JP2004290763A - Flocculation method - Google Patents

Flocculation method Download PDF

Info

Publication number
JP2004290763A
JP2004290763A JP2003084327A JP2003084327A JP2004290763A JP 2004290763 A JP2004290763 A JP 2004290763A JP 2003084327 A JP2003084327 A JP 2003084327A JP 2003084327 A JP2003084327 A JP 2003084327A JP 2004290763 A JP2004290763 A JP 2004290763A
Authority
JP
Japan
Prior art keywords
water
liquid
treated
added
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084327A
Other languages
Japanese (ja)
Other versions
JP4187201B2 (en
Inventor
Yoshiro Wakimura
嘉郎 脇村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003084327A priority Critical patent/JP4187201B2/en
Publication of JP2004290763A publication Critical patent/JP2004290763A/en
Application granted granted Critical
Publication of JP4187201B2 publication Critical patent/JP4187201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive flocculation method capable of developing a rapid flocculation effect and capable of treating a hardly treatable liquid incapable of being separated into water and a solid component by the present technique. <P>SOLUTION: A predetermined amount of an alkali metal silicate is preliminarily added to seawater and the silicate brought to a gelled state is dispersed in seawater as flocs to obtain gelled water. This gelled water is added to a liquid to be treated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【発明の属する技術分野】
本発明は、汚濁水中の懸濁物質の凝集方法に関するものである。
【従来の技術】
染色排水、土木排水、下水、あるいは工場廃液に大量に含まれるSSと称される微細浮遊物質は水中浮遊物となって河川や海に廃棄されて公害の原因となっている。そこで最近では上記工場廃液等は該水中浮遊物や溶解物質が基準の濃度以下になるように処理してから廃棄されているが、その処理に要する時間と費用は莫大なものとなっている(例えば、特許文献1参照。)。
例えば、染色工場の排水は、溶解色素の除去が非常に困難であり、現在のところ、排水を一旦貯水槽に溜めて、活性炭、バイオ処理で脱色すると共に、BOD、CODが基準値以下になるように処理して排水するようにしている。
製紙工場よりの排水には紙表面を滑らかにするために汎用されている酸化チタンの微粒粉あるいは、パルプ繊維の微粒粉が含まれている。これらの微粒粉を除去するために、一旦貯水槽に溜めて有機系あるいは無機系の凝集剤を添加し、凝集、沈澱させてから排水するようにしている。
下水処理では被処理液に有機凝集剤を投入し、大容量の沈殿槽に長時間滞留させて懸濁物質を沈殿させ、必要に応じて活性炭処理、バイオ処理を付加してSS、BOD、COD値が所定の値以下になるように処理した後、廃棄するようにしている。
土木排水の処理においては処理後の排水に含まれる鉄分の濃度を下げることが懸案となっている。
又、海底や河川を浚渫したときに排出されるヘドロは含水率が非常に多く、このまま固化しようとすると莫大なセメント量を必要とする。そこで、大容量の沈殿槽にヘドロを導いて、有機凝集剤を添加して沈澱処理をした後、凝固処理を行うようにしている。
このため、莫大な面積の沈殿槽を必要とし、処理装置が大がかりなものとなり、広い設置面積を必要とし、処理時間が長くかかり、コスト高になるのものであった。
又、上記凝集処理に使用される凝集剤としては、種々のものが開発されている。例えば無機系では、アルミニウム塩(硫酸アルミニウム、水酸化アルミニウム、アンモニウムミョウバン、カリミョウバン、アルミン酸ナトリウム、ポリ塩化アルミニウム)、鉄塩(塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、ポリ硫酸第二鉄等)、有機系では、低分子塩、界面活性剤、天然あるいは合成高分子物質等が開発使用されている。
