JP2004289014A - p-TYPE ACTIVATION METHOD OF GaN BASED COMPOUND SEMICONDUCTOR - Google Patents

p-TYPE ACTIVATION METHOD OF GaN BASED COMPOUND SEMICONDUCTOR Download PDF

Info

Publication number
JP2004289014A
JP2004289014A JP2003081408A JP2003081408A JP2004289014A JP 2004289014 A JP2004289014 A JP 2004289014A JP 2003081408 A JP2003081408 A JP 2003081408A JP 2003081408 A JP2003081408 A JP 2003081408A JP 2004289014 A JP2004289014 A JP 2004289014A
Authority
JP
Japan
Prior art keywords
compound semiconductor
based compound
gan
type
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081408A
Other languages
Japanese (ja)
Other versions
JP4371681B2 (en
Inventor
Hikari Hirano
光 平野
Satoshi Kamiyama
智 上山
Hiroshi Amano
浩 天野
Isamu Akasaki
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003081408A priority Critical patent/JP4371681B2/en
Publication of JP2004289014A publication Critical patent/JP2004289014A/en
Application granted granted Critical
Publication of JP4371681B2 publication Critical patent/JP4371681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a p-type activation method capable of converting a GaN based compound semiconductor into a low resistance p-type semiconductor by low temperature or short time annealing even if hydrogen is contained substantially in an annealing atmosphere. <P>SOLUTION: A GaN based compound semiconductor 7 implanted with p-type impurities is formed and after a hydrogen absorbable/permeable film 10 having an action for absorbing hydrogen in the GaN based compound semiconductor 7 and discharging it to the outside is formed on the surface thereof, the GaN based compound semiconductor 7 is annealed. Consequently, hydrogens bonding to p-type impurities implanted into the GaN based compound semiconductor 7 are released thus effecting p-type activation of the GaN based compound semiconductor 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線センサ等の受光素子、或は、紫外、青色発光レーザダイオード、紫外、青色発光ダイオード等の発光素子に利用されるGaN系化合物半導体の製造方法に関し、詳しくは、p型不純物の注入されたGaN系化合物半導体を低抵抗にp型活性化する方法に関する。
【0002】
【従来の技術】
GaN系化合物半導体(一般式:AlGaIn1−x−yN)は直接遷移型のエネルギバンド構造を有し、そのバンドギャップエネルギが室温で1.9eV〜6.2eVに及ぶワイドバンドギャップであるため、紫外域から可視光域をカバーする発光ダイオード、レーザダイオード、及び、紫外線センサ等の受光素子として広範な応用が可能である。
【0003】
従来から、p型半導体、n型半導体、i型半導体等の半導体層を積層して様々な素子構造の化合物半導体素子が作製されている。例えば、p型AlGa1−xN層(0≦x≦1)を含む受光素子では、基板側からPN、NP、PIN、NIP、PNP、PINP、NPN、NPIN等の順番に各半導体層を積層して、ダイオード構造またはトランジスタ構造を構成し、当該構造のi型半導体層やPN接合層に形成される受光領域で発生する電流をp型半導体、n型半導体に設けられた電極から検出可能に構成したものがある。ここで、p型半導体やn型半導体が、夫々p型不純物、n型不純物の注入によって形成されることで、上記各種素子構造が構成されるのであるが、更には、p型半導体層やn型半導体層におけるp型化、n型化、つまりは低抵抗化を十分に行うことで、電極材料との良好な電気的接続を可能にし、更には、素子構造における寄生抵抗成分を小さくして受光素子としての電気的特性の向上を図ることができる。
【0004】
しかしながら、GaN系化合物半導体においては、結晶成長時の窒素源として、一般にNHが用いられており、成長中にこのNHが分解して原子状水素となりGaN系化合物半導体内に滞留し、この原子状水素がp型不純物として注入されたMg等と結合することにより、当該p型不純物がアクセプタとして作用するのを阻害すると考えられ、単にp型不純物を注入するだけでは、GaN系化合物半導体のp型化は必ずしも成されず、高抵抗のまま十分な素子特性が得られないばかりか、素子構造自体が形成されない場合もあった。
【0005】
そこで、例えば、特許文献1に開示されたp型窒化ガリウム系化合物半導体の製造方法では、気相成長法によりp型不純物の注入されたGaN系化合物半導体を成長させた後、400℃以上の温度でアニーリングを行うことで、GaN系化合物半導体のp型活性化を行い、低抵抗のp型GaN系化合物半導体を作製している。
【0006】
【特許文献1】
特許第2540791号明細書
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示されたp型窒化ガリウム系化合物半導体の製造方法では、400℃以上の温度でアニーリングを行うことで、GaN系化合物半導体中で結合した原子状水素とMg等のp型不純物が分離し、GaN系化合物半導体表面に移動する。しかし、p型不純物から分離した原子状水素は、GaN系化合物半導体表面のポテンシャル障壁のために外部に放出されずに表面近傍に滞留するようになり、GaN系化合物半導体中での分離がそれ以上に進行せず、p型活性化がある程度で飽和してしまう虞がある。従って、更にp型活性化を促進させるには、アニーリング温度を上昇させる必要がある。しかし、アニーリング温度を上昇し過ぎると、窒素が脱離して、結晶が劣化するために、アニーリング温度の上限が存在する。GaNの場合は、900℃以下が必要であり、InGaNが含まれる場合は、800℃以下に設定しなければならない。また、600℃以下の低温でアニーリングを行う場合に、十分なp型活性化を実現するに長時間を要することになり、400℃が実用上の下限温度である。
【0008】
また、当該製造方法では、水素が実質的に含まれていない雰囲気中でアニーリングを行う必要があり、例えば、アニーリングを別のアニーリング装置内に移動して行うか、同じ反応室内で処理する場合は、p型窒化ガリウム系化合物半導体の窒素材料となるNHやH(キャリアガス)を反応室から事前に除去する必要がある。製造工程上、工数増加となり、製造コスト増加の要因となる。
【0009】
本発明は、上述の問題点に鑑みてなされたものであり、その目的は、上記問題点を解消し、アニーリング雰囲気中に実質的に水素が含まれていても、低温または短時間のアニーリング処理で、GaN系化合物半導体を低抵抗のp型半導体にできるp型活性化方法を提供することにある。
【0010】
【課題を解決するための手段】
この目的を達成するための本発明に係るGaN系化合物半導体のp型活性化方法の第一の特徴構成は、p型不純物の注入されたGaN系化合物半導体を形成後、その表面に、前記GaN系化合物半導体中の水素を吸収して外部へ放出する作用を有する水素吸収透過膜を形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングすることにより、前記GaN系化合物半導体中に注入されたp型不純物と結合している水素を脱離させて前記GaN系化合物半導体をp型活性化する点にある。
【0011】
上記第一の特徴構成によれば、p型活性化が促進され、アニーリング温度が低温でも水素吸収透過膜がない場合に比べて短時間に活性化が進む。つまり、アニーリングによりp型不純物と分離してGaN系化合物半導体表面近傍に滞留する水素原子を水素吸収透過膜が吸収して外部に放出することにより、かかる滞留によりGaN系化合物半導体のp型活性化が飽和するのが防止され、更なる活性化が阻害されずに促進される。
【0012】
更に、還元雰囲気中でアニーリングすることにより、水素吸収透過膜形成後に、酸化雰囲気の空気または窒素雰囲気中でアニーリングした場合、酸素または残留酸素の影響により、水素吸収透過膜の表面が原子層レベルで酸化、或いは、表面状態の劣化が生じて、水素吸収透過膜の性能が劣化するのを回避できる。
【0013】
同第二の特徴構成は、上記第一の特徴構成に加えて、前記水素吸収透過膜が前記GaN系化合物半導体中の原子状水素を吸収して水素分子として外部へ放出する触媒作用を有する点にある。
【0014】
上記第二の特徴構成によれば、水素吸収透過膜の原子状水素を分子化する化学反応が触媒作用によって促進されるため、GaN系化合物半導体中の水素を吸収して外部へ放出する作用が良好に発揮され、結果としてGaN系化合物半導体のp型活性化が促進される。
【0015】
同第三の特徴構成は、上記第一または第二の特徴構成に加えて、前記水素吸収透過膜がニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質からなる点にある。
【0016】
上記第三の特徴構成によれば、水素吸収透過膜がニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質から形成されるので、GaN系化合物半導体中の水素を吸収して外部へ放出する作用が発揮され、結果としてGaN系化合物半導体のp型活性化が促進される。
【0017】
同第四の特徴構成は、上記各特徴構成に加えて、前記アニーリング時の処理温度が400℃以上である点にある。
【0018】
従来アニーリング温度850℃でp型不純物としてMgを用いてGaNのp型活性化を水素のない雰囲気中で行ってもMgの50%がせいぜいp型活性化に寄与するものと考えられていたところ、つまり、十分なp型活性化が望めなかったところ、アニーリング時の処理温度が850℃以下であっても、上記第一の特徴構成によるGaN系化合物半導体のp型活性化が十分に発揮され、400℃以下でも処理時間を長くすればp型活性化が期待できるが、上記第四の特徴構成によれば、処理温度を400℃以上とすることで、所期の効果がより良く発揮されることになる。
【0019】
同第五の特徴構成は、上記各特徴構成に加えて、前記アニーリング時の前記還元雰囲気に水素が含まれる点にある。
【0020】
同第六の特徴構成は、上記第一乃至第四の特徴構成に加えて、前記アニーリング時の前記還元雰囲気が、水素と、窒素、アルゴンまたはその混合ガスで構成される点にある。
【0021】
上記第五または第六の特徴構成によれば、還元雰囲気中の水素分子が、還元雰囲気中の平衡酸素濃度以下の微量酸素による水素吸収透過膜表面の酸化を防止するクリーニング作用を発揮し、水素吸収透過膜のGaN系化合物半導体中の水素を吸収して外部へ放出する機能が良好に維持され、結果としてGaN系化合物半導体のp型活性化が促進される。
【0022】
同第七の特徴構成は、上記各特徴構成に加えて、前記アニーリング時の前記還元雰囲気が大気圧以下である点にある。
【0023】
同第八の特徴構成は、上記第七の特徴構成に加えて、前記アニーリング時の前記還元雰囲気が、ロータリーポンプのみにより4000Pa(約30Torr)以下に減圧されている点にある。
【0024】
上記第七または第八の特徴構成によれば、還元雰囲気が減圧下にあることで、水素吸収透過膜の劣化が抑制され、表面状態がより良好に維持され、特に4000Pa(約30Torr)以下でその効果がより顕著となり、GaN系化合物半導体のp型活性化が促進される。また、後工程で電極金属等の他の金属をその上面に堆積させる場合に、良好な表面状態が特に好適となる。また、ロータリーポンプのみにより減圧することで、減圧処理時間も短くスループットが上がり、また、還元ガスを導入後にガスを引くため減圧処理による汚染物質の混入も防止できる。更に、大気圧下では還元ガスの置換が必要となるがその手間も省ける。
【0025】
同第九の特徴構成は、上記各特徴構成に加えて、前記p型不純物の注入されたGaN系化合物半導体を形成後、その表面に前記水素吸収透過膜だけを形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングする点にある。
【0026】
例えば、水素吸収透過膜と他の金属膜を重ねてp型電極を形成する場合に、他の金属膜を先に堆積してアニーリングすると水素吸収透過膜の水素を吸収して外部へ放出する機能が阻害され、水素吸収透過膜と他の金属膜の間に蓄積された水素がその金属膜を通過する過程で、その金属膜に穴が開き、金属膜の品質劣化を招く結果となる。
【0027】
そこで、上記第九の特徴構成によれば、還元雰囲気中でアニーリングすることとの相乗効果で、かかる問題が効果的に解消される。特に水素を含む減圧還元雰囲気中でアニーリングすると特に効果的である。
【0028】
同第十の特徴構成は、上記各特徴構成に加えて、前記水素吸収透過膜を電極または電極の一部として用いる点にある。
【0029】
同第十一の特徴構成は、上記第十の特徴構成に加えて、前記電極がp型電極である点にある。
【0030】
上記第十または第十一の特徴構成によれば、水素吸収透過膜をそのまま電極として使用する場合や、水素吸収透過膜に金、ニッケル、アルミニウム、チタン等の上層電極金属を重ねて電極とすることできる。特に、水素吸収透過膜はp型半導体層に接触しているので、当該電極がp型電極であれば、効率的な電極作製が可能となる。
【0031】
同第十二の特徴構成は、上記各特徴構成に加えて、前記水素吸収透過膜を、イオンビームスパッタ(IBS)またはレーザアブレーションで作製する点にある。
【0032】
上記第十二の特徴構成によれば、緻密な水素吸収透過膜を形成でき、水素吸収透過膜の機能が向上するので、アニーリングのスループットの向上が期待でき、GaN系化合物半導体のp型活性化が促進される。
【0033】
同第十三の特徴構成は、上記各特徴構成に加えて、前記p型不純物がマグネシウムまたはベリリウムの少なくとも何れか一方を含む点にある。
【0034】
同第十四の特徴構成は、上記各特徴構成に加えて、前記p型不純物がベリリウムを少なくとも含む点にある。
【0035】
上記第十三または第十四の特徴構成によれば、上記第一の特徴構成によるGaN系化合物半導体のp型活性化が発揮される。
【0036】
一般にアクセプタ準位が深くなると同じ不純物濃度でも正孔キャリア密度が低くなり、また、AlN組成比(モル分率)が高くなるにつれてアクセプタ準位が深くなるため、p型不純物としてMgを使用した場合、AlN組成比が20%以上のGaN系化合物半導体では、十分なp型活性化(低抵抗化)が困難であった。
【0037】
ところで、第十四の特徴構成によれば、同じAlN組成比におけるアクセプタ準位がMgに比べて浅いBeを使用することで、AlN組成比が20%以上のGaN系化合物半導体に対しても十分なp型活性化が得られる。また、水素とBeの電気陰性度の差が水素とMgの電気陰性度の差より小さいことから、水素とBeの方が、水素とMgより結合のイオン性が低いため、アニーリングによる水素の脱離がより容易に促進される結果と考えられる。
【0038】
本発明に係るGaN系化合物半導体装置、受光素子、及び、発光素子の特徴構成は、上記第一乃至第十四の特徴構成のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなる点にある。
【0039】
上記特徴構成によれば、上記第一乃至第十四の特徴構成のGaN系化合物半導体のp型活性化方法により活性化されたp型GaN系化合物半導体を備えた所期の特性を有する半導体装置、受光素子、或は、発光素子を作製することができる。
【0040】
特に、上記受光素子は、バンドギャップエネルギが3.6eV以上のAlGaNを主とする受光領域を備えることにより、3.6eV以上のエネルギを有する光が吸収されることで、波長約344nm(3.6eV)以下の波長の紫外線を上記受光領域によって選択的に検出することができる。
【0041】
更に、バンドギャップエネルギが4.1eV、4.3eV、或は、4.6eV以上のAlGaNを主とする受光領域を備えるとすれば、上記受光領域において夫々4.1eV、4.3eV、或は、4.6eV以上のエネルギを有する光が吸収されることで、波長約300nm(4.1eV)以下、約290nm(4.3eV)以下、或は、約280nm(4.6eV)以下の波長の紫外線を上記受光領域によって検出することができる。
【0042】
ここで、バンドギャップエネルギが4.1eV以上のAlGaNを主とする受光領域を備えるとすれば、波長約300nmを超える波長の光、即ち、各種照明機器などからの室内光に対しては上記受光領域が感度を有さないので、波長約300nm以下の紫外線を含む例えば火炎光に対して選択的に感度を有する紫外線受光素子(火炎センサ)を得ることができる。
【0043】
また、バンドギャップエネルギが4.3eV以上のAlGaNを主とする受光領域を備えるとすれば、4.3eV以上(波長約290nm以下)のエネルギを有する光が吸収されることで、紫外線受光素子に照射される光に太陽光等の外乱光が含まれていたとしても、波長約290nm以下ではそれらの外乱光の光強度が非常に小さくなり、波長約290nm以下の紫外線を含む例えば火炎光に対して選択的に感度を有する、太陽光等の外乱光の影響を極めて受けにくい紫外線受光素子(火炎センサ)を得ることができる。
【0044】
更に、バンドギャップエネルギが4.6eV以上のAlGaNを主とする受光領域を備えるとすれば、4.6eV以上(波長約280nm以下)のエネルギを有する光が吸収されることで、紫外線受光素子に照射される光に太陽光等の外乱光が含まれていたとしても、各種照明機器などからの室内光および太陽光(自然光)に対しては上記受光領域が感度を有さないので、波長約280nm以下の紫外線を含む例えば火炎光に対して選択的に感度を有する、室内光や太陽光等の外乱光の影響を受けない紫外線受光素子(火炎センサ)を得ることができる。
【0045】
また、上記発光素子は、活性層のAlGaNのAlN組成比を適当に選択することで、光エネルギが3.4eVから6.2eVの発光を得ることができる。
【0046】
【発明の実施の形態】
本発明に係るGaN系化合物半導体のp型活性化方法(以下、適宜「本発明方法」という。)の実施の形態につき、紫外線受光素子20の作製工程に適用する場合を例に、図面に基づいて説明する。
【0047】
図1に示す紫外線受光素子20は、PIN型の素子構造を採用した場合の例である。この紫外線受光素子20は、基板1上に、下地構造部とデバイス構造部とを順次積層して形成される。下地構造部は、基板1上に、低温堆積緩衝層2と、結晶改善層3と、低温堆積中間層4とを順次積層して形成され、デバイス構造部は、低温堆積中間層4上に、n型半導体層5と、i型半導体層(受光領域)6と、AlGa1−xN(0≦x≦1)からなるp型半導体層7とを順次積層して形成される。また、n型半導体層5が部分的に露出するようにデバイス構造部をエッチングなどによって除去し、その露出部位に電極8が形成され、p型半導体層7上には電極9が形成される。尚、電極8および電極9は、それぞれn型半導体層5およびp型半導体層7との間の電気的な特性がオーミックなものとなるオーミック電極である。
【0048】図1に例示した紫外線受光素子20では、(0001)サファイア基板1上に、AlNの低温堆積緩衝層2、GaNの結晶改善層3、AlNの低温堆積中間層4、n型AlGaN層5、i型AlGaN層6、p型AlGaN層7が、夫々形成されている。上記の各GaN系化合物半導体層は、トリメチルアルミニウム(Al源)、トリメチルガリウム(Ga源)、アンモニア(窒素源)などの各原料ガスを使用したMOCVD法(有機金属化合物気相成長法)を利用して作製可能である。
【0049】尚、上記下地構造部2〜4の目的は、デバイス構造部5〜7の結晶品質を良好なものとすることである。サファイア基板1の結晶成長表面における格子間隔と、デバイス構造部を構成するAlGa1−xN(0≦x≦1)の格子定数との間には大きな差が存在するが、下地構造部によってその格子不整合を緩和し、AlGaN層を成長させる際に加わる格子不整合による応力を小さくすることができる。その結果、デバイス構造部中のAlGaN層の結晶品質を良好にすることができる。
【0050】尚、格子不整合を緩和し、その上部に形成されるデバイス構造部の結晶品質を改善するための下地構造部の構造及びその形成過程は、種々提案されている。本発明の要旨は下地構造部ではなく、デバイス構造部のp型半導体層7にあるので、下地構造部は、例えば、上記のような公知の構造を公知の製造過程で形成したものを利用すればよく、また、上記以外の新規な構造を用いてもよい。また、基板1も(0001)サファイア基板に限定されるものではない。
【0051】次に、本発明方法による紫外線受光素子20のp型AlGaN層7に対するp型活性化方法について説明する。
【0052】図2(A)に示すように、先ず、p型AlGaN層7は、MOCVD法を用いて作製する。ここで、Al、Ga、Nの原料として上記の各原料ガスを使用し、p型不純物の原料ガスとして、CpMg(ビスシクロペンタジエニルマグネシウム)ガスを流しながら、Mg(マグネシウム)を注入(ドープ)したp型AlGaN層7を成長させる。この状態では、N源として用いたNHが分解して原子状水素となりp型AlGaN層7内に滞留し、この原子状水素がp型不純物として注入されたMgと結合することにより、p型不純物であるMgがアクセプタとして作用するのを阻害する結果、p型AlGaN層7は十分にp型活性化されずに高抵抗状態のままである。
【0053】次に、Mg注入したp型AlGaN層7を成長した後に、図2(B)に示すように、その表面に水素吸収透過膜10を形成する。水素吸収透過膜10は、ニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質からなり、イオンビームスパッタ(IBS)、電子ビーム蒸着(EB)、レーザアブレーション、RFスパッタ、メッキ等の手法を用いて形成する。尚、生産性では電子ビーム蒸着が有利で、膜の緻密性はIBSまたはレーザアブレーションが有利であると考えられる。特に、膜の緻密性を優先させることで、水素吸収透過膜10の水素透過性能と触媒作用が高くなり、後工程でのアニーリングのスループットが向上する。従って、IBSまたはレーザアブレーションの使用が好適である。
【0054】尚、上記水素吸収透過膜10の形成は、図1におけるn型半導体層5が部分的に露出するようにデバイス構造部をエッチングする前に行っても、そのエッチング後に行っても構わない。
【0055】次に、図2(C)に示すように、水素吸収透過膜10形成後に、p型AlGaN層7をアニーリング処理する。処理温度は400℃以上の温度範囲で適宜選択する。p型AlGaN層7の成長、水素吸収透過膜10の形成、及び、アニーリング処理は同じ反応容器内で行ってもよく、また、夫々別容器で行っても構わない。ここで、処理雰囲気は、水素を含む還元雰囲気とし、還元ガスとして、水素、窒素、アルゴンで構成される混合ガスを反応容器内に導入し、導入後に、ロータリーポンプのみにより短時間で還元ガスを吸引して4000Pa(30Torr)以下に減圧する。このように還元ガス導入後に減圧することで、汚染物質の反応容器内への進入を防止できる。尚、水素を含む還元雰囲気は、水素を主成分とする還元ガス(例えば水素100%)でも構わない。
