 hours. After returning to room temperature, the mixture was slowly heated again to 450 ° C. in a hydrogen stream and kept for 5 hours. Thereafter, the atmosphere was switched to a nitrogen stream, and the temperature was returned to room temperature. Prior to removal, passivation was performed in a nitrogen stream containing 1% oxygen.
[0025]
3. Measurement of hydrogen storage amount 500 mg of atomized graphite supporting a predetermined catalyst metal was charged into a 50 cc capacity gas container. The inside of the container was evacuated to a predetermined temperature. Thereafter, hydrogen was introduced under 1 MPa and 6 MPa, and the hydrogen storage amount was calculated from the introduced hydrogen pressure and the reduced pressure amount.
[0026]
4. Measurement of hydrogen release start temperature At each pressure, atomized graphite supporting a predetermined catalyst metal was heated in an electric furnace from room temperature to 900 ° C. at a rate of 10 ° C./min, and the amount of released hydrogen was determined by a volumetric method. Further, a hydrogen release curve was created from the TG-MASS measurement, and the hydrogen release start temperature was determined.
[0027]
(Examples 11 to 17)
1. The catalyst-carrying and graphite-refined graphite powder 10.0 g (artificial graphite manufactured by Kishida Chemical Co., Ltd., average particle size 36 μm) was immersed in a minimum amount of water in a beaker and stirred. A predetermined amount of the compound shown in Table 1 was dissolved in a small amount of water so that the metal serving as a catalyst became the ratio shown in Table 1 with respect to the atomized graphite, and the mixture was slowly dropped with a dropping funnel. The entire solution was transferred to an eggplant flask for an evaporator, and heated at 60 ° C. for 2 hours in a water bath while rotating to sufficiently impregnate the solution. After allowing the solution to cool, the evaporator was rotated and reduced in pressure to remove water. After removing the water, it was scraped out from the eggplant flask and dried at 100 ° C. in a dryer. It was charged into a flow system, slowly heated to 400 ° C. in a nitrogen stream, and thermally decomposed for 4 hours. After returning to room temperature, the mixture was slowly heated again to 450 ° C. in a hydrogen stream and kept for 5 hours. Thereafter, the atmosphere was switched to a nitrogen stream, and the temperature was returned to room temperature. Prior to removal, passivation was performed in a nitrogen stream containing 1% oxygen.
[0028]
1.3 g of the graphite powder supporting the catalyst was placed in a 250 mL zirconia mill container, and after evacuation of the inside of the mill container, 1.0 MPa of hydrogen gas was introduced. The milling container was milled for a predetermined time at room temperature using a planetary ball mill. Note that a zirconia ball having almost the same composition and hardness as the container was used as the ball.
[0029]
2. Hydrogen storage amount measurement 500 mg of atomized graphite was charged into a 50-mL capacity gas container. After the inside of the container was evacuated, the temperature was raised to 900 ° C., and then the inside of the container was evacuated to a predetermined temperature as in Example 1. Thereafter, hydrogen was introduced under each pressure, and the hydrogen storage amount was calculated from the introduced hydrogen pressure and the reduced pressure amount.
[0030]
3. Measurement of hydrogen release start temperature As in Examples 1 to 10, atomized graphite supporting a predetermined catalytic metal at each pressure was heated in an electric furnace from room temperature to 900 ° C. at a rate of 10 ° C./min. The amount of released hydrogen was determined. Further, a hydrogen release curve was created from the TG-MASS measurement, and the hydrogen release start temperature was determined.
[0031]
(Comparative Example 1)
1. Atomized graphite preparation 1.3 g of graphite powder (artificial graphite manufactured by Kishida Chemical Co., Ltd., average particle size: 36 μm) was placed in a 250 mL zirconia mill container, and after evacuation of the inside of the mill container, hydrogen gas was introduced at 1.0 MPa. The milling container was milled for a predetermined time at room temperature using a planetary ball mill. Note that a zirconia ball having almost the same composition and hardness as the container was used as the ball.
[0032]
2. As in the case of the hydrogen storage amount measurement examples 11 to 17, 500 mg of atomized graphite was charged into a 50-mL capacity gas container. After the inside of the container was evacuated, the temperature was raised to 900 ° C., and then the inside of the container was evacuated to a predetermined temperature as in Example 1. Thereafter, hydrogen was introduced under each pressure, and the hydrogen storage amount was calculated from the introduced hydrogen pressure and the reduced pressure amount.
[0033]
3. Measurement of hydrogen release start temperature As in Examples 1 to 10, atomized graphite supporting a predetermined catalytic metal at each pressure was heated in an electric furnace from room temperature to 900 ° C. at a rate of 10 ° C./min. The amount of released hydrogen was determined. Further, a hydrogen release curve was created from the TG-MASS measurement, and the hydrogen release start temperature was determined.
[0034]
Table 1 also shows the measurement results of the hydrogen storage amounts and the hydrogen release start temperature of Examples 1 to 17 and Comparative Example 1. FIG. 1 shows hydrogen release curves of Example 3, Example 12, and Comparative Example 1 as examples of hydrogen release curves. The temperature at the first rise of the hydrogen release curve shown in FIG. 1 is the hydrogen release start temperature. The peak around 650 ° C. indicates that hydrogen covalently bonded to carbon was released. FIG. 1 also shows the integrated value of the amount of released hydrogen by the capacity method. In Table 1, the integrated value of the amount of released hydrogen up to 900 ° C. is shown as the amount of stored hydrogen.
[0035]
[Table 1]
Figure 2004290810
[0036]
As shown in Table 1 and FIG. 1, Examples 1 to 17 in which the catalyst was supported were able to sufficiently store hydrogen even at ordinary temperature and constant pressure, and the hydrogen release was higher than Comparative Example 1 in which the catalyst was not supported. It was confirmed that the starting temperature was lowered and the hydrogen storage amount was also increased.
[0037]
In Examples 11 to 17, in which the catalyst was supported before the graphite was refined, the hydrogen release start temperature was 270 to 290 ° C, and the hydrogen storage amount was 2.88 to 3.65 mass% at a pressure of 1 MPa. From 3.52 to 4.27 mass% at 6 MPa, from the hydrogen release start temperature of Comparative Example 1 at 315 ° C., from 2.87 to 3.30 mass% at 1 MPa of hydrogen storage, and from 3.46 to 3.89 mass% at 6 MPa. On the other hand, Examples 1 to 10 in which the catalyst was supported after the graphite was refined had a hydrogen release start temperature of 200 to 214 ° C. and a hydrogen storage amount of 1.27 to 5.27 when the hydrogen storage amount was 1 MPa. It was 3.93 to 6.00 mass% at 09 mass% and 6 MPa, and it was confirmed that the hydrogen release temperature and the hydrogen storage amount were significantly improved.
[0038]
Among the catalyst species used in the experiment, the effects of Examples 9 and 10 using Pd were high, and the hydrogen release start temperature was 200 ° C., the hydrogen storage amount was about 4.6 to 5.1 mass% at 1 MPa, and the hydrogen release amount was about 6 to 5.1 mass%. It was about 5.5 to 6.0 mass%.
[0039]
【The invention's effect】
As described above, according to the present invention, a carbonaceous material finely divided by mechanical pulverization under a hydrogen gas atmosphere as a hydrogen storage material and a metal as a catalyst having a function of dissociating hydrogen molecules into hydrogen atoms are used. Since the hydrogen storage material is used, a large amount of hydrogen can be stably stored even at normal temperature and low pressure, and the hydrogen release temperature can be lowered. In addition, by supporting a metal having a function of dissociating hydrogen molecules into hydrogen atoms after the carbonaceous material is refined rather than before the refinement, the effect of lowering the hydrogen release temperature can be further improved, and The storage amount can be further increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing a hydrogen release curve and an integrated value of a hydrogen storage amount in Examples and Comparative Examples.

Claims (7)

水素ガス雰囲気下で機械粉砕により微細化した炭素質材料と、水素分子を水素原子に解離させる機能を有する金属とを有することを特徴とする水素貯蔵材。A hydrogen storage material comprising: a carbonaceous material finely divided by mechanical pulverization in a hydrogen gas atmosphere; and a metal having a function of dissociating hydrogen molecules into hydrogen atoms. 水素ガス雰囲気下で機械粉砕により微細化した炭素質材料に、水素分子を水素原子に解離させる機能を有する金属を担持させたことを特徴とする水素貯蔵材。A hydrogen storage material comprising: a metal having a function of dissociating hydrogen molecules into hydrogen atoms is supported on a carbonaceous material finely divided by mechanical pulverization in a hydrogen gas atmosphere. 前記微細化された炭素質材料の表面および/または内部に水素が貯蔵されることを特徴とする請求項2に記載の水素貯蔵材。3. The hydrogen storage material according to claim 2, wherein hydrogen is stored on a surface and / or inside of the miniaturized carbonaceous material. 4. 前記金属が、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金であることを特徴とする請求項1から請求項3のいずれか1項に記載の水素貯蔵材。The metal is Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir, Nd, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, The hydrogen storage material according to any one of claims 1 to 3, wherein the hydrogen storage material is one or more selected from Ru and Ag, or a hydrogen storage alloy. 前記炭素質材料に対する前記水素分子を水素原子に解離させる機能を有する金属の含有量が0.3〜30.0mass%であることを特徴とする請求項1から請求項4のいずれか1項に記載の水素貯蔵材。The content of a metal having a function of dissociating the hydrogen molecule into a hydrogen atom with respect to the carbonaceous material is 0.3 to 30.0 mass%, according to any one of claims 1 to 4, wherein The hydrogen storage material as described in the above. 炭素質材料を水素ガス雰囲気で機械的粉砕する工程と、機械的粉砕により微細化された炭素質材料に、水素分子を水素原子に解離させる機能を有する金属を担持させる工程とを具備し、前記炭素質材料の機械的粉砕の過程で炭素質材料の表面および/または内部に水素を貯蔵させることを特徴とする水素貯蔵材の製造方法。A step of mechanically pulverizing the carbonaceous material in a hydrogen gas atmosphere, and a step of supporting a metal having a function of dissociating hydrogen molecules into hydrogen atoms on the carbonaceous material finely divided by mechanical pulverization, A method for producing a hydrogen storage material, comprising storing hydrogen on the surface and / or inside of a carbonaceous material in the course of mechanical pulverization of the carbonaceous material. 前記水素ガスの圧力が、1MPa以下であることを特徴とする請求項6に記載の水素貯蔵材の製造方法。The method for producing a hydrogen storage material according to claim 6, wherein the pressure of the hydrogen gas is 1 MPa or less.
JP2003086298A 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method Pending JP2004290810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086298A JP2004290810A (en) 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086298A JP2004290810A (en) 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004290810A true JP2004290810A (en) 2004-10-21

Family

ID=33400994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086298A Pending JP2004290810A (en) 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004290810A (en)

Similar Documents

Publication Publication Date Title
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
Wang et al. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium
Jurczyk et al. Nanoscale Mg-based materials for hydrogen storage
JP4490510B2 (en) Leached microcrystalline material, process for its production and its use in the energy field
CN105734323B (en) A kind of nano Mg base reversible hydrogen storage composite and preparation method thereof
JP2007119906A (en) Mg-Ni HYDROGEN STORAGE COMPOSITE HAVING HIGH STORAGE CAPACITY AND EXCELLENT ROOM TEMPERATURE KINETICS
Rud et al. Hydrogen storage of the Mg–C composites
EP0815273A1 (en) NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
Zhang et al. Dehydriding properties of ternary Mg2Ni1− xZrx hydrides synthesized by ball milling and annealing
Manoharan et al. Investigation of solid state hydrogen storage performances of novel NaBH4/Ah-BN nanocomposite as hydrogen storage medium for fuel cell applications
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
Fang et al. Reversible dehydrogenation of LiBH4 catalyzed by as-prepared single-walled carbon nanotubes
JP2005535785A (en) Reactive grinding method for producing hydrogen storage alloys
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
CN109928360B (en) Catalyst-containing carbon-coated Mg-based hydrogen storage material and preparation method thereof
US20090289222A1 (en) Process for preparing composites comprising carbon and magnesium for hydrogen storage
Friedrichs et al. Influence of particle size on electrochemical and gas-phase hydrogen storage in nanocrystalline Mg
JP2004290810A (en) Hydrogen storage material and its manufacturing method
JP2004204309A (en) Hydrogen storage material, and production method therefor
JP2011079689A (en) Hydrogen storage material and method of using the same
JP2004290811A (en) Hydrogen storage material and its manufacturing method
JP2005053731A (en) Hydrogen storing body and its manufacturing method
JP2005052722A (en) Hydrogen storage medium and manufacturing method therefor
JP4408013B2 (en) Method for producing hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807