更に、本出願人は、特公平08−018016にて、▲1▼可溶性のアルミニウム塩と▲2▼アルカリ金属塩と上記▲1▼剤と▲2▼剤の直接の接触密度を小さくするための第三物質とよりなる凝集剤を提案し、多大な効果を上げている。
上記のように種々の凝集剤が開発され使用されているが、染色排水、製紙排水等を固液分離することは困難である。また下水処理に至っては莫大な面積の沈殿槽を必要とし、また処理時間も膨大となっているのが現状である。更に、有機凝集剤を大量に使用すると、コストが高くなるとともに、上記固液分離の困難性が増大する。
特に、下水に含まれる汚泥等は、現在のところ、これを直接短時間に凝集させることはできないと考えられており、また、上記のように沈殿槽で沈殿された余剰濃縮汚泥は、水分と固形物を遠心分離機で分離しようとしても、これ以上の分離はできない難処理廃液である。
【特許文献1】
特開平09−192679号公報
【発明が解決しようとする課題】
本発明は、上記従来の事情に鑑みてなされたものであって、迅速な凝集効果を発揮し、現在技術では水と固形分の分離が不可能な難処理液の処理が可能であり、しかも安価な凝集方法を提供することを目的とする。
【課題を解決するための手段】
上記目的を達成するため、本発明は、アルカリ金属の珪酸塩を予め海水に添加してゲル化させ、フロック状となった珪酸塩が水中に散在する程度のゲル化水を得る。このようにして得られたゲル化水を被処理液に添加することにより、上記珪酸塩のフロックが核となって上記被処理液中の微小な固形物が凝集し、更に大きなフロックを形成する。このように大きなフロックが形成されると、固水分離機(コンベアプレス式、遠心分離式)での固水分離機能は飛躍的に高まることになる。
上記の更に大きなフロックを形成した後に、更に、従来から使用されている凝集剤を使用することは、この発明の効果を高める上で好ましい。
また、カルシウム化合物を上記ゲル化水に所定量添加すると、被処理液から窒素及びリンを除去する効果をさらに高めることができる。
【発明の実施の形態】
本発明の実施の形態を実施例に基づいて説明する。
本発明に係る凝集方法は、まず、アルカリ金属の珪酸塩を、予め海水に所定量加えてゲル化して、珪酸塩をフロック状となしたゲル化水を得る。このゲル化水を被処理液に添加すると、上記フロックを核に被処理液中の微小な固形物が凝集して、さらに大きなフロックを形成することになる。
このようにして形成されたフロックは、無機物のみで形成されているので水抜けが著しく優れ、固水分離機で分離すると、80%までの水分を除去することができることになる。
アルカリ金属の珪酸塩としては、例えばメタ珪酸ナトリウム、二珪酸ナトリウム、四珪酸ナトリウム、オルト珪酸ナトリウム、及びこれらの種々の割合の水和物、さらにカリウムの珪酸塩を一部混合させてもよい。ただし、経済的には市販の水ガラスを使用するのが最も好ましい。
アルカリ金属の珪酸塩の添加量は、海水1Lに対して、0.01 〜100g、好ましくは0.1〜50gである。0.01gより少ないと当該珪酸塩のゲル化に伴って形成されるフロックの数が少なく、被処理液に添加したときの凝集能力が小さくなる。また、100gより多くすると添加したアルカリ金属の珪酸塩が、フロックを形成しないで溶媒たる海水に沈澱し、不経済となるからである。
前記ゲル化水(すなわち、ゲル化された珪酸塩の入っている水)の被処理液に添加するべき量は、このゲル化水の濃度、及び被処理液が含有する固形物の濃度等の特性(含有固形物の種類、大きさ、液のPH等)によって異なるので一概に限定することはできないが、例えば、被処理液1Lに対して1〜50、好ましくは5〜10重量%の添加で処理が行えるように、上記ゲル化水の濃度を前実験により定めるとよい。
1重量%より少ないと、添加したフロックが十分に被処理液中に分散しないため固形物を凝集させる力が弱く、凝集速度、固水分離性に満足する結果を得ることはできない。又、50重量%より多いと処理に必要となる容積が大きくなるため処理効率が下がり不経済となる。
また、従来から使用されている凝集剤を添加して、本発明の効果をより高めることができる。この凝集剤には、上述の無機凝集剤や有機凝集剤を用いることができるが、本願出願人が特公平08−018016にて開示している凝集剤を用いるのが好ましい。
さらに、窒素及びリンの除去効果をより高めるために、カルシウム化合物を添加することも効果的である。
このカルシウム化合物には、硫酸カルシウム、炭酸カルシウム、乳酸カルシウム、酸化カルシウム等を用いることができる。カルシウム化合物の被処理液への添加量は、被処理液の窒素及びリンの含有量によって異なるため、一概に限定することはできないが、例えば、硫酸カルシウムを用いる場合は、被処理液1Lに対して、0.01〜1重量%とするのが好ましい。添加量が、0.01重量%より少ないと窒素及びリンの除去効果を高める効果が得られないためであり、1重量%より多いと、コスト高になり対費用効果が上がらないためである。
(実施例1)
海水1Lに対して、水ガラス(珪酸ナトリウム)0.3gを、よく攪拌しながら添加してゲル化水を作り、このゲル化水を被処理液(兵庫県姫路市を流れる天の川の浚渫ヘドロ)1Lに対して10重量%添加した。この後、有機凝集剤(ポリアクリルアミド系)を極微量(1パーセント水溶液0.8g)被処理液に添加し、ろ過する。この場合例えば1Lの処理液をろ紙でろ過するのに要する時間は10分程度であった。
比較として、上記と同じ原水1Lに対して有機凝集剤(1パーセント水溶液0.8g)を添加して、ろ紙でろ過させた場合を挙げる。この場合はろ過に1時間以上かけても充分でなかったが、1時間経過した時点のものと比較した。

Figure 2004290763
このように本願の方法による方が処理時間は短く、従来では極めて低い脱水率であった状態を高い脱水率(70%以上)に高めることができ、固液分離率も高く、優れた効果を有するものである。
また、被処理液として、下水汚泥を使用した場合でも、上記ヘドロに対する効果とほぼ同じであった。ただし、被処理液が下水汚泥の場合、有機凝集剤のみを使用する従来の方法では、多大な時間をかけてもろ紙を水分はわずかしか(脱水率20%)通過することはなかった。
(実施例2)
上記実施例1とゲル化水の濃度を変え、被処理液も他のサンプルを用いて凝集効果を確認した。本実施例では、海水1Lに対して、水ガラス50gを添加してゲル化水を作り、このゲル化水をSSが16000mg/lである被処理水(鳥取市にある湖山池の浚渫ヘドロ)に対して20g(約2重量%)添加した。この後、濃度0.1%の有機凝集剤30g、硫酸カルシウム0.5gをそれぞれ被処理液に添加し、この液をろ紙でろ過したところ、下記の結果を得た。この場合も、1Lの処理液をろ紙でろ過するのに要する時間は10分程度であった。
Figure 2004290763
このように本願の方法は、被処理液中の各種汚濁原因物質を除去しやすいフロックに短時間で凝集させることができるとともに、優れた浄化効果を有するものである。また、添加する薬剤の量は僅かであり、その処理費用も安価である。特に、海浜、海上など海水の入手が容易な場所での処理を行う場合は、その場で溶媒である海水を得ることができるため、溶媒の輸送コストが不要となる。
【発明の効果】
以上の説明から明らかなように本発明に係る凝集方法は、以下に列挙する実用上の様々の優れた効果を有する。
本発明に係る凝集方法は、予め珪酸塩を海水でゲル化して微細なフロックを形成したゲル化水を使用するため、上記フロックを核として被処理液の微小固形物が凝集し、迅速な凝集効果を発揮する。
特に、海浜、海上等、海水を容易に入手できる環境で処理を行う場合は、輸送に最も容積が必要となる海水を処理現場にて調達できるため、輸送費用が削減でき低コストでの処理が可能となる。
更に、ここで得られたフロックは無機物が核になっているので、高い水抜け特性を持っており、有機凝集剤を使用する場合や、他の無機凝集剤を使用する場合に比較して著しく迅速に固液の分離が可能となる。TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for coagulating suspended substances in polluted water.
[Prior art]
Fine suspended substances called SS, which are contained in large amounts in dyeing drainage, civil engineering drainage, sewage, or factory effluent, are suspended in water as rivers and seas, causing pollution. Therefore, recently, the above factory waste liquid and the like are disposed of after being processed so that the suspended matter and dissolved substances in the water are below the standard concentration. However, the time and cost required for the treatment are enormous ( For example, see Patent Document 1.)
For example, it is very difficult to remove dissolved dyes from dyeing factory wastewater. At present, wastewater is temporarily stored in a water tank, decolorized by activated carbon and biotreatment, and BOD and COD fall below standard values. So that it is treated and drained.
The wastewater from the paper mill contains fine powder of titanium oxide or fine powder of pulp fiber, which is widely used for smoothing the paper surface. In order to remove these fine powders, they are temporarily stored in a water storage tank, and an organic or inorganic coagulant is added to coagulate and precipitate, and then drained.
In the sewage treatment, an organic flocculant is charged into the liquid to be treated, and is suspended in a large-capacity sedimentation tank for a long time to precipitate suspended substances. If necessary, activated carbon treatment and biotreatment are added to the SS, BOD, COD After processing so that the value becomes equal to or less than a predetermined value, the data is discarded.
In the treatment of civil engineering wastewater, it is pending to reduce the concentration of iron contained in the treated wastewater.
Also, the sludge discharged when the seabed or river is dredged has an extremely high water content, and if it is to be solidified as it is, an enormous amount of cement is required. Therefore, sludge is introduced into a large-capacity sedimentation tank, and an organic coagulant is added to perform a precipitation treatment, followed by a coagulation treatment.
For this reason, an enormous area of the sedimentation tank is required, the processing apparatus becomes large, a large installation area is required, the processing time is long, and the cost is high.
Various coagulants have been developed for the coagulation treatment. For example, in the inorganic system, aluminum salts (aluminum sulfate, aluminum hydroxide, ammonium alum, potassium alum, sodium aluminate, polyaluminum chloride), iron salts (ferrous chloride, ferric chloride, ferrous sulfate, ferrous sulfate) In the organic system, low molecular salts, surfactants, natural or synthetic high molecular substances, and the like have been developed and used.
Further, the applicant of the present invention has disclosed in Japanese Patent Publication No. 08-018016 a method for reducing the direct contact density of (1) a soluble aluminum salt, (2) an alkali metal salt, and the above (1) and (2) agents. We have proposed a flocculant consisting of a third substance and have achieved a great effect.
Although various coagulants have been developed and used as described above, it is difficult to separate solid waste from dyeing wastewater, papermaking wastewater, and the like. In addition, sewage treatment requires an enormous settling tank, and the treatment time is enormous at present. Furthermore, when a large amount of the organic flocculant is used, the cost increases and the difficulty of the solid-liquid separation increases.
In particular, sludge and the like contained in sewage is currently considered to be unable to directly coagulate in a short period of time, and the excess concentrated sludge settled in the settling tank as described above is It is a difficult-to-treat waste liquid that cannot be further separated even if the solid is separated by a centrifuge.
[Patent Document 1]
JP 09-192679 A [Problems to be Solved by the Invention]
The present invention has been made in view of the above-described conventional circumstances, exhibits a rapid coagulation effect, and is capable of treating difficult-to-treat liquids which cannot be separated from water and solids with the current technology, and An object is to provide an inexpensive aggregation method.
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, an alkali metal silicate is added to seawater in advance and gelled, and gelled water is obtained to such an extent that silicate in a floc form is scattered in water. By adding the gelling water thus obtained to the liquid to be treated, the silicate flocs serve as nuclei, and minute solids in the liquid to be treated aggregate to form larger flocs. . When such a large floc is formed, the solid-water separation function of the solid-water separator (conveyor press type, centrifugal separation type) is dramatically improved.
It is preferable to use a conventionally used flocculant after forming the above-mentioned larger floc in order to enhance the effect of the present invention.
When a predetermined amount of a calcium compound is added to the gelling water, the effect of removing nitrogen and phosphorus from the liquid to be treated can be further enhanced.
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on examples.
In the agglomeration method according to the present invention, first, a predetermined amount of an alkali metal silicate is added to seawater in advance and gelled to obtain gelled water in which the silicate is formed into a floc. When this gelling water is added to the liquid to be treated, fine solids in the liquid to be treated aggregate with the flocs as nuclei to form even larger flocs.
Since the floc thus formed is made of only an inorganic substance, it is extremely excellent in draining water, and when separated by a solid-water separator, up to 80% of water can be removed.
As the alkali metal silicate, for example, sodium metasilicate, sodium disilicate, sodium tetrasilicate, sodium orthosilicate, hydrates thereof in various ratios thereof, and potassium silicate may be partially mixed. However, economically, it is most preferable to use a commercially available water glass.
The addition amount of the alkali metal silicate is 0.01 to 100 g, preferably 0.1 to 50 g, per liter of seawater. When the amount is less than 0.01 g, the number of flocs formed due to the gelation of the silicate is small, and the aggregation ability when added to the liquid to be treated is reduced. On the other hand, if the amount is more than 100 g, the added alkali metal silicate precipitates in the seawater as a solvent without forming flocs, which is uneconomical.
The amount of the gelling water (ie, water containing the gelled silicate) to be added to the liquid to be treated depends on the concentration of the gelling water and the concentration of the solid matter contained in the liquid to be treated. Since it differs depending on the characteristics (the kind, size, pH of the liquid, etc. of the contained solid matter), it cannot be unconditionally limited. For example, 1 to 50, preferably 5 to 10% by weight is added to 1 L of the liquid to be treated. The concentration of the gelling water may be determined by a previous experiment so that the treatment can be performed.
If the amount is less than 1% by weight, the added floc does not sufficiently disperse in the liquid to be treated, so that the power of coagulating the solid is weak, and a result satisfying the coagulation speed and solid-water separation property cannot be obtained. On the other hand, if the content is more than 50% by weight, the volume required for the treatment becomes large, so that the treatment efficiency is lowered and the economy becomes uneconomical.
The effect of the present invention can be further enhanced by adding a conventionally used flocculant. As the coagulant, the above-mentioned inorganic coagulant and organic coagulant can be used, but it is preferable to use the coagulant disclosed by the present applicant in Japanese Patent Publication No. 08-018016.
Further, in order to further enhance the effect of removing nitrogen and phosphorus, it is effective to add a calcium compound.
As the calcium compound, calcium sulfate, calcium carbonate, calcium lactate, calcium oxide and the like can be used. The amount of the calcium compound to be added to the liquid to be treated depends on the contents of nitrogen and phosphorus in the liquid to be treated, and therefore cannot be unconditionally limited. For example, when using calcium sulfate, 1 L of the liquid to be treated is Therefore, the content is preferably 0.01 to 1% by weight. If the amount is less than 0.01% by weight, the effect of enhancing the effect of removing nitrogen and phosphorus cannot be obtained. If the amount is more than 1% by weight, the cost increases and the cost-effectiveness does not increase.
(Example 1)
To 1 L of seawater, 0.3 g of water glass (sodium silicate) is added with good stirring to form gelled water, and this gelled water is treated (liquid dredging of the Milky Way flowing through Himeji City, Hyogo Prefecture). 10% by weight was added to 1 L. Thereafter, an organic coagulant (polyacrylamide-based) is added to a very small amount (0.8 g of a 1% aqueous solution) to be treated, followed by filtration. In this case, for example, the time required for filtering 1 L of the treatment liquid with filter paper was about 10 minutes.
For comparison, a case is described in which an organic flocculant (0.8 g of a 1% aqueous solution) is added to 1 L of the same raw water as described above, and the mixture is filtered through filter paper. In this case, filtration for more than 1 hour was not sufficient, but was compared with that at the time of 1 hour.
Figure 2004290763
As described above, the treatment time is shorter by the method of the present application, and the state where the dehydration rate was conventionally extremely low can be increased to a high dehydration rate (70% or more), the solid-liquid separation rate is high, and excellent effects can be obtained. Have
Further, even when sewage sludge was used as the liquid to be treated, the effect on sludge was almost the same. However, when the liquid to be treated is sewage sludge, in the conventional method using only an organic flocculant, only a small amount of water (a dehydration rate of 20%) passes through the filter paper over a long time.
(Example 2)
The concentration of the gelling water was changed from that in Example 1 described above, and the agglomeration effect was confirmed using another sample for the liquid to be treated. In this embodiment, 50 g of water glass is added to 1 L of seawater to form gelled water, and the gelled water is treated water having SS of 16000 mg / l (dredge sludge of Koyama Pond in Tottori City). 20 g (about 2% by weight). Thereafter, 30 g of an organic coagulant having a concentration of 0.1% and 0.5 g of calcium sulfate were added to the liquid to be treated, respectively, and the liquid was filtered with filter paper to obtain the following results. Also in this case, it took about 10 minutes to filter 1 L of the treatment liquid with filter paper.
Figure 2004290763
As described above, the method of the present invention is capable of coagulating various pollutants in the liquid to be treated on flocs that can be easily removed in a short time, and has an excellent purification effect. Further, the amount of the drug to be added is small, and the processing cost is low. In particular, in the case of performing treatment in a place where seawater is easily available, such as a seashore or sea, since seawater, which is a solvent, can be obtained on the spot, the transportation cost of the solvent is unnecessary.
【The invention's effect】
As is clear from the above description, the aggregation method according to the present invention has various excellent effects in practical use listed below.
The flocculation method according to the present invention uses gelled water in which silicate is gelled in advance with seawater to form fine flocs. It is effective.
In particular, when processing in an environment where seawater can be easily obtained, such as on the beach or on the sea, seawater that requires the most volume for transportation can be procured at the processing site, thereby reducing transportation costs and reducing processing costs. It becomes possible.
Furthermore, since the floc obtained here has an inorganic substance as a core, it has a high water bleeding property, and is remarkably compared with the case of using an organic flocculant or the case of using another inorganic flocculant. The solid-liquid separation can be quickly performed.

Claims (2)

アルカリ金属の珪酸塩を海水に加え、ゲル化した珪酸塩がフロック状となったゲル化水を被処理液に添加して処理する凝集方法。A coagulation method in which an alkali metal silicate is added to seawater, and gelled water in which the gelled silicate has turned into a floc is added to the liquid to be treated and treated. 更に、カルシウム化合物を添加する請求項1に記載の凝集方法。The aggregation method according to claim 1, further comprising adding a calcium compound.
JP2003084327A 2003-03-26 2003-03-26 Aggregation method Expired - Lifetime JP4187201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084327A JP4187201B2 (en) 2003-03-26 2003-03-26 Aggregation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084327A JP4187201B2 (en) 2003-03-26 2003-03-26 Aggregation method

Publications (2)

Publication Number Publication Date
JP2004290763A true JP2004290763A (en) 2004-10-21
JP4187201B2 JP4187201B2 (en) 2008-11-26

Family

ID=33399521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084327A Expired - Lifetime JP4187201B2 (en) 2003-03-26 2003-03-26 Aggregation method

Country Status (1)

Country Link
JP (1) JP4187201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043904A (en) * 2006-08-18 2008-02-28 Yoshiro Wakimura Flocculating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043904A (en) * 2006-08-18 2008-02-28 Yoshiro Wakimura Flocculating method
JP4704297B2 (en) * 2006-08-18 2011-06-15 嘉郎 脇村 Aggregation method

Also Published As

Publication number Publication date
JP4187201B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP4183741B1 (en) Adsorption / coagulation wastewater treatment agent
JP2007061718A (en) Composite flocculant
JP2008110280A (en) Method for treating dyeing waste water
JP2005013892A (en) Water cleaning method
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP4144952B2 (en) Purification methods for rivers and lakes
KR101088148B1 (en) Electrical neutralization of colloidal particles with speed control how water
JP4163811B2 (en) Coagulation method and coagulant
JP2010172882A (en) Coagulant, and method of treating muddy effluent
JP4187201B2 (en) Aggregation method
JP2002079004A (en) Aggregation method
JP3731834B2 (en) Coagulation treatment method, coagulant
JP2003112004A (en) Flocculation method
JP2010172883A (en) Coagulant, and method of treating muddy effluent
JPH1057999A (en) Purifying method of sewage or sludge
JP3939970B2 (en) Coal storage wastewater treatment method
JP4704297B2 (en) Aggregation method
JP2005007250A (en) Sludge treatment apparatus and sludge treatment method
JP4259700B2 (en) Sludge aggregation method and water treatment method
JP2004008850A (en) Treatment method of muddy water
JP3225266B2 (en) Algae-containing water treatment method
JPH0299185A (en) Water treatment agent and water treatment process
JPH05305300A (en) Dehydrating agent for sludge
CN212374970U (en) High-hardness mine water pretreatment system
JP4065170B2 (en) Aggregation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4