【0056】本発明方法では、400℃以下の低温でのアニーリングでも、水素吸収透過膜10の奏する触媒作用により、十分なp型活性化が可能である。即ち、アニーリングによりMgから脱離した水素原子が、p型AlGaN層7の表面近傍に滞留することなく、水素吸収透過膜10に吸収され、水素分子化され、外部雰囲気中に放出されるため、p型AlGaN層7中に原子状水素が滞留して飽和することなく、Mgから水素が脱離するので、p型不純物として注入されたMgがアクセプタとして機能する。
【0057】また、水素吸収透過膜10は、Ni(ニッケル)、Pd(パラジウム)、Pd−Ag(銀パラジウム合金)、白金(Pt)、ルテニウム(Rt)等の単層膜であっても、これらを組み合わせた複層膜であってもよい。更に、水素吸収透過膜10の一部に上記金属以外の水素吸蔵合金を含んでいても構わない。他の水素吸蔵合金としては、例えば、La0.8Nb0.2Ni2.5Co2.4Al0.1、La0.8Nb0.2Zr0.03Ni3.8Co0.7Al0.5、MmNi3.65Co0.75Mn0.4Al0.3、MmNi2.5Co0.7Al0.8、Mm0.85Zr0.15Ni1.0Al0.80.2等がある。ここで、Mmはミッシュメタルで、Ce(40〜50%),La(20〜40%),Pr,Nd を主要構成元素とした希土類の混合物である。
【0058】尚、上記アニーリング時の反応容器内には水素が含まれていることが好ましい。一般に、p型AlGaN層7の表面に水素吸収透過膜10を設けずにアニーリング処理を行うとすれば、アニーリング処理雰囲気中の水素の存在は、Mgからの水素の脱離を阻害する要因と考えられていたが、水素吸収透過膜10を設けた場合は、処理雰囲気中の水素分子が水素吸収透過膜表面の酸化を防止するクリーニング作用を発揮するため、水素吸収透過膜10が所期の効果を十分に発揮できるため、水素の存在は寧ろ好ましい。
【0059】また、このことは、p型AlGaN層7を成長させた同じ反応容器内でアニーリング処理を行えることを意味する。つまり、MOCVD法による成長時の原料ガスのキャリアガスとして水素を使用するので、その水素を主成分とする還元雰囲気をそのまま利用することができる。
【0060】アニーリング処理によるp型活性化後に、水素吸収透過膜10をエッチング等によって除去するとともに、p型半導体層7とi型半導体層6の一部をn型半導体層5が部分的に露出するまでエッチング等によって除去し、その露出部位にn型電極8を形成し、p型半導体層7上にp型電極9を形成する。ここで、n型電極8、p型電極9は、夫々の極性に応じてAl、Au、Ni、Ti等の公知の材料を公知の方法で作製すればよい。本発明方法により、p型半導体層7が十分にp型活性化することで、p型電極9とのオーミック接触が可能となる。
【0061】ここで、p型電極9として、例えば第1層にパラジウム(Pd)を使用して第2層に金(Au)を用いる場合は、当該第1層目のパラジウムと水素吸収透過膜10のパラジウムを兼用しても構わない。この場合、例えば、水素吸収透過膜10の膜厚を100オングストローム(10−8m)、第2層の金の膜厚を1000オングストローム(10−7m)とすることで、良好なp型オーミック電極が形成できる。
【0062】また、n型電極8は、ZrBを電極材料として用いて、イオンビームスパッタ、レーザアブレーション、CVDなどの蒸着方法により作製してもよい。特に、Zr源としてZr[N(C、またはZr(BHなどを使用し、B源としてトリメチルボロンを使用したMOCVD法を利用してZrBを作製する場合、デバイス構造部を形成する各窒化物半導体層と共通の成膜装置を使用することができるという利点がある。尚、作製されたZrB電極上にAl、Au、Ni、Tiなどの金属を更に形成してZrB電極を保護するような多層電極(保護電極)を形成してもよい。
【0063】また、p型電極9は、ZrNを電極材料として用いて、イオンビームスパッタ、レーザアブレーション、CVDなどの蒸着方法により作製してもよい。ZrNは、p型半導体層7上に作製したZrBをアンモニアガスなどを用いて窒化処理することで得られる。また、n型電極8の場合と同様に、作製されたZrN電極上にAl、Au、Ni、Tiなどの金属を更に形成してZrN電極9を保護するような多層電極(保護電極)を形成してもよい。
【0064】ここで、光がp型電極9側(図面上側)から入射される場合、p型電極9はメッシュ状または受光領域へ光を透過させる他の形状または素材で形成される。逆に、光が基板1側(図面下側)から入射される場合は、下地構造部のGaN結晶改善層3で入射光が吸収されてi型半導体層(受光領域)6まで到達しなくなるので、基板1及び下地構造部の少なくとも低温堆積緩衝層2と結晶改善層3の受光領域に当たる部分をエッチング等で除去開口して入射窓を形成する必要がある。或いは、基板1と下地構造部をi型半導体層(受光領域)6で検出すべき波長範囲の光を吸収せず透過する材料を使用すればよい。例えば、結晶改善層3でGaNを用いずに、i型半導体層(受光領域)6よりAlN組成比の大きいAlGaNまたはAlNを用いればよい。
【0065】図1に示した紫外線受光素子20に対して外部から光が照射された場合、その光はメッシュ状の電極9とp型半導体層7とを透過して受光領域であるi型半導体層6に入射して吸収され、光キャリアが発生する。p型電極8およびn型電極9の間には電界が印加されており、発生された光キャリアは光電流として外部に出力される。
【0066】デバイス構造部を構成するAlGa1−xN(0≦x≦1)のバンドギャップエネルギはAlN組成比を変えることで調整され、AlN組成比xとバンドギャップエネルギとは図3に示すような関係で示される。図3から読み取れるように、AlN組成比xを変えることで、AlGa1−xNのバンドギャップエネルギを3.42eVから6.2eVにまで調整することができる。従って、受光領域で吸収可能な光の波長範囲は約360nm〜約200nmの間で調整可能である。
【0067】また、紫外線受光素子20において火炎の光を検出する場合には、図4の発光スペクトルに示すような火炎の発光を吸収できるだけのバンドギャップエネルギを有する受光領域を形成すればよい。尚、図4に示す火炎の発光スペクトルは、ガス(炭化水素)を燃焼させた際に発生する火炎のスペクトルである。また、太陽光のスペクトルと、各種照明機器からの光による室内光のスペクトルも同時に示す。
【0068】以下には、受光領域のバンドギャップエネルギについて説明する。紫外線受光素子20に波長選択性を持たせるためには、受光領域(AlGa1−xN)におけるAlN組成比を調整して、そのバンドギャップエネルギを所望の値に設定することが行われる。例えば、波長約344nm以下の波長域に比較的大きい強度で現れる火炎の光を選択的に受光することのできる火炎センサを作製したい場合には、受光領域のバンドギャップエネルギが3.6eV以上となるようにAlN組成比x=0.05、或いはそれ以上とすればよい。或いは、約300nm以上の波長域に含まれる、各種照明機器からの光(室内光)を受光せずに、検出対象波長範囲にある火炎の光を受光するような火炎センサを作製したい場合には、受光領域のバンドギャップエネルギが4.1eV以上となるようにAlN組成比x=0.25、或いはそれ以上とすればよい。また、約280nm以上の波長域に含まれる、太陽光からの光を受光せずに、検出対象波長範囲にある火炎の光のみを受光するような火炎センサを作製したい場合には、受光領域のバンドギャップエネルギが4.4eV以上となるようにAlN組成比x=0.35、或いはそれ以上とすればよい。
【0069】更に、弱い光強度であれば太陽光などの外乱光が受光領域において吸収されても構わない場合には、受光領域のバンドギャップエネルギが4.3eV以上(波長約290nm以下)となるようにAlN組成比x=0.31、或いはそれ以上とすればよい。波長約290nm以下では図3に示すようにそれらの外乱光の光強度が非常に小さくなり、他方で火炎の光は大きいので、結果として火炎の光が存在することを検出することができる。
【0070】更に、紫外線受光素子20がエンジン内部などの閉鎖空間に設置され、そこで燃焼される燃料の発光を検出したい場合には、上述した室内光や太陽光が存在しないため、それらを排除するような大きいバンドギャップエネルギを設定する必要はない。そのため、検出対象波長範囲にある火炎の光の中でも特に炭化水素を含む化合物(エンジンで燃焼される燃料)を燃焼させた場合に観測されるOHラジカルの発光に起因する発光ピーク(波長約310nm(310nm±10nm):4.0eV)の光(波長310nm以上344nm以下の火炎の光)を選択的に受光することのできる紫外線受光素子20を作製した場合には、受光領域のバンドギャップエネルギが3.6eV以上4.0eV以下となるように、AlN組成比xを0.05以上0.23以下とすればよい。
【0071】尚、上述したAlN組成比xとバンドギャップエネルギとの関係は理論値に基づいて説明したものであり、AlN組成比xが同じになるように成膜を行ったとしても実際に得られるAlGaN層のバンドギャップエネルギが異なる可能性もある。例えば、三元混晶化合物であるAlGaNの場合には、二元化合物であるGaNが生成され易く、その結果、バンドギャップエネルギが低エネルギ側(長波長側)にシフトする傾向にある。従って、理論値通りのバンドギャップエネルギを得たい場合には、AlN組成比を予め大きく設定した上で成膜することが行われることもある。
【0072】
以下に、別の実施形態につき説明する。
〈1〉上記実施形態では、p型AlGaN層7の成長に係るp型不純物としてMgを用いたが、p型AlGaN層7のAlN組成比が20%以上の場合においても十分なp型活性化を得ようとすれば、p型不純物としてMgに代えてBe(ベリリウム)を用いるのも好ましい実施形態である。
【0073】
この場合、p型AlGaN層7は、MOCVD法を用いて、Al、Ga、Nの原料として上記実施形態と同様に、トリメチルアルミニウム(Al源)、トリメチルガリウム(Ga源)、アンモニア(窒素源)等の各原料ガスを使用し、p型不純物の原料ガスとして、CpBe(ビスシクロペンタジエニルベリリウム)ガスを流しながら、Beを注入したp型AlGaN層7を成長させる。p型AlGaN層7成長後における水素吸収透過膜10の形成、及び、p型AlGaN層7のアニーリング処理については、上記実施形態と同様である。
【0074】
更に、p型不純物の原料ガスとして、(R−Cp)Beガス[ビス(R−シクロペンタジエニル)ベリリウム]ガス(Rは1〜4価のアルキル基)を用いるのも更に好ましい。特に、Rが2〜4価のアルキル基の(R−Cp)Beガスを用いるのがより好ましい。当該原料ガスを用いることにより、有機金属化合物気相成長法を用いてp型、n型及びi型半導体を所定の順序で段階的に形成するにあたり、各型に対応する不純物原料を結晶成長させる反応室内に配管を通して供給する場合に、各半導体層の成長を切り換えるときに、不純物原料の供給も切り換えるが、同じ配管を使用する場合に、配管内壁に残留した残留不純物による影響(メモリ効果)が無視できずに各半導体層間の界面近傍において所期の不純物濃度が達成できないという問題に対して、改善効果を発揮するからである。つまり、当該原料ガスの分子サイズが、CpBeより大きく、分極による分子間力が弱まるため、配管内壁への残留が少なくなるため、上記メモリ効果を抑制することができ、より効果的にp型活性化が促進される。
【0075】
〈2〉上記実施形態では、本発明に係るGaN系化合物半導体のp型活性化方法を紫外線受光素子20の作製工程に適用する場合を例示したが、本発明方法は、紫外線受光素子以外の受光素子、発光素子、その他の半導体装置に適用可能である。特に、発光素子は、デバイス構造上、受光素子と類似するので、上記実施形態の方法が適用できる。
【0076】
〈3〉上記実施形態では、デバイス構造部はPIN構造を例に説明したが、デバイス構造部にp型AlGaN層を含む場合は、本発明方法によるp型活性化が適用可能であり、デバイス構造部はPIN構造に限定されない。
【図面の簡単な説明】
【図1】本発明に係るGaN系化合物半導体のp型活性化方法を用いて作製される紫外線受光素子の構成を示す素子断面図
【図2】本発明に係るGaN系化合物半導体のp型活性化方法の処理工程を説明する素子断面図
【図3】AlGaNのバンドギャップエネルギを示すグラフ
【図4】火炎の光、太陽光、および室内光のスペクトルを示すグラフ
【符号の説明】
1 基板
2 低温堆積緩衝層
3 結晶改善層
4 低温堆積中間層
5 n型半導体層
6 i型半導体層
7 p型半導体層
8 n型電極
9 p型電極
10 水素吸収透過膜
20 紫外線受光素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a GaN-based compound semiconductor used for a light-receiving element such as an ultraviolet sensor, or a light-emitting element such as an ultraviolet or blue light-emitting laser diode or an ultraviolet or blue light-emitting diode. The present invention relates to a method for p-type activation of an implanted GaN-based compound semiconductor with low resistance.
[0002]
[Prior art]
GaN-based compound semiconductor (general formula: Al x Ga y In 1- x-y N) has an energy band structure of the direct transition type wide band the band gap energy spans 1.9eV~6.2eV at room temperature Because of the gap, it can be widely applied as a light-emitting diode, a laser diode, and a light-receiving element such as an ultraviolet sensor covering the ultraviolet region to the visible light region.
[0003]
BACKGROUND ART Conventionally, compound semiconductor elements having various element structures have been manufactured by laminating semiconductor layers such as a p-type semiconductor, an n-type semiconductor, and an i-type semiconductor. For example, in a light receiving element including a p-type Al x Ga 1-x N layer (0 ≦ x ≦ 1), each semiconductor layer is arranged in the order of PN, NP, PIN, NIP, PNP, PINP, NPN, NPIN and the like from the substrate side. Are stacked to form a diode structure or a transistor structure, and a current generated in a light receiving region formed in the i-type semiconductor layer or the PN junction layer of the structure is detected from electrodes provided in the p-type semiconductor and the n-type semiconductor. Some are configured to be possible. Here, the p-type semiconductor and the n-type semiconductor are formed by implanting a p-type impurity and an n-type impurity, respectively, to configure the various element structures described above. By making the p-type and n-type in the type semiconductor layer sufficiently, that is, lowering the resistance sufficiently, a good electrical connection with the electrode material is enabled, and the parasitic resistance component in the element structure is reduced. The electric characteristics of the light receiving element can be improved.
[0004]
However, in a GaN-based compound semiconductor, NH 3 is generally used as a nitrogen source during crystal growth. During the growth, the NH 3 is decomposed into atomic hydrogen and stays in the GaN-based compound semiconductor. It is considered that the atomic hydrogen bonds to Mg or the like implanted as a p-type impurity, thereby inhibiting the p-type impurity from acting as an acceptor. The p-type is not always achieved, and sufficient device characteristics cannot be obtained with high resistance, and the device structure itself may not be formed.
[0005]
Therefore, for example, in the method of manufacturing a p-type gallium nitride-based compound semiconductor disclosed in Patent Document 1, after growing a GaN-based compound semiconductor into which a p-type impurity is implanted by a vapor phase growth method, the temperature is increased to 400 ° C. or more. Annealing is performed to activate the GaN-based compound semiconductor p-type, thereby producing a low-resistance p-type GaN-based compound semiconductor.
[0006]
[Patent Document 1]
Japanese Patent No. 2540791
[Problems to be solved by the invention]
However, in the method of manufacturing a p-type gallium nitride-based compound semiconductor disclosed in Patent Document 1, annealing at a temperature of 400 ° C. or more causes atomic hydrogen bonded in the GaN-based compound semiconductor to be p-type such as Mg. The impurities are separated and move to the GaN-based compound semiconductor surface. However, the atomic hydrogen separated from the p-type impurity is not released to the outside due to a potential barrier on the surface of the GaN-based compound semiconductor, but stays near the surface, and the separation in the GaN-based compound semiconductor is further increased. And the p-type activation may be saturated to some extent. Therefore, to further promote p-type activation, it is necessary to increase the annealing temperature. However, if the annealing temperature is too high, nitrogen is desorbed and the crystal is deteriorated, so that there is an upper limit of the annealing temperature. In the case of GaN, the temperature must be 900 ° C or lower, and when InGaN is included, the temperature must be set to 800 ° C or lower. In addition, when annealing is performed at a low temperature of 600 ° C. or less, it takes a long time to realize sufficient p-type activation, and 400 ° C. is a practical lower limit temperature.
[0008]
In addition, in the production method, it is necessary to perform annealing in an atmosphere containing substantially no hydrogen.For example, if annealing is performed by moving the annealing into another annealing apparatus or processing is performed in the same reaction chamber. It is necessary to remove NH 3 and H 2 (carrier gas), which are nitrogen materials of the p-type gallium nitride-based compound semiconductor, from the reaction chamber in advance. In the manufacturing process, the number of steps increases, which causes an increase in manufacturing cost.
[0009]
The present invention has been made in view of the above-described problems, and an object of the present invention is to solve the above-described problems and to perform a low-temperature or short-time annealing process even when hydrogen is substantially contained in an annealing atmosphere. Accordingly, an object of the present invention is to provide a p-type activation method that can convert a GaN-based compound semiconductor into a low-resistance p-type semiconductor.
[0010]
[Means for Solving the Problems]
In order to achieve this object, the first characteristic configuration of the p-type activation method for a GaN-based compound semiconductor according to the present invention is as follows. Forming a hydrogen-absorbing and permeable film having a function of absorbing and releasing hydrogen in a GaN-based compound semiconductor, and then annealing the GaN-based compound semiconductor in a reducing atmosphere to inject into the GaN-based compound semiconductor; Hydrogen bonded to the p-type impurity is desorbed to activate the GaN-based compound semiconductor p-type.
[0011]
According to the first characteristic configuration, the p-type activation is promoted, and the activation proceeds even in a low annealing temperature in a shorter time than in a case where there is no hydrogen absorption / permeable membrane. In other words, the hydrogen absorption and permeable film absorbs hydrogen atoms staying near the surface of the GaN-based compound semiconductor after being separated from the p-type impurities by annealing, and emits the hydrogen atoms to the outside. Is prevented from being saturated, and further activation is promoted without being hindered.
[0012]
Furthermore, by annealing in a reducing atmosphere, after annealing in an air or nitrogen atmosphere of an oxidizing atmosphere after the formation of the hydrogen-absorbing permeable film, the surface of the hydrogen-absorbing permeable film is at the atomic layer level due to the influence of oxygen or residual oxygen. It is possible to avoid deterioration of the performance of the hydrogen absorbing and permeable membrane due to oxidation or deterioration of the surface state.
[0013]
The second feature is that, in addition to the first feature, the hydrogen absorbing and permeable film has a catalytic action of absorbing atomic hydrogen in the GaN-based compound semiconductor and releasing it as hydrogen molecules to the outside. It is in.
[0014]
According to the second characteristic configuration, the chemical reaction that molecularizes the atomic hydrogen in the hydrogen absorption / permeable membrane is promoted by the catalytic action, and therefore, the action of absorbing and releasing hydrogen in the GaN-based compound semiconductor to the outside is achieved. The GaN compound semiconductor is preferably exhibited, and as a result, the p-type activation of the GaN-based compound semiconductor is promoted.
[0015]
The third feature is that, in addition to the first or second feature, the hydrogen absorption and transmission membrane is made of one or more substances selected from nickel, palladium, a silver-palladium alloy, platinum, and ruthenium. It is in.
[0016]
According to the third characteristic configuration, the hydrogen absorption and transmission film is formed of one or more substances selected from nickel, palladium, silver-palladium alloy, platinum, and ruthenium, and thus absorbs hydrogen in the GaN-based compound semiconductor. As a result, the p-type activation of the GaN-based compound semiconductor is promoted.
[0017]
The fourth characteristic configuration is that, in addition to the above-mentioned respective characteristic configurations, the processing temperature during the annealing is 400 ° C. or higher.
[0018]
Conventionally, it has been thought that 50% of Mg contributes at most to p-type activation even when p-type activation of GaN is performed in an atmosphere without hydrogen using Mg as a p-type impurity at an annealing temperature of 850 ° C. That is, when sufficient p-type activation could not be expected, the p-type activation of the GaN-based compound semiconductor according to the first characteristic configuration is sufficiently exhibited even when the annealing treatment temperature is 850 ° C. or less. If the processing time is prolonged even at 400 ° C. or lower, p-type activation can be expected. However, according to the fourth characteristic configuration, by setting the processing temperature to 400 ° C. or higher, the expected effect is more effectively exhibited. Will be.
[0019]
The fifth feature is that, in addition to the above features, the reducing atmosphere at the time of the annealing contains hydrogen.
[0020]
The sixth feature is that, in addition to the first to fourth features, the reducing atmosphere at the time of the annealing is made of hydrogen, nitrogen, argon, or a mixed gas thereof.
[0021]
According to the fifth or sixth characteristic configuration, the hydrogen molecules in the reducing atmosphere exert a cleaning action of preventing oxidation of the surface of the hydrogen absorbing and permeable film by a trace amount of oxygen equal to or lower than the equilibrium oxygen concentration in the reducing atmosphere, The function of the absorption / transmission film to absorb and release hydrogen in the GaN-based compound semiconductor to the outside is well maintained, and as a result, p-type activation of the GaN-based compound semiconductor is promoted.
[0022]
A seventh feature of the present invention is that, in addition to the above features, the reducing atmosphere at the time of the annealing is lower than the atmospheric pressure.
[0023]
An eighth characteristic configuration is that, in addition to the seventh characteristic configuration, the reducing atmosphere during the annealing is reduced to 4000 Pa (about 30 Torr) or less by a rotary pump alone.
[0024]
According to the seventh or eighth characteristic constitution, since the reducing atmosphere is under reduced pressure, the deterioration of the hydrogen absorbing and permeable membrane is suppressed, and the surface state is more favorably maintained, particularly at 4000 Pa (about 30 Torr) or less. The effect becomes more remarkable, and the p-type activation of the GaN-based compound semiconductor is promoted. Further, when another metal such as an electrode metal is deposited on the upper surface in a later step, a favorable surface condition is particularly suitable. In addition, by reducing the pressure only by the rotary pump, the pressure reduction processing time is short and the throughput is increased. Further, since the gas is drawn after the reducing gas is introduced, contamination by contaminants due to the pressure reduction processing can be prevented. Further, at atmospheric pressure, the replacement of the reducing gas is required, but this can be omitted.
[0025]
The ninth feature is that, in addition to the above features, after forming the GaN-based compound semiconductor into which the p-type impurity is implanted, only the hydrogen absorption and transmission film is formed on the surface thereof, In that the GaN-based compound semiconductor is annealed.
[0026]
For example, when a p-type electrode is formed by laminating a hydrogen absorption / transmission film and another metal film, if the other metal film is deposited first and then annealed, the function of absorbing hydrogen from the hydrogen absorption / transmission film and releasing it to the outside is provided. In the process of passing the hydrogen accumulated between the hydrogen absorbing and transmitting film and the other metal film through the metal film, a hole is opened in the metal film, resulting in deterioration of the quality of the metal film.
[0027]
Therefore, according to the ninth characteristic configuration, such a problem is effectively solved by a synergistic effect with annealing in a reducing atmosphere. It is particularly effective to anneal in a reduced-pressure reducing atmosphere containing hydrogen.
[0028]
The tenth characteristic configuration resides in that, in addition to the above-mentioned respective characteristic configurations, the hydrogen absorption / transmission film is used as an electrode or a part of an electrode.
[0029]
An eleventh characteristic configuration is that, in addition to the tenth characteristic configuration, the electrode is a p-type electrode.
[0030]
According to the tenth or eleventh characteristic configuration, when the hydrogen absorption / transmission film is used as an electrode as it is, or when the hydrogen absorption / transmission film is overlaid with an upper electrode metal such as gold, nickel, aluminum, and titanium to form an electrode. I can do it. In particular, since the hydrogen absorption / transmission film is in contact with the p-type semiconductor layer, if the electrode is a p-type electrode, an efficient electrode can be manufactured.
[0031]
A twelfth feature of the present invention is that, in addition to the above features, the hydrogen absorbing and transmitting film is formed by ion beam sputtering (IBS) or laser ablation.
[0032]
According to the twelfth characteristic configuration, a dense hydrogen absorption / transmission film can be formed, and the function of the hydrogen absorption / transmission film is improved, so that an improvement in annealing throughput can be expected, and p-type activation of the GaN-based compound semiconductor can be achieved. Is promoted.
[0033]
A thirteenth feature is that, in addition to the above features, the p-type impurity contains at least one of magnesium and beryllium.
[0034]
A fourteenth feature is that, in addition to the above features, the p-type impurity contains at least beryllium.
[0035]
According to the thirteenth or fourteenth feature, p-type activation of the GaN-based compound semiconductor according to the first feature is exhibited.
[0036]
Generally, when the acceptor level becomes deeper, the hole carrier density becomes lower even at the same impurity concentration, and the acceptor level becomes deeper as the AlN composition ratio (molar fraction) becomes higher. Therefore, when Mg is used as a p-type impurity, In the case of a GaN-based compound semiconductor having an AlN composition ratio of 20% or more, sufficient p-type activation (low resistance) was difficult.
[0037]
By the way, according to the fourteenth feature configuration, by using Be whose acceptor level is shallower than Mg at the same AlN composition ratio, it is sufficient for a GaN-based compound semiconductor having an AlN composition ratio of 20% or more. A good p-type activation is obtained. In addition, since the difference in electronegativity between hydrogen and Be is smaller than the difference in electronegativity between hydrogen and Mg, hydrogen and Be have lower bond ionicity than hydrogen and Mg. This is considered to be a result that separation is more easily promoted.
[0038]
The feature configuration of the GaN-based compound semiconductor device, the light receiving element, and the light-emitting element according to the present invention are p-type activated by the p-type activation method of the GaN-based compound semiconductor having the first to fourteenth feature configurations. The GaN compound semiconductor is provided.
[0039]
According to the above-described feature configuration, a semiconductor device having desired characteristics including the p-type GaN-based compound semiconductor activated by the p-type activation method of the GaN-based compound semiconductor according to the first to fourteenth feature configurations , A light-receiving element, or a light-emitting element can be manufactured.
[0040]
In particular, since the light receiving element has a light receiving region mainly composed of AlGaN having a band gap energy of 3.6 eV or more, light having an energy of 3.6 eV or more is absorbed, so that a wavelength of about 344 nm (3. Ultraviolet light having a wavelength of 6 eV) or less can be selectively detected by the light receiving region.
[0041]
Further, assuming that a light receiving region mainly composed of AlGaN having a band gap energy of 4.1 eV, 4.3 eV, or 4.6 eV or more is provided, the light receiving region has a light receiving region of 4.1 eV, 4.3 eV, or 4.3 eV, respectively. By absorbing light having an energy of 4.6 eV or more, a wavelength of about 300 nm (4.1 eV) or less, about 290 nm (4.3 eV) or less, or about 280 nm (4.6 eV) or less Ultraviolet light can be detected by the light receiving area.
[0042]
Here, assuming that a light receiving region mainly composed of AlGaN having a band gap energy of 4.1 eV or more is provided, light having a wavelength exceeding about 300 nm, that is, indoor light from various lighting devices or the like, is subjected to the above light receiving region. Since the region has no sensitivity, it is possible to obtain an ultraviolet light receiving element (flame sensor) selectively having sensitivity to, for example, flame light containing ultraviolet light having a wavelength of about 300 nm or less.
[0043]
Further, if a light receiving region mainly composed of AlGaN having a band gap energy of 4.3 eV or more is provided, light having energy of 4.3 eV or more (wavelength of about 290 nm or less) is absorbed, so that the ultraviolet light receiving element can be used. Even if the emitted light includes disturbance light such as sunlight, the light intensity of the disturbance light becomes extremely small at a wavelength of about 290 nm or less, and for example, flame light including ultraviolet rays of a wavelength of about 290 nm or less. Thus, it is possible to obtain an ultraviolet light receiving element (flame sensor) which is selectively sensitive and is extremely hard to be affected by disturbance light such as sunlight.
[0044]
Further, if a light receiving region mainly composed of AlGaN having a band gap energy of 4.6 eV or more is provided, light having an energy of 4.6 eV or more (wavelength of about 280 nm or less) is absorbed, so that the ultraviolet light receiving element can be used. Even if the emitted light includes disturbance light such as sunlight, the light receiving region has no sensitivity to room light and sunlight (natural light) from various lighting devices and the like. An ultraviolet light receiving element (flame sensor) which is selectively sensitive to, for example, flame light including ultraviolet light of 280 nm or less and which is not affected by disturbance light such as room light or sunlight can be obtained.
[0045]
The light emitting device can emit light having a light energy of 3.4 eV to 6.2 eV by appropriately selecting the AlN composition ratio of AlGaN in the active layer.
[0046]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment of the p-type activation method for a GaN-based compound semiconductor according to the present invention (hereinafter, appropriately referred to as “the present invention method”) will be described with reference to the drawings, taking as an example a case where the method is applied to a manufacturing process of an ultraviolet light receiving element 20. Will be explained.
[0047]
The ultraviolet light receiving element 20 shown in FIG. 1 is an example in which a PIN type element structure is adopted. The ultraviolet light receiving element 20 is formed by sequentially laminating a base structure portion and a device structure portion on the substrate 1. The underlayer structure is formed by sequentially laminating a low-temperature deposition buffer layer 2, a crystal improving layer 3, and a low-temperature deposition intermediate layer 4 on a substrate 1, and the device structure is formed on the low-temperature deposition intermediate layer 4 by: and n-type semiconductor layer 5, i-type semiconductor layer (light receiving region) 6 is formed by sequentially stacking a p-type semiconductor layer 7 made of Al x Ga 1-x n ( 0 ≦ x ≦ 1). Further, the device structure is removed by etching or the like so that the n-type semiconductor layer 5 is partially exposed, an electrode 8 is formed on the exposed portion, and an electrode 9 is formed on the p-type semiconductor layer 7. The electrodes 8 and 9 are ohmic electrodes whose electrical characteristics between the n-type semiconductor layer 5 and the p-type semiconductor layer 7 are ohmic.
In the ultraviolet light receiving device 20 illustrated in FIG. 1, a (0001) sapphire substrate 1 is provided with a low-temperature deposition buffer layer 2 of AlN, a crystal improving layer 3 of GaN, a low-temperature intermediate layer 4 of AlN, and an n-type AlGaN layer. 5, an i-type AlGaN layer 6 and a p-type AlGaN layer 7 are respectively formed. Each GaN-based compound semiconductor layer is formed by MOCVD (organic metal compound vapor deposition) using each source gas such as trimethylaluminum (Al source), trimethylgallium (Ga source), and ammonia (nitrogen source). It can be manufactured.
The purpose of the underlayer structures 2-4 is to improve the crystal quality of the device structures 5-7. Although there is a large difference between the lattice spacing on the crystal growth surface of the sapphire substrate 1 and the lattice constant of Al x Ga 1-x N (0 ≦ x ≦ 1) constituting the device structure, Thereby, the lattice mismatch can be reduced, and the stress due to the lattice mismatch applied when growing the AlGaN layer can be reduced. As a result, the crystal quality of the AlGaN layer in the device structure can be improved.
It should be noted that various proposals have been made for the structure of the underlying structure and its formation process for alleviating the lattice mismatch and improving the crystal quality of the device structure formed thereon. Since the gist of the present invention lies not in the underlying structure but in the p-type semiconductor layer 7 of the device structure, the underlying structure may be, for example, one obtained by forming the above-described known structure in a known manufacturing process. It is sufficient that a new structure other than the above is used. Further, the substrate 1 is not limited to the (0001) sapphire substrate.
Next, a p-type activation method for the p-type AlGaN layer 7 of the ultraviolet light receiving element 20 according to the method of the present invention will be described.
As shown in FIG. 2A, first, the p-type AlGaN layer 7 is manufactured by using the MOCVD method. Here, Mg (magnesium) is injected while using each of the above-mentioned source gases as a source material of Al, Ga, and N and flowing a Cp 2 Mg (biscyclopentadienyl magnesium) gas as a source gas of a p-type impurity. A (doped) p-type AlGaN layer 7 is grown. In this state, NH 3 used as the N source is decomposed into atomic hydrogen and stays in the p-type AlGaN layer 7, and this atomic hydrogen combines with Mg implanted as a p-type impurity to form a p-type. As a result of inhibiting the impurity Mg from acting as an acceptor, the p-type AlGaN layer 7 is not sufficiently p-type activated and remains in a high resistance state.
Next, after growing the p-type AlGaN layer 7 into which Mg has been implanted, as shown in FIG. 2B, a hydrogen absorption / permeable film 10 is formed on the surface thereof. The hydrogen absorbing and transmitting film 10 is made of one or more materials selected from nickel, palladium, silver-palladium alloy, platinum, and ruthenium, and includes ion beam sputtering (IBS), electron beam evaporation (EB), laser ablation, RF sputtering, It is formed using a technique such as plating. In addition, it is considered that electron beam evaporation is advantageous in productivity, and IBS or laser ablation is advantageous in film density. In particular, by giving priority to the denseness of the membrane, the hydrogen permeation performance and the catalytic action of the hydrogen absorption / permeable membrane 10 are enhanced, and the throughput of annealing in a later step is improved. Therefore, the use of IBS or laser ablation is preferred.
The formation of the hydrogen absorbing and transmitting film 10 may be performed before or after the device structure is etched so that the n-type semiconductor layer 5 in FIG. 1 is partially exposed. Absent.
Next, as shown in FIG. 2C, after the formation of the hydrogen absorbing and transmitting film 10, the p-type AlGaN layer 7 is subjected to an annealing treatment. The processing temperature is appropriately selected within a temperature range of 400 ° C. or higher. The growth of the p-type AlGaN layer 7, the formation of the hydrogen absorption / transmission film 10, and the annealing treatment may be performed in the same reaction vessel, or may be performed in separate vessels. Here, the processing atmosphere is a reducing atmosphere containing hydrogen, and a mixed gas composed of hydrogen, nitrogen, and argon is introduced into the reaction vessel as a reducing gas, and after the introduction, the reducing gas is supplied only by a rotary pump in a short time. The pressure is reduced to 4000 Pa (30 Torr) or less by suction. By thus reducing the pressure after the introduction of the reducing gas, the entry of contaminants into the reaction vessel can be prevented. Note that the reducing atmosphere containing hydrogen may be a reducing gas containing hydrogen as a main component (for example, 100% hydrogen).
In the method of the present invention, even when annealing is performed at a low temperature of 400 ° C. or less, the p-type activation can be sufficiently performed by the catalytic action of the hydrogen absorbing and permeable membrane 10. That is, the hydrogen atoms desorbed from Mg by annealing are absorbed by the hydrogen absorbing and permeable film 10 without staying near the surface of the p-type AlGaN layer 7, are converted into hydrogen molecules, and are released into the external atmosphere. Since hydrogen is desorbed from Mg without saturating and saturating atomic hydrogen in the p-type AlGaN layer 7, Mg implanted as a p-type impurity functions as an acceptor.
The hydrogen absorption / transmission film 10 may be a single layer film of Ni (nickel), Pd (palladium), Pd-Ag (silver-palladium alloy), platinum (Pt), ruthenium (Rt), etc. A multilayer film combining these may be used. Further, a part of the hydrogen absorption and transmission film 10 may include a hydrogen storage alloy other than the above metals. Other hydrogen storage alloys include, for example, La 0.8 Nb 0.2 Ni 2.5 Co 2.4 Al 0.1 , La 0.8 Nb 0.2 Zr 0.03 Ni 3.8 Co 0.8 . 7 Al 0.5 , MmNi 3.65 Co 0.75 Mn 0.4 Al 0.3 , MmNi 2.5 Co 0.7 Al 0.8 , Mm 0.85 Zr 0.15 Ni 1.0 Al 0 .8 V 0.2 . Here, Mm is a misch metal, which is a mixture of rare earth elements whose main constituent elements are Ce (40 to 50%), La (20 to 40%), Pr, and Nd.
It is preferable that hydrogen is contained in the reaction vessel during the annealing. In general, if the annealing treatment is performed without providing the hydrogen absorbing and transmitting film 10 on the surface of the p-type AlGaN layer 7, the presence of hydrogen in the annealing treatment atmosphere is considered to be a factor inhibiting the desorption of hydrogen from Mg. However, when the hydrogen-absorbing permeable film 10 is provided, hydrogen molecules in the processing atmosphere exert a cleaning action to prevent oxidation of the surface of the hydrogen-absorbing permeable film. Is sufficiently present, the presence of hydrogen is rather preferred.
This means that the annealing can be performed in the same reaction vessel in which the p-type AlGaN layer 7 has been grown. That is, since hydrogen is used as a carrier gas of a source gas during growth by MOCVD, a reducing atmosphere containing hydrogen as a main component can be used as it is.
After the p-type activation by the annealing process, the hydrogen absorption / transmission film 10 is removed by etching or the like, and a part of the p-type semiconductor layer 7 and the i-type semiconductor layer 6 is partially exposed by the n-type semiconductor layer 5. Then, the n-type electrode 8 is formed on the exposed portion, and the p-type electrode 9 is formed on the p-type semiconductor layer 7. Here, the n-type electrode 8 and the p-type electrode 9 may be made of a known material such as Al, Au, Ni, Ti or the like according to the respective polarities by a known method. According to the method of the present invention, the p-type semiconductor layer 7 is sufficiently p-type activated, so that ohmic contact with the p-type electrode 9 becomes possible.
Here, as the p-type electrode 9, for example, when palladium (Pd) is used for the first layer and gold (Au) is used for the second layer, the first layer of palladium and the hydrogen absorbing / permeable film are used. The palladium of 10 may also be used. In this case, for example, by setting the thickness of the hydrogen absorption / transmission film 10 to 100 Å (10 −8 m) and the thickness of the second layer of gold to 1000 Å (10 −7 m), a good p-type ohmic Electrodes can be formed.
Further, the n-type electrode 8 may be formed by using ZrB 2 as an electrode material by an evaporation method such as ion beam sputtering, laser ablation, and CVD. In particular, when ZrB 2 is produced by MOCVD using Zr [N (C 2 H 5 ) 2 ] 4 or Zr (BH 4 ) 4 as a Zr source and using trimethylboron as a B source. In addition, there is an advantage that a common film forming apparatus can be used for each nitride semiconductor layer forming the device structure. Incidentally, Al in fabricated ZrB 2 electrodes on, Au, Ni, may be a multilayer electrode (protective electrode) so as to protect the further formed and ZrB 2 electrode metal such as Ti.
The p-type electrode 9 may be formed by using ZrN as an electrode material by a vapor deposition method such as ion beam sputtering, laser ablation, and CVD. ZrN is obtained by nitriding ZrB 2 formed on the p-type semiconductor layer 7 using ammonia gas or the like. Further, similarly to the case of the n-type electrode 8, a metal such as Al, Au, Ni, Ti is further formed on the manufactured ZrN electrode to form a multilayer electrode (protection electrode) for protecting the ZrN electrode 9. May be.
Here, when light is incident from the side of the p-type electrode 9 (upper side in the drawing), the p-type electrode 9 is formed in a mesh shape or another shape or material that transmits light to the light receiving region. Conversely, when light is incident from the substrate 1 side (the lower side in the drawing), the incident light is absorbed by the GaN crystal improving layer 3 of the underlying structure and does not reach the i-type semiconductor layer (light receiving region) 6. In addition, it is necessary to form an entrance window by removing at least portions of the substrate 1 and the underlying structure portion corresponding to the light receiving region of the low-temperature deposition buffer layer 2 and the crystal improving layer 3 by etching or the like. Alternatively, a material that transmits the light in the wavelength range to be detected by the i-type semiconductor layer (light receiving region) 6 without absorbing the substrate 1 and the underlying structure may be used. For example, instead of using GaN in the crystal improvement layer 3, AlGaN or AlN having a higher AlN composition ratio than the i-type semiconductor layer (light receiving region) 6 may be used.
When the ultraviolet light receiving element 20 shown in FIG. 1 is irradiated with light from the outside, the light passes through the mesh-shaped electrode 9 and the p-type semiconductor layer 7 to form an i-type semiconductor light receiving region. The light is incident on the layer 6 and is absorbed to generate optical carriers. An electric field is applied between the p-type electrode 8 and the n-type electrode 9, and the generated photocarriers are output to the outside as photocurrent.
The band gap energy of Al x Ga 1 -xN (0 ≦ x ≦ 1) constituting the device structure is adjusted by changing the AlN composition ratio, and the AlN composition ratio x and the band gap energy are shown in FIG. The relationship is as shown in FIG. As can be seen from FIG. 3, by changing the AlN composition ratio x, the band gap energy of Al x Ga 1 -xN can be adjusted from 3.42 eV to 6.2 eV. Therefore, the wavelength range of light that can be absorbed in the light receiving region can be adjusted between about 360 nm and about 200 nm.
When flame light is detected by the ultraviolet light receiving element 20, a light receiving region having a band gap energy enough to absorb the flame emission as shown in the emission spectrum of FIG. 4 may be formed. The emission spectrum of the flame shown in FIG. 4 is a spectrum of a flame generated when a gas (hydrocarbon) is burned. The spectrum of sunlight and the spectrum of room light due to light from various lighting devices are also shown.
The band gap energy of the light receiving region will be described below. In order to provide wavelength selectivity in the ultraviolet light receiving element 20 adjusts the AlN composition ratio of the light-receiving area (Al x Ga 1-x N ), it is made to set the band gap energy to a desired value . For example, when it is desired to manufacture a flame sensor capable of selectively receiving light of a flame appearing at a relatively large intensity in a wavelength range of about 344 nm or less, the band gap energy of the light receiving region is 3.6 eV or more. As described above, the AlN composition ratio x may be set to 0.05 or more. Alternatively, when it is desired to manufacture a flame sensor that receives light of a flame in a wavelength range to be detected without receiving light (indoor light) from various lighting devices included in a wavelength range of about 300 nm or more. The AlN composition ratio x may be set to 0.25 or more so that the band gap energy of the light receiving region is 4.1 eV or more. In addition, when it is desired to produce a flame sensor that receives only the light of the flame in the wavelength range to be detected without receiving light from sunlight, which is included in the wavelength range of about 280 nm or more, The AlN composition ratio x may be set to 0.35 or more so that the band gap energy becomes 4.4 eV or more.
Furthermore, if disturbance light such as sunlight can be absorbed in the light receiving region at a low light intensity, the band gap energy of the light receiving region becomes 4.3 eV or more (wavelength of about 290 nm or less). Thus, the AlN composition ratio x may be set to 0.31 or more. At a wavelength of about 290 nm or less, the light intensity of the disturbance light becomes very small as shown in FIG. 3, while the flame light is large. As a result, the presence of the flame light can be detected.
Further, when the ultraviolet light receiving element 20 is installed in a closed space such as the inside of the engine and it is desired to detect the light emission of the fuel burned there, since the indoor light and the sunlight described above do not exist, they are excluded. It is not necessary to set such a large band gap energy. Therefore, the emission peak (wavelength of about 310 nm) caused by the emission of OH radicals observed when a compound containing hydrocarbon (fuel burned by an engine) is particularly burned among the flame light in the detection target wavelength range. 310 nm ± 10 nm): 4.0 eV) (a flame light having a wavelength of 310 nm or more and 344 nm or less) is manufactured. The AlN composition ratio x may be set to 0.05 or more and 0.23 or less so as to be set to 0.6 eV or more and 4.0 eV or less.
The relationship between the AlN composition ratio x and the band gap energy described above has been explained based on theoretical values. Even if the film formation is performed so that the AlN composition ratio x becomes the same, the actual value is obtained. There is a possibility that the band gap energy of the obtained AlGaN layer is different. For example, in the case of AlGaN which is a ternary mixed crystal compound, GaN which is a binary compound is easily generated, and as a result, the band gap energy tends to shift to a lower energy side (longer wavelength side). Therefore, when it is desired to obtain the band gap energy according to the theoretical value, the film may be formed after setting the AlN composition ratio to a large value in advance.
[0072]
Hereinafter, another embodiment will be described.
<1> In the above embodiment, Mg was used as the p-type impurity for the growth of the p-type AlGaN layer 7, but sufficient p-type activation was obtained even when the AlN composition ratio of the p-type AlGaN layer 7 was 20% or more. In order to obtain the above, it is also a preferable embodiment to use Be (beryllium) instead of Mg as the p-type impurity.
[0073]
In this case, the p-type AlGaN layer 7 is formed by using MOCVD as a source of Al, Ga, and N in the same manner as in the above embodiment, using trimethylaluminum (Al source), trimethylgallium (Ga source), and ammonia (nitrogen source). The p-type AlGaN layer 7 into which Be is implanted is grown while using Cp 2 Be (biscyclopentadienyl beryllium) gas as a source gas for the p-type impurity by using the respective source gases such as. The formation of the hydrogen absorption and transmission film 10 after the growth of the p-type AlGaN layer 7 and the annealing of the p-type AlGaN layer 7 are the same as those in the above-described embodiment.
[0074]
Furthermore, as a source gas of the p-type impurity, (R-Cp) 2 Be gas [bis (R- cyclopentadienyl) beryllium] Gas (R 1-4 divalent alkyl group) more preferred to use. In particular, it is more preferable to use (R-Cp) 2 Be gas of an alkyl group in which R is a divalent to tetravalent alkyl group. When the p-type, n-type and i-type semiconductors are formed stepwise in a predetermined order by using the organometallic compound vapor deposition method by using the source gas, an impurity source corresponding to each type is crystal-grown. In the case where the supply is performed through a pipe into the reaction chamber, when the growth of each semiconductor layer is switched, the supply of the impurity material is also switched. However, when the same pipe is used, the influence (memory effect) due to the residual impurities remaining on the pipe inner wall is caused. This is because the effect of improving the problem that the desired impurity concentration cannot be achieved in the vicinity of the interface between the respective semiconductor layers cannot be ignored. In other words, the molecular size of the source gas is larger than Cp 2 Be, and the intermolecular force due to polarization is weakened, so that the residual on the inner wall of the pipe is reduced. Mold activation is promoted.
[0075]
<2> In the above embodiment, the case where the p-type activation method of the GaN-based compound semiconductor according to the present invention is applied to the manufacturing process of the ultraviolet light receiving element 20 is exemplified. It is applicable to elements, light emitting elements, and other semiconductor devices. In particular, the light emitting element is similar in structure to the light receiving element, so that the method of the above embodiment can be applied.
[0076]
<3> In the above embodiment, the PIN structure is used as an example of the device structure. However, when the device structure includes a p-type AlGaN layer, the p-type activation according to the method of the present invention can be applied. The part is not limited to the PIN structure.
[Brief description of the drawings]
FIG. 1 is an element cross-sectional view showing a configuration of an ultraviolet light receiving element manufactured by using a p-type activation method for a GaN-based compound semiconductor according to the present invention. FIG. 2 is a p-type activation of a GaN-based compound semiconductor according to the present invention. FIG. 3 is a graph showing band gap energy of AlGaN. FIG. 4 is a graph showing spectra of flame light, sunlight, and room light.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Low-temperature deposition buffer layer 3 Crystal improvement layer 4 Low-temperature deposition intermediate layer 5 n-type semiconductor layer 6 i-type semiconductor layer 7 p-type semiconductor layer 8 n-type electrode 9 p-type electrode 10 Hydrogen absorption / transmission film 20 UV light receiving element

Claims (19)

p型不純物の注入されたGaN系化合物半導体を形成後、その表面に、前記GaN系化合物半導体中の水素を吸収して外部へ放出する作用を有する水素吸収透過膜を形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングすることにより、前記GaN系化合物半導体中に注入されたp型不純物と結合している水素を脱離させて前記GaN系化合物半導体をp型活性化することを特徴とするGaN系化合物半導体のp型活性化方法。After forming a GaN-based compound semiconductor into which a p-type impurity has been implanted, a hydrogen-absorbing and permeable film having a function of absorbing and releasing hydrogen in the GaN-based compound semiconductor to the outside is formed on the surface thereof, and then a reducing atmosphere is formed. Annealing the GaN-based compound semiconductor in the inside to desorb hydrogen bonded to the p-type impurity injected into the GaN-based compound semiconductor to activate the GaN-based compound semiconductor p-type. A p-type activation method for a GaN-based compound semiconductor. 前記水素吸収透過膜が前記GaN系化合物半導体中の原子状水素を吸収して水素分子として外部へ放出する触媒作用を有することを特徴とする請求項1に記載のGaN系化合物半導体のp型活性化方法。2. The p-type activity of the GaN-based compound semiconductor according to claim 1, wherein the hydrogen absorption / transmission film has a catalytic action of absorbing atomic hydrogen in the GaN-based compound semiconductor and releasing it as hydrogen molecules. Method. 前記水素吸収透過膜がニッケル、パラジウム、銀パラジウム合金、白金、ルテニウムから選択される一つ以上の物質からなることを特徴とする請求項1または2に記載のGaN系化合物半導体のp型活性化方法。The p-type activation of a GaN-based compound semiconductor according to claim 1 or 2, wherein the hydrogen absorption / transmission film is made of at least one material selected from nickel, palladium, a silver-palladium alloy, platinum, and ruthenium. Method. 前記アニーリング時の処理温度が400℃以上であることを特徴とする請求項1〜3の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The p-type activation method for a GaN-based compound semiconductor according to any one of claims 1 to 3, wherein a processing temperature during the annealing is 400 ° C or higher. 前記アニーリング時の前記還元雰囲気に水素が含まれることを特徴とする請求項1〜4の何れか1項に記載のGaN系化合物半導体のp型活性化方法。5. The p-type activation method for a GaN-based compound semiconductor according to claim 1, wherein hydrogen is contained in the reducing atmosphere during the annealing. 6. 前記アニーリング時の前記還元雰囲気が、水素と、窒素、アルゴンまたはその混合ガスで構成されることを特徴とする請求項1〜4の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The p-type activation of a GaN-based compound semiconductor according to any one of claims 1 to 4, wherein the reducing atmosphere at the time of the annealing is composed of hydrogen, nitrogen, argon, or a mixed gas thereof. Method. 前記アニーリング時の前記還元雰囲気が大気圧以下であることを特徴とする請求項1〜6の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The p-type activation method for a GaN-based compound semiconductor according to any one of claims 1 to 6, wherein the reducing atmosphere at the time of the annealing is lower than the atmospheric pressure. 前記アニーリング時の前記還元雰囲気が、ロータリーポンプのみにより4000Pa以下に減圧されていることを特徴とする請求項7に記載のGaN系化合物半導体のp型活性化方法。The p-type activation method for a GaN-based compound semiconductor according to claim 7, wherein the reducing atmosphere during the annealing is reduced to 4000 Pa or less by a rotary pump alone. 前記p型不純物の注入されたGaN系化合物半導体を形成後、その表面に前記水素吸収透過膜だけを形成してから、還元雰囲気中で前記GaN系化合物半導体をアニーリングすることを特徴とする請求項1〜8の何れか1項に記載のGaN系化合物半導体のp型活性化方法。After forming the GaN-based compound semiconductor into which the p-type impurity is implanted, forming only the hydrogen absorption / permeable film on the surface thereof, and then annealing the GaN-based compound semiconductor in a reducing atmosphere. 9. The p-type activation method for a GaN-based compound semiconductor according to any one of 1 to 8. 前記水素吸収透過膜を電極または電極の一部として用いることを特徴とする請求項1〜9の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The p-type activation method for a GaN-based compound semiconductor according to any one of claims 1 to 9, wherein the hydrogen absorption / transmission film is used as an electrode or a part of the electrode. 前記電極がp型電極であることを特徴とする請求項10に記載のGaN系化合物半導体のp型活性化方法。The p-type activation method for a GaN-based compound semiconductor according to claim 10, wherein the electrode is a p-type electrode. 前記水素吸収透過膜を、イオンビームスパッタ(IBS)またはレーザアブレーションで作製することを特徴とする請求項1〜11の何れか1項に記載のGaN系化合物半導体のp型活性化方法。The p-type activation method for a GaN-based compound semiconductor according to any one of claims 1 to 11, wherein the hydrogen absorption and transmission film is formed by ion beam sputtering (IBS) or laser ablation. 前記p型不純物がマグネシウムまたはベリリウムの少なくとも何れか一方を含むことを特徴とする請求項1〜12の何れか1項に記載のGaN系化合物半導体のp型活性化方法。13. The p-type activation method for a GaN-based compound semiconductor according to claim 1, wherein the p-type impurity includes at least one of magnesium and beryllium. 前記p型不純物がベリリウムを少なくとも含むことを特徴とする請求項1〜12の何れか1項に記載のGaN系化合物半導体のp型活性化方法。13. The p-type activation method for a GaN-based compound semiconductor according to claim 1, wherein the p-type impurity contains at least beryllium. 請求項1〜14の何れか1項に記載のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなるGaN系化合物半導体装置。A GaN-based compound semiconductor device comprising a GaN-based compound semiconductor that has been p-type activated by the GaN-based compound semiconductor p-type activation method according to claim 1. 請求項1〜14の何れか1項に記載のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなる受光素子。A light-receiving element comprising a GaN-based compound semiconductor which has been p-type activated by the p-type activation method for a GaN-based compound semiconductor according to claim 1. バンドギャップエネルギが3.6eV以上のAlGaNを主とする受光領域を備えてなることを特徴とする請求項16に記載の受光素子。17. The light receiving device according to claim 16, further comprising a light receiving region mainly composed of AlGaN having a band gap energy of 3.6 eV or more. 請求項1〜14の何れか1項に記載のGaN系化合物半導体のp型活性化方法によりp型活性化されたGaN系化合物半導体を備えてなる発光素子。A light emitting device comprising a GaN-based compound semiconductor that has been p-type activated by the p-type activation method for a GaN-based compound semiconductor according to claim 1. AlGaNを主とする活性層を備えてなることを特徴とする請求項18に記載の発光素子。19. The light emitting device according to claim 18, comprising an active layer mainly composed of AlGaN.
JP2003081408A 2003-03-24 2003-03-24 GaN compound semiconductor p-type activation method Expired - Lifetime JP4371681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081408A JP4371681B2 (en) 2003-03-24 2003-03-24 GaN compound semiconductor p-type activation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081408A JP4371681B2 (en) 2003-03-24 2003-03-24 GaN compound semiconductor p-type activation method

Publications (2)

Publication Number Publication Date
JP2004289014A true JP2004289014A (en) 2004-10-14
JP4371681B2 JP4371681B2 (en) 2009-11-25

Family

ID=33294986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081408A Expired - Lifetime JP4371681B2 (en) 2003-03-24 2003-03-24 GaN compound semiconductor p-type activation method

Country Status (1)

Country Link
JP (1) JP4371681B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269773A (en) * 2005-03-24 2006-10-05 Univ Meijo p-TYPE AlGaN SEMICONDUCTOR LAYER, AlGaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT, AlGaN-BASED SEMICONDUCTOR LIGHT RECEIVING ELEMENT, AND METHOD FOR FORMING p-TYPE AlGaN SEMICONDUCTOR LAYER
KR100664039B1 (en) 2005-09-08 2007-01-03 엘지전자 주식회사 Nitride compound semiconductor device manufacturing method
JP2015082641A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Group iii nitride semiconductor element and group iii nitride semiconductor element manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269773A (en) * 2005-03-24 2006-10-05 Univ Meijo p-TYPE AlGaN SEMICONDUCTOR LAYER, AlGaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT, AlGaN-BASED SEMICONDUCTOR LIGHT RECEIVING ELEMENT, AND METHOD FOR FORMING p-TYPE AlGaN SEMICONDUCTOR LAYER
KR100664039B1 (en) 2005-09-08 2007-01-03 엘지전자 주식회사 Nitride compound semiconductor device manufacturing method
JP2015082641A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Group iii nