JP2004290771A - Method for producing composite material - Google Patents

Method for producing composite material Download PDF

Info

Publication number
JP2004290771A
JP2004290771A JP2003084602A JP2003084602A JP2004290771A JP 2004290771 A JP2004290771 A JP 2004290771A JP 2003084602 A JP2003084602 A JP 2003084602A JP 2003084602 A JP2003084602 A JP 2003084602A JP 2004290771 A JP2004290771 A JP 2004290771A
Authority
JP
Japan
Prior art keywords
base material
resin
substrate
die
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084602A
Other languages
Japanese (ja)
Other versions
JP4152230B2 (en
Inventor
Masaki Nakatani
正樹 中谷
Hideo Umeda
英雄 楳田
Yoshiyuki Yamamori
義之 山森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003084602A priority Critical patent/JP4152230B2/en
Publication of JP2004290771A publication Critical patent/JP2004290771A/en
Application granted granted Critical
Publication of JP4152230B2 publication Critical patent/JP4152230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a coated cloth by coating a base material such as a fiber cloth with a molten resin or a resin varnish, which method is characterized in that the balance between the thickness of a coating film on the face and that of a coating film on the back, the thicknesses of the coating films, and the impregnability of substrate with resin are improved. <P>SOLUTION: The method for producing a composite material by coating the base material comprising a fiber cloth with the molten resin or the resin varnish diluted with a solvent comprises simultaneously coating both surfaces of the fiber cloth with a controlled amount of a coating liquid ejected from a pair of dies opposite to each other across a base material conveying passage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、ガラスクロス、不織布等の繊維布からなる長尺シートに溶融した樹脂もしくは溶剤で希釈した樹脂ワニス等のマトリックス樹脂を塗布して作製する複合基材の製造方法に関する。
【0002】
【従来の技術】
従来、ガラスクロス等の繊維布に樹脂含浸を行って塗工布を作製する両面同時塗布は、マトリックス樹脂の液溜槽が基材搬送路中に設置され、基材が液槽内に浸漬することによって塗布液を両面に付着させるディップ方式が一般的である。液溜槽上空には一定のクリアランスを維持した状態で平行に配置された2本のスクイズロールが設置されており、塗布液の付着した基材がロール間隙を通過することにより余分な液をかき落とされ、塗布液付着量の計量および塗布膜の厚みを制御が行われる。通常、これら塗工布は乾燥炉により半硬化な状態でプリプレグとして作製され、このプリプレグを構成要素とした基板を加圧成形により製造する。
【0003】
ディップ方式の塗布装置には基材を液中に浸漬することが困難であるという理由から、流動性の悪い高粘度の塗布液よりも低粘度の塗布液の方が適していると言われている。また塗布液付着量の基材表裏バランスを制御するための機構を有さないため、塗布膜厚が厚膜である製品仕様に対しては均一な塗布が困難であった。そのため近年ではダイ等を用いた両面塗工装置が開発され、吐出量の制御による塗工方式が採用されている。
【0004】
【発明が解決しようとする課題】
ガラスクロス、不織布等の繊維布を基材として複合基材を作製する場合には、塗布膜厚、塗布表面の平滑性とともに繊維間への樹脂含浸性が重要視される。特に複合基材を表示素子用基板の構成要素として使用する場合においては、基材に内包された気泡は製品性能として致命的な欠陥となるために十分な脱泡処理を行う必要がある。ディップ方式の塗布では液溜槽内に浸漬させるため含浸時間が長く比較的含浸性も良好である。ダイ方式の塗布においてはダイ吐出口のリップ幅においてのみ樹脂を含浸させることが可能であるため含浸時間が非常に短く、さらに基材両面から塗布されることにより基材内部の空気は逃げ場を失い、繊維間に介在する気泡が十分に抜けない可能性が高いと考えられる。
【0005】
ダイを用いた両面型塗工装置は種々開発が進められているが、繊維布を主用途としたものでないため上述のような問題点は顕在化していない。例えば特許文献1において両面ダイ方式に関する記述がされているが、塗布液の適応粘度範囲および基材に付着する塗布液量の制御が開発主目的であり含浸性に関しては特に問題視されていない。特許文献2では網状もしくは多孔質の金属シートに対する含浸性が実施例として記載されているが、布帛については孔のウェブとして記述されていることから繊維布等にたいしては含浸性に関する考慮されていないと思われる。
【0006】
また、ダイに比較的近い形状をもつノズルを使用した特許文献3では溶剤もしくは希釈した樹脂ワニスを予め塗布しておくための予備含浸機構が設置されており、ノズル単体においての樹脂含浸に対する補助をおこなっておいる。このような予備含浸機構の設置は含浸性を向上させるための一般的な手法であり、ディップ方式においても厚みの厚い基材に対してしばしば用いられる。このような多段の含浸方式に関しては、含浸後の基材が溶剤を揮発させることなくガイドロールに接触しなければならないため、ロール面に樹脂が付着しべたつきの原因となる。また、スクイズロール等はドクターバー等の付着樹脂除去機構を設置しているが、近接するダイのリップ間にそういった機構を設けることは空間的に困難であり、リップへの樹脂付着により塗布表面を平坦化できない問題点を生じる。予備含浸に溶剤を使用する場合には上述のような問題点は生じにくいが、液の循環機構を有するディップ式と比較し、ダイ方式は吐出した液を全量付着させるワンパス系であるため基材のレジン量にムラを生じる可能性が高い。
【0007】
【特許文献1】
特開平10−314647
【特許文献2】
特開平10−34050
【特許文献2】
特開2001−122992
【0008】
【課題を解決するための手段】
すなわち本発明は
(1) 繊維布から成る基材に、溶融した樹脂もしくは溶剤で希釈した樹脂ワニスを塗布して作製する複合基材の製造方法であって、基材搬送路の両側に対向して配置した一対のダイより液量を制御しながら塗布液を吐出することにより繊維布に両面同時塗布を行うことを特徴とする複合基材の製造方法。
(2) 前記一対のダイの吐出方向が基材搬送路に対し垂直な面から基材搬出側に5〜45°傾けた(1)の複合基材製造方法。
(3)ダイ上型のリップ部が下型リップ部よりも突出し、その角度が基材搬送路に対し垂直な面から基材搬入側に10〜80°傾斜した(2)の複合基材製造方法。
(4)各ダイの内圧を6000Pa以上の範囲で吐出することにより繊維布への含浸性を向上させた(1)、(2)および(3)の複合基材製造方法。
(5)(1)〜(3)の方法により製造される複合基材を構成要素とした積層板。
(6)(1)〜(3)の方法により製造される複合基材を構成要素とした表示素子用基板。
である。
【0009】
【発明の実施の形態】
以下に本発明について図を用いて詳細に説明する。図1は本発明に使用する両面同時塗布装置の一例を示す。装置の主な構成としては縦方向に搬送経路をもつ繊維布(基材)(1)と基材搬送路を介して設置された左側ダイ(2)および右側ダイ(3)、ダイに対する基材の位置調整を行うガイドロール(13)より構成されている。各ダイは上型(5)と下型(12)を組み合わせて構成されており、上型、下型間に塗布液を溜めるマニホールド部(6)と流路であるランド部(7)、吐出口となるリップ部(4)を形成する。また、各ダイにはダイの位置設定を行うための設置手段(11)と基材搬送路に対して角度を設定する角度保持手段(10)、内圧を測定するための内圧測定手段(8)、塗布液を供給するための液供給手段(9)が各々に設置されている。
【0010】
次に本発明の原理を示す。図1において塗布液が液供給手段(9)により各ダイ内部に供給されると、内部に形成されたマニホールド部(6)に溜まる。塗布液はこのマニホールド部にて幅方向に圧力分布を均等化されてランド部(7)を通過し、リップ部(4)から吐出され、基材(1)の表面に塗布される。
【0011】
塗布部(ダイリップ間)に搬入される基材は繊維間の空間に空気を挟み込んでいる。対向するダイの吐出流路(ランド部(7)の方向)が図2のように基材搬送路に対して垂直である場合、ダイリップから吐出した塗布液は図2(a)の矢印のように流れる。このような流れにおいてはリップの基材搬入側に加圧ピークをとる圧力分布となり、基材に樹脂ワニスが浸透する前に圧力がかかることとなる(図2(b))。そのため、樹脂が基材内部に浸透したときには圧力が低下しており、基材内部の空気は内部に残留する可能性がある。この傾向はダイの吐出流路を基材搬入側に傾けた場合に顕著に生じる。
【0012】
ダイの吐出流路を基材の搬出側に傾けた場合には、ダイリップから吐出した塗布液は図3の(a)の矢印のように流れる。この際、塗布液は上型リップ部4aに沿って流れ、基材への圧力分布はリップ部の基材搬出側にピークをもつ分布となる。この際、基材表面に塗布された塗布液は基材内部に浸透するに従って加圧されるため、基材内部に介在する気泡は低圧側である基材搬入側に向けて逃げていくこととなる。そのため、基材内部に残留する気泡はなく、含浸性の良好な複合基材を得ることが可能となる。
【0013】
本発明で用いられる樹脂はプリント基板や表示素子用基板に用いられるものであればとくに限定はしないが、耐熱性の観点からTg150℃以上であることが好ましい。具体的にはシアネート樹脂、ビスマレイミドを構成成分として含む熱硬化型のポリイミド樹脂、多官能エポキシ樹脂などを挙げることができる。なかでも、シアネート樹脂が特に好ましい。シアネート樹脂としては、ビスフェノールジシアネート、ジ(4−シアネート−3,5−ジメチルフェニル)メタン、4,4’−チオジフェニルシアネート、2,2’−ジ(4−シアネートフェニル)ヘキサフルオロプロパン、ビスフェノールEジシアネート、フェノール/ジシクロペンタジエン共重合体のシアネート、フェノールノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂、及び/又はそのプレポリマーを用いることができる。中でも耐熱性が高く線膨張係数が低いことからノボラック型シアネート樹脂及び/又はそのプレポリマーが好ましい。ここでいうノボラック型シアネート樹脂とは任意のノボラック樹脂と、ハロゲン化シアン等のシアネート化試薬とを反応させることで得られるもので、またこの得られた樹脂を加熱することでプレポリマー化することが出来る。
本発明におけるノボラック型シアネート樹脂の数平均分子量は、250未満であると、架橋密度が小さく、耐熱性や線膨張係数に劣る場合があり、900を超えると、架橋密度が上がりすぎて反応が完結できない場合があるため、260〜900であることが望ましく、より好ましくは300〜600である。また、プレポリマーを用いる際には、上記数平均分子量のノボラック型シアネート樹脂をメチルエチルケトン、ジメチルホルムアミド、シクロヘキサノン等の溶媒に可溶な範囲でプレポリマー化して用いることが望ましい。本発明で言うところの数平均分子量は、東ソー株式会社製HLC−8120GPC装置(使用カラム:SUPER H4000、SUPER H3000、SUPER H2000×2、溶離液:THF)を用いて、ポリスチレン換算のゲルパーミエーションクロマトグラフィー報で測定した値である。
【0014】
本発明の樹脂は、シアネート樹脂に、エポキシ樹脂、フェノール樹脂等の他の熱硬化樹脂、フェノキシ樹脂、溶剤可溶性ポリイミド樹脂、ポリフェニレンオキシド、ポリエーテルスルホン等の一種類以上の熱可塑性樹脂を併用した樹脂組成物であってもよい。特にエポキシ樹脂の併用は、耐薬品性を悪化させずに吸水率を低減できるので好ましい。併用するエポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂などが挙げられ、特にジシクロペンタジエン骨格エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂が好ましい。ここでアリールアルキレン型エポキシ樹脂とは、繰り返し単位中に1つ以上のアリールアルキレン基を有するエポキシ樹脂をいい、キシリレン型エポキシ樹脂やビフェニレンジメチル型エポキシ樹脂などが挙げられる。
併用するエポキシ樹脂の量はシアネート樹脂100重量部に対して10〜200重量部が好ましい。10重量部未満であると添加効果が発現されにくく、200重量部を超えるとシアネート樹脂の耐熱性が損なわれる場合がある。
【0015】
本発明でシアネート樹脂を用いる場合には、樹脂組成物に硬化促進剤を添加することが好ましい。硬化促進剤としては、公知のものを用いることができ、例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−フェニル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノール、フェノール樹脂等のフェノール化合物および有機酸等、またはこれらの混合物等が挙げられる。これらの中でもフェノール樹脂が硬化性、イオン性不純物が少ない等の点で好ましい。本発明で硬化促進剤の配合量は使用条件に応じて適宜変更することが可能であるが、有機金属塩の場合はシアネート樹脂100重量部に対して0.001〜1重量部、イミダゾール類の場合は0.05〜10重量部、フェノール樹脂の場合は0.5〜50重量部の範囲であることが好ましい。これらの範囲より少ないと硬化が遅くなる傾向があり、これらの範囲より多いと硬化が促進されすぎることによる樹脂組成物およびプリプレグライフの低下、硬化促進剤に由来する揮発成分による周囲汚染等の悪影響がでる恐れがある。
【0016】
本発明で用いられる繊維布は特に限定されるものではなく、種々の無機系または有機系の繊維布を用いることができる。 その具体例としては、 Eガラス(無アルカリガラス)、Sガラス、Dガラス、クォーツ、高誘電率ガラス等のガラスクロス、ケブラー(商品名:デュポン・東レ・ケブラー社製)、テクノーラ(商品名:帝人社製)、コーネックス(商品名:帝人社製)に代表されるポリ −p−フェニレンフタルアミド、ポリ −m−フェニレンフタルアミド、p−フェニレンフタルアミドおよび3,4’− ジフェニルエーテルフタルアミドの共重合体等からなる芳香族ポリアミド系繊維布やアラミド系繊維布、ポリエステル繊維布、ナイロン繊維布、ポリベンザゾール繊維布、炭素繊維布等が挙げられる。 好ましくはガラスクロスである。織布フィラメントの織り方についても特に限定されるものではなく、平織り、ななこ織り、朱子織り、綾織り等の構造を有する織物でも良く、好ましくは平織りである。 また、織布に限定されるのではなく不織布であってもかまわない。繊維の厚みも特に限定されるものではないが、30〜150μmであることが好ましい。
【0017】
本発明に用いられる繊維布は、樹脂成分との濡れ性を改善する目的で各種のシランカップリング剤、ボランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等の表面処理剤で処理されても良く、これに限定されるものではない。
【0018】
本発明の樹脂組成物には、必要に応じて、本発明の効果を阻害しない範囲で、滑剤、耐熱剤、帯電防止剤、紫外線吸収剤、顔料等、光安定剤等の成分を配合することができる。
本発明のプリプレグを用いることによりプラスチック基板(積層板)を得ることができるが、このプリプレグの1枚又は複数枚を加熱成形して樹脂層のみの積層板としても良いし、あるいは、銅箔等の金属板とともに加熱成形することにより、金属層と樹脂層から成る積層板とすることもできる。また、エッチング処理等により、金属板の一部または全てを剥離して用いても良い。
【0019】
【実施例】
以下に本発明の一実施例を説明するが、本発明はこれらの例によって何ら限定されるものではない。
(装置例)
図1に示すガラス繊維基材の製造装置を用い、以下の実施例を行なった。各ダイの角度保持手段(10)にはテーパー付のライニングを用い、設置台との間に挟み込むことによりダイ角度を調整した。ダイ上型は先端リップ部のみを取替可能な構造としており、リップ先端角度を変えた部材に変更することが可能である。
(実施例)
ダイ吐出角度を図4(a)に示すように基材搬送路に対し垂直な面から15°基材搬入側に傾け、ダイ上型リップは同面から60°傾斜している部材を使用した。樹脂ワニスはノボラック型シアネート樹脂(ロンザジャパン株式会社製PT60、数平均分子量560)100重量部及びフェノールノボラック樹脂(住友デュレズ製PR−51714)2重量部をメチルエチルケトンに常温で溶解し、エポキシシランカップリング剤(日本ユニカー製A−187)1重量部、球状溶融シリカ(株式会社アドマテックス製SO−25R 平均粒径0.5μm )150部を添加し、高速攪拌機を用いて10分攪拌することにより得たものを使用した。また、基材は厚み53μmのガラスクロス(日東紡績製、WEA−1080)を使用した。塗布後の基材は乾燥炉にて溶剤を揮発させ、半硬化状態のプリプレグを作製した。
得られたプリプレグは良好な外観が得られた。プリプレグの断面を顕微鏡観察したところ、ガラスクロス上の表裏樹脂層はともに10μmと表裏の厚みも均一であり、表面粗さRaも1.2μmのものがえられた。また、透過照明を用いた顕微鏡観察により内部に存在する気泡の確認したところ、直径1μm以下の気泡が2〜3個/500mm□で存在した。
(比較例)
実施例と同じ樹脂ワニス、基材を使用し、ダイを図5のように配置した。このダイ配置で複合基材を作製したところ、塗布直後に塗布表面に気泡跡と思われるクレーター状の凹凸が無数に発生した。基材内部に残留した気泡が樹脂表面まで到達して発泡したと考えられ、この配置設定では含浸性は得られないと考えられた。
【0020】
【発明の効果】
本発明の方法により繊維布等の基材に溶融した樹脂もしくは樹脂ワニスを塗布する塗工布の製造方法において、塗布膜厚の表裏バランス、塗布膜厚、基材への樹脂含浸性を向上させる製造方法を得ることができる。
【図面の簡単な説明】
【図1】本発明を用いた両面塗布装置の一例を示す断面図
【図2】基材に対し垂直に配置した場合の樹脂流れと圧力分布を示す図
【図3】基材に対し角度をつけて配置した場合の樹脂流れと圧力分布を示す図
【図4】実施例におけるダイ角度設定を示す図であり、(a)は基材搬送路に対するダイ吐出方向の角度を示す図、(b)はダイ上型のリップ部が下型リップ部よりも突出している角度を示す図である。
【図5】両面塗布装置比較例の一例を示す図であり、基材に対しダイをオフセットして配置した場合を示す。
【符号の説明】
1 繊維布(基材)
2 左ダイ
3 右ダイ
4 ダイ リップ部
4a上型リップ部
4b下型リップ部
5 ダイ上型
6 ダイ マニホールド部
7 ダイ ランド部
8 ダイ 内圧測定センサ
9 塗布液供給手段
10 角度設定手段
11 位置設定手段
12 ダイ下型
13 基材位置調整用ガイドロール
[0001]
[Industrial applications]
The present invention relates to a method for producing a composite substrate, which is produced by applying a matrix resin such as a molten resin or a resin varnish diluted with a solvent to a long sheet made of a fiber cloth such as a glass cloth or a nonwoven fabric.
[0002]
[Prior art]
Conventionally, simultaneous double-sided coating, in which a resin cloth is impregnated into a fiber cloth such as a glass cloth to produce a coated cloth, requires a matrix resin reservoir to be installed in the substrate transport path and the substrate to be immersed in the liquid reservoir. In general, a dip method in which a coating liquid is adhered to both surfaces by a coating method is used. Two squeeze rolls arranged in parallel with a certain clearance are installed above the liquid storage tank, and the excess liquid is scraped off by the base material with the coating liquid passing through the gap between the rolls. Then, the amount of the applied liquid is measured and the thickness of the applied film is controlled. Usually, these coated cloths are produced as prepregs in a semi-cured state by a drying oven, and a substrate having the prepregs as a component is produced by pressure molding.
[0003]
It is said that low-viscosity coating liquids are more suitable than high-viscosity coating liquids with poor fluidity because it is difficult to immerse the substrate in the liquid in a dip type coating apparatus. I have. In addition, since there is no mechanism for controlling the balance between the front and back of the base material of the amount of the coating liquid, it has been difficult to uniformly apply the product to a product having a thick coating film. Therefore, in recent years, a double-side coating device using a die or the like has been developed, and a coating method by controlling the discharge amount has been adopted.
[0004]
[Problems to be solved by the invention]
When fabricating a composite substrate using a fiber cloth such as a glass cloth or a nonwoven fabric as a substrate, importance is given to resin impregnation between fibers as well as coating film thickness and coating surface smoothness. In particular, when a composite base material is used as a component of a display element substrate, it is necessary to perform a sufficient defoaming treatment so that air bubbles included in the base material become a fatal defect in product performance. In the dip coating method, the impregnation time is long because the resin is immersed in the liquid storage tank, and the impregnation property is relatively good. In the die-type coating, the resin can be impregnated only at the lip width of the die discharge port, so the impregnation time is very short, and the air inside the substrate loses the escape space by being applied from both sides of the substrate. It is considered that there is a high possibility that bubbles interposed between the fibers are not sufficiently removed.
[0005]
Although various developments have been made on a double-sided coating apparatus using a die, the above-mentioned problems have not been evident since the fiber cloth is not mainly used. For example, Patent Literature 1 describes a double-sided die system. However, control of the adaptive viscosity range of the coating solution and the amount of the coating solution adhering to the base material is the main purpose of development, and there is no particular problem regarding the impregnation property. Patent Document 2 describes the impregnating property for a net-like or porous metal sheet as an example. However, the impregnating property is not considered for a fiber cloth or the like since a fabric is described as a web of holes. Seem.
[0006]
Further, in Patent Document 3 using a nozzle having a shape relatively close to the die, a pre-impregnation mechanism for applying a solvent or a diluted resin varnish in advance is installed, and assistance for resin impregnation in the nozzle alone is provided. I'm doing it. The provision of such a pre-impregnation mechanism is a general method for improving the impregnating property, and is often used for a thick substrate even in the dipping method. In such a multi-stage impregnation method, the base material after impregnation must contact the guide roll without evaporating the solvent, so that the resin adheres to the roll surface and causes stickiness. In addition, squeeze rolls, etc. have a mechanism to remove the adhered resin such as a doctor bar, but it is spatially difficult to provide such a mechanism between the lips of the adjacent dies. This causes a problem that flattening cannot be performed. When using a solvent for pre-impregnation, the above-mentioned problems are unlikely to occur.However, compared to the dip method having a liquid circulation mechanism, the die method is a one-pass system in which the entire amount of the discharged liquid is adhered, so the base material is used. Is highly likely to cause unevenness in the resin amount.
[0007]
[Patent Document 1]
JP-A-10-314647
[Patent Document 2]
JP-A-10-34050
[Patent Document 2]
JP-A-2001-122992
[0008]
[Means for Solving the Problems]
That is, the present invention relates to (1) a method for producing a composite substrate produced by applying a resin varnish diluted with a molten resin or a solvent to a substrate made of a fiber cloth, wherein the composite substrate is opposed to both sides of a substrate transport path. A method for producing a composite substrate, comprising: simultaneously applying both sides to a fiber cloth by discharging a coating liquid while controlling the amount of the liquid from a pair of dies arranged in parallel.
(2) The composite base material manufacturing method according to (1), wherein the discharge direction of the pair of dies is inclined by 5 to 45 ° from a plane perpendicular to the base material transport path toward the base material discharge side.
(3) The composite base material production according to (2), wherein the lip portion of the upper die protrudes from the lip portion of the lower die, and its angle is inclined by 10 to 80 ° from a plane perpendicular to the base material transport path toward the base material loading side. Method.
(4) The method for producing a composite base material according to (1), (2) or (3), wherein the internal pressure of each die is discharged in a range of 6000 Pa or more to improve the impregnation property of the fiber cloth.
(5) A laminate comprising a composite substrate produced by the method of (1) to (3) as a component.
(6) A display element substrate comprising a composite substrate produced by the method of (1) to (3) as a constituent element.
It is.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of a double-sided simultaneous coating apparatus used in the present invention. The main components of the apparatus are a fiber cloth (substrate) (1) having a transport path in the longitudinal direction, a left die (2) and a right die (3) installed via the substrate transport path, and a substrate for the die. And a guide roll (13) for adjusting the position. Each die is composed of a combination of an upper die (5) and a lower die (12). A manifold (6) for storing a coating liquid between the upper die and the lower die, a land (7) serving as a flow path, and a discharge port are provided. An outlet lip (4) is formed. Also, for each die, an installation means (11) for setting the position of the die, an angle holding means (10) for setting an angle with respect to the substrate transport path, and an internal pressure measuring means (8) for measuring the internal pressure. And a liquid supply means (9) for supplying a coating liquid.
[0010]
Next, the principle of the present invention will be described. In FIG. 1, when the coating liquid is supplied into each die by the liquid supply means (9), it accumulates in a manifold portion (6) formed inside. The coating liquid is equalized in pressure distribution in the width direction in the manifold section, passes through the land section (7), is discharged from the lip section (4), and is applied to the surface of the base material (1).
[0011]
The base material carried into the application section (between the die lips) sandwiches air in the space between the fibers. When the discharge flow path (the direction of the land (7)) of the opposing die is perpendicular to the substrate transport path as shown in FIG. 2, the coating liquid discharged from the die lip is as shown by the arrow in FIG. Flows to In such a flow, the pressure distribution has a pressure peak on the side of the base material carrying the lip, and pressure is applied before the resin varnish permeates the base material (FIG. 2B). Therefore, when the resin permeates into the inside of the base material, the pressure is reduced, and the air inside the base material may remain inside. This tendency occurs remarkably when the discharge flow path of the die is inclined toward the substrate loading side.
[0012]
When the discharge flow path of the die is inclined toward the unloading side of the substrate, the coating liquid discharged from the die lip flows as indicated by the arrow in FIG. At this time, the coating liquid flows along the upper lip portion 4a, and the pressure distribution on the base material has a peak on the base material discharge side of the lip portion. At this time, since the coating liquid applied to the base material surface is pressurized as it penetrates into the base material, air bubbles interposed in the base material escape toward the base material loading side which is a low pressure side. Become. Therefore, there is no air bubble remaining inside the substrate, and it is possible to obtain a composite substrate having good impregnation.
[0013]
The resin used in the present invention is not particularly limited as long as it is used for a printed board or a substrate for a display element. However, from the viewpoint of heat resistance, Tg is preferably 150 ° C. or higher. Specific examples thereof include a cyanate resin, a thermosetting polyimide resin containing bismaleimide as a component, and a polyfunctional epoxy resin. Among them, a cyanate resin is particularly preferred. Examples of the cyanate resin include bisphenol dicyanate, di (4-cyanate-3,5-dimethylphenyl) methane, 4,4′-thiodiphenylcyanate, 2,2′-di (4-cyanatephenyl) hexafluoropropane, bisphenol E dicyanate, phenol / dicyclopentadiene copolymer cyanate, phenol novolak type cyanate resin, cresol novolak type cyanate resin, and / or a prepolymer thereof can be used. Above all, a novolak type cyanate resin and / or a prepolymer thereof are preferable because of high heat resistance and low linear expansion coefficient. The novolak type cyanate resin referred to herein is obtained by reacting any novolak resin with a cyanating reagent such as cyanogen halide, and is also obtained by heating the obtained resin to form a prepolymer. Can be done.
When the number average molecular weight of the novolak type cyanate resin in the present invention is less than 250, the crosslinking density is small, and the heat resistance and the coefficient of linear expansion may be inferior. When it exceeds 900, the crosslinking density is too high to complete the reaction. Since it may not be possible, the number is preferably 260 to 900, and more preferably 300 to 600. When a prepolymer is used, it is preferable that the novolak type cyanate resin having the above number average molecular weight is prepolymerized in a range that is soluble in a solvent such as methyl ethyl ketone, dimethylformamide, and cyclohexanone. The number average molecular weight in the present invention is determined by gel permeation chromatography in terms of polystyrene using an HLC-8120 GPC apparatus manufactured by Tosoh Corporation (columns used: SUPER H4000, SUPER H3000, SUPER H2000 × 2, eluent: THF). This is a value measured by a photographic report.
[0014]
The resin of the present invention, a cyanate resin, epoxy resin, phenol resin and other thermosetting resin, phenoxy resin, solvent-soluble polyimide resin, polyphenylene oxide, a resin in combination with one or more thermoplastic resins such as polyether sulfone It may be a composition. Particularly, the combined use of an epoxy resin is preferable because the water absorption can be reduced without deteriorating the chemical resistance. Examples of the epoxy resin to be used in combination include a phenol novolak type epoxy resin, a bisphenol A type epoxy resin, a dicyclopentadiene skeleton-containing epoxy resin, a naphthalene type epoxy resin, an arylalkylene type epoxy resin and the like, particularly a dicyclopentadiene skeleton epoxy resin, Naphthalene type epoxy resins and arylalkylene type epoxy resins are preferred. Here, the arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit, and examples thereof include a xylylene type epoxy resin and a biphenylene dimethyl type epoxy resin.
The amount of the epoxy resin used in combination is preferably from 10 to 200 parts by weight based on 100 parts by weight of the cyanate resin. If the amount is less than 10 parts by weight, the effect of addition is difficult to be exhibited, and if it exceeds 200 parts by weight, the heat resistance of the cyanate resin may be impaired.
[0015]
When a cyanate resin is used in the present invention, it is preferable to add a curing accelerator to the resin composition. Known curing accelerators can be used. Examples thereof include organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate and cobalt octylate, triethylamine, tributylamine, diazabicyclo [2,2 , 2] tertiary amines such as octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 Imidazoles such as -hydroxymethylimidazole; phenol compounds such as phenol, bisphenol A, nonylphenol, and phenolic resins; organic acids; and mixtures thereof. Among them, phenolic resins are preferred in terms of curability and low ionic impurities. In the present invention, the compounding amount of the curing accelerator can be appropriately changed according to the use conditions. In the case of an organic metal salt, 0.001 to 1 part by weight, based on 100 parts by weight of the cyanate resin, of imidazoles In this case, the amount is preferably 0.05 to 10 parts by weight, and in the case of a phenol resin, the amount is preferably 0.5 to 50 parts by weight. If the amount is less than these ranges, curing tends to be slow.If the amount is more than these ranges, adverse effects such as reduction of the resin composition and prepreg life due to excessively accelerated curing, and peripheral contamination by volatile components derived from the curing accelerator are caused. It may come out.
[0016]
The fiber cloth used in the present invention is not particularly limited, and various inorganic or organic fiber cloths can be used. Specific examples thereof include E glass (alkali-free glass), S glass, D glass, quartz, glass cloth such as high dielectric constant glass, Kevlar (trade name: manufactured by DuPont Toray Kevlar), Technora (trade name: Of poly-p-phenylene phthalamide, poly-m-phenylene phthalamide, p-phenylene phthalamide and 3,4′-diphenyl ether phthalamide represented by Teijin Limited and Conex (trade name: Teijin Limited) Aromatic polyamide fiber cloth, aramid fiber cloth, polyester fiber cloth, nylon fiber cloth, polybenzazole fiber cloth, carbon fiber cloth, etc. made of a copolymer or the like can be used. Preferably, it is a glass cloth. The method of weaving the woven fabric filaments is not particularly limited, and may be a woven fabric having a structure such as plain weave, seaweed weave, satin weave, and twill weave, and is preferably plain weave. Further, it is not limited to a woven fabric, and may be a non-woven fabric. The thickness of the fiber is not particularly limited, but is preferably 30 to 150 μm.
[0017]
The fiber cloth used in the present invention is treated with various surface treating agents such as silane coupling agents, borane coupling agents, titanate coupling agents, and aluminum coupling agents for the purpose of improving the wettability with the resin component. However, the present invention is not limited to this.
[0018]
In the resin composition of the present invention, if necessary, components such as a lubricant, a heat-resistant agent, an antistatic agent, an ultraviolet absorber, a pigment and the like, a light stabilizer, and the like, as long as the effects of the present invention are not impaired. Can be.
A plastic substrate (laminate) can be obtained by using the prepreg of the present invention. One or more of the prepregs may be heat-molded to form a laminate having only a resin layer, or a copper foil or the like. By heat-forming together with the above-mentioned metal plate, a laminate comprising a metal layer and a resin layer can be obtained. Further, a part or all of the metal plate may be peeled off by etching treatment or the like.
[0019]
【Example】
Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
(Example of device)
The following examples were performed using the glass fiber substrate manufacturing apparatus shown in FIG. A tapered lining was used for the angle holding means (10) of each die, and the die angle was adjusted by being sandwiched between the die and an installation table. The upper die has a structure in which only the tip lip portion can be replaced, and can be changed to a member having a changed lip tip angle.
(Example)
As shown in FIG. 4A, the die discharge angle was inclined by 15 ° from the plane perpendicular to the substrate transport path to the substrate carry-in side, and the die upper die lip used a member inclined by 60 ° from the same plane. . The resin varnish is prepared by dissolving 100 parts by weight of a novolak type cyanate resin (PT60, manufactured by Lonza Japan Co., Ltd., number average molecular weight: 560) and 2 parts by weight of a phenol novolak resin (PR-51714, manufactured by Sumitomo Durez) in methyl ethyl ketone at room temperature, and epoxysilane coupling. 1 part by weight of an agent (A-187 manufactured by Nippon Unicar) and 150 parts of spherical fused silica (SO-25R manufactured by Admatechs Co., Ltd., average particle size: 0.5 μm) are added, and the mixture is stirred for 10 minutes using a high-speed stirrer. Was used. The substrate used was a glass cloth (WEA-1080, manufactured by Nitto Boseki) having a thickness of 53 μm. The solvent was volatilized in a drying furnace for the coated base material to prepare a semi-cured prepreg.
The obtained prepreg had a good appearance. Microscopic observation of the cross section of the prepreg revealed that both the front and back resin layers on the glass cloth had a uniform thickness of 10 μm on both sides and a surface roughness Ra of 1.2 μm. In addition, when bubbles present inside were confirmed by microscopic observation using transmission illumination, bubbles having a diameter of 1 μm or less existed at a rate of 2 to 3 bubbles / 500 mm □.
(Comparative example)
Using the same resin varnish and substrate as in the examples, the dies were arranged as shown in FIG. When a composite substrate was prepared with this die arrangement, countless crater-like irregularities that seemed to be air bubble marks were generated on the surface of the coating immediately after coating. It is considered that the bubbles remaining inside the base material reached the resin surface and foamed, and it was considered that impregnation was not obtained with this arrangement.
[0020]
【The invention's effect】
In the method for producing a coated cloth in which a molten resin or a resin varnish is applied to a substrate such as a fiber cloth by the method of the present invention, the front-back balance of the applied film thickness, the applied film thickness, and the resin impregnating property to the substrate are improved. A manufacturing method can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a double-side coating apparatus using the present invention. FIG. 2 is a view showing a resin flow and a pressure distribution in a case where the apparatus is arranged perpendicularly to a substrate. FIG. FIG. 4 is a view showing a resin flow and a pressure distribution in a case where they are attached to each other. FIG. 4 is a view showing a die angle setting in the embodiment, and FIG. () Is a diagram showing the angle at which the lip of the upper die is projected from the lower lip.
FIG. 5 is a diagram showing an example of a comparative example of a double-sided coating apparatus, showing a case where a die is arranged offset from a base material.
[Explanation of symbols]
1 fiber cloth (base material)
2 Left die 3 Right die 4 Die lip 4a Upper die lip 4b Lower die lip 5 Die upper die 6 Die manifold 7 Die land 8 Die internal pressure measurement sensor 9 Coating liquid supply means 10 Angle setting means 11 Position setting means 12 Lower die 13 Guide roll for substrate position adjustment

Claims (6)

繊維布から成る基材に、溶融した樹脂もしくは溶剤で希釈した樹脂ワニスを塗布して作製する複合基材の製造方法であって、基材搬送路の両側に対向して配置した一対のダイより液量を制御しながら塗布液を吐出することにより繊維布に両面同時塗布を行うことを特徴とする複合基材の製造方法。A method of manufacturing a composite base material by applying a resin varnish diluted with a molten resin or a solvent to a base material made of a fiber cloth, comprising a pair of dies arranged opposite to both sides of a base material transport path. A method for producing a composite base material, comprising simultaneously applying both sides to a fiber cloth by discharging a coating liquid while controlling a liquid amount. 前記一対のダイの吐出方向が基材搬送路に対し垂直な面から基材搬出側に5〜45°傾けた請求項1記載の複合基材製造方法。2. The method according to claim 1, wherein a discharge direction of the pair of dies is inclined by 5 to 45 ° from a surface perpendicular to the substrate transport path to the substrate discharge side. ダイ上型のリップ部が下型リップ部よりも突出し、その角度が基材搬送路に対し垂直な面から基材搬入側に10〜80°傾斜した請求項2記載の複合基材製造方法。3. The method according to claim 2, wherein the lip of the upper die protrudes from the lip of the lower die, and the angle of the lip is inclined by 10 to 80 [deg.] From the plane perpendicular to the base material conveying path toward the base material loading side. 各ダイの内圧を6000Pa以上の範囲で吐出することにより繊維布への含浸性を向上させた請求項1〜3何れか一項記載の複合基材製造方法。The method for producing a composite base material according to any one of claims 1 to 3, wherein the impregnation property of the fiber cloth is improved by discharging the internal pressure of each die within a range of 6000 Pa or more. 請求項1〜3何れか一項記載の方法により製造される複合基材を構成要素とした積層板。A laminate comprising a composite substrate produced by the method according to claim 1 as a component. 請求項1〜3何れか一項記載の方法により製造される複合基材を構成要素とした表示素子用基板。A display element substrate comprising a composite substrate produced by the method according to claim 1 as a component.
JP2003084602A 2003-03-26 2003-03-26 Manufacturing method of composite substrate Expired - Fee Related JP4152230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084602A JP4152230B2 (en) 2003-03-26 2003-03-26 Manufacturing method of composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084602A JP4152230B2 (en) 2003-03-26 2003-03-26 Manufacturing method of composite substrate

Publications (2)

Publication Number Publication Date
JP2004290771A true JP2004290771A (en) 2004-10-21
JP4152230B2 JP4152230B2 (en) 2008-09-17

Family

ID=33399741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084602A Expired - Fee Related JP4152230B2 (en) 2003-03-26 2003-03-26 Manufacturing method of composite substrate

Country Status (1)

Country Link
JP (1) JP4152230B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083141A (en) * 2005-09-21 2007-04-05 Toppan Printing Co Ltd Coating apparatus
JP2007087982A (en) * 2005-09-20 2007-04-05 Sumitomo Bakelite Co Ltd Resin composite, insulation sheet with substrate and multilayer printed wiring board
JP2007154039A (en) * 2005-12-05 2007-06-21 Jsr Corp Transparent composite material, surface-treatment method for glass fiber fabric and method for producing transparent composite material
JP2009209255A (en) * 2008-03-04 2009-09-17 Hitachi Chem Co Ltd Method and apparatus for producing prepreg
WO2010137558A1 (en) 2009-05-26 2010-12-02 パナソニック電工株式会社 Method for manufacturing prepreg for printed wiring board and device for manufacturing prepreg for printed wiring board
JP2012076062A (en) * 2010-10-06 2012-04-19 Futamura Chemical Co Ltd Method for producing fibrous casing, and nozzle for applying viscose
JP2013067817A (en) * 2013-01-21 2013-04-18 Hitachi Chemical Co Ltd Method and apparatus for producing prepreg
JP2018523570A (en) * 2015-07-31 2018-08-23 リンダウェル、ドルニエ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングLindauer Dornier Gesellschaft Mit Beschrankter Haftung Apparatus for double-sided coating of at least one traveling flat material web
WO2018173618A1 (en) * 2017-03-22 2018-09-27 東レ株式会社 Method for producing prepreg and method for producing fiber-reinforced composite material
JP2019157009A (en) * 2018-03-14 2019-09-19 日立化成株式会社 Prepreg, laminate, printed wiring board, semiconductor package and method for producing prepreg
WO2024053388A1 (en) * 2022-09-08 2024-03-14 東レ株式会社 Slurry impregnated sheet manufacturing device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087982A (en) * 2005-09-20 2007-04-05 Sumitomo Bakelite Co Ltd Resin composite, insulation sheet with substrate and multilayer printed wiring board
JP2007083141A (en) * 2005-09-21 2007-04-05 Toppan Printing Co Ltd Coating apparatus
JP2007154039A (en) * 2005-12-05 2007-06-21 Jsr Corp Transparent composite material, surface-treatment method for glass fiber fabric and method for producing transparent composite material
JP2009209255A (en) * 2008-03-04 2009-09-17 Hitachi Chem Co Ltd Method and apparatus for producing prepreg
EP2436723A4 (en) * 2009-05-26 2013-03-27 Panasonic Corp Method for manufacturing prepreg for printed wiring board and device for manufacturing prepreg for printed wiring board
EP2436723A1 (en) * 2009-05-26 2012-04-04 Panasonic Corporation Method for manufacturing prepreg for printed wiring board and device for manufacturing prepreg for printed wiring board
CN102459430A (en) * 2009-05-26 2012-05-16 松下电器产业株式会社 Method for manufacturing prepreg for printed wiring board and device for manufacturing prepreg for printed wiring board
WO2010137558A1 (en) 2009-05-26 2010-12-02 パナソニック電工株式会社 Method for manufacturing prepreg for printed wiring board and device for manufacturing prepreg for printed wiring board
JP2012076062A (en) * 2010-10-06 2012-04-19 Futamura Chemical Co Ltd Method for producing fibrous casing, and nozzle for applying viscose
JP2013067817A (en) * 2013-01-21 2013-04-18 Hitachi Chemical Co Ltd Method and apparatus for producing prepreg
JP2018523570A (en) * 2015-07-31 2018-08-23 リンダウェル、ドルニエ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングLindauer Dornier Gesellschaft Mit Beschrankter Haftung Apparatus for double-sided coating of at least one traveling flat material web
WO2018173618A1 (en) * 2017-03-22 2018-09-27 東レ株式会社 Method for producing prepreg and method for producing fiber-reinforced composite material
JPWO2018173618A1 (en) * 2017-03-22 2020-02-20 東レ株式会社 Method for producing prepreg and method for producing fiber-reinforced composite material
US11806899B2 (en) 2017-03-22 2023-11-07 Toray Industries, Inc. Method for producing prepreg and method for producing fiber-reinforced composite material
JP2019157009A (en) * 2018-03-14 2019-09-19 日立化成株式会社 Prepreg, laminate, printed wiring board, semiconductor package and method for producing prepreg
JP7081231B2 (en) 2018-03-14 2022-06-07 昭和電工マテリアルズ株式会社 Manufacturing method of prepreg, laminated board, printed wiring board, semiconductor package and prepreg
WO2024053388A1 (en) * 2022-09-08 2024-03-14 東レ株式会社 Slurry impregnated sheet manufacturing device

Also Published As

Publication number Publication date
JP4152230B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US5492722A (en) Process and apparatus for resin impregnation of a fibrous substrate
US9102851B2 (en) Microcavity carrier belt and method of manufacture
JP2004290771A (en) Method for producing composite material
TWI824049B (en) Dispersions
TW201221356A (en) Targeted deposition of particles on substrates used in the manufacture of composite articles
WO2016178399A1 (en) Method for producing frp precursor and device for producing same
US6770380B2 (en) Resin/copper/metal laminate and method of producing same
KR20180022796A (en) Manufacturing method of fiber reinforced composite material
JPH03136393A (en) Novel circuit board
JP7140131B2 (en) Multi-layer prepreg with release sheet, prepreg roll, prepreg tape and composites
JP2003050384A (en) Plastic substrate for reflective liquid crystal display element
JP4946326B2 (en) Laminated board
TW201829203A (en) Method for producing FRP precursor, method for producing laminate, method for producing printed circuit board, and method for producing semiconductor package
JP3818638B2 (en) Plastic substrate for display element and method for manufacturing plastic substrate for display element
JP6645496B2 (en) Method and apparatus for producing FRP precursor
JP2004115629A (en) Method for producing prepreg
JP2024009133A (en) Production method for frp precursor, frp precursor, laminated board, multilayer printed wiring board and semiconductor package
JP2004122544A (en) Method for producing prepreg
JP2004292533A (en) Method for manufacturing composite substrate
JPH08174549A (en) Production of prepreg
WO2019124203A1 (en) Tape-shaped prepreg and production method therefor
JP2002307617A (en) Liquid crystal resin laminated film and method for manufacturing the same
JP3582770B2 (en) Manufacturing method of laminated board
JP2008137389A (en) Continuous manufacturing process and apparatus of laminate
JP2005262591A (en) Method and apparatus for continuous production of laminated plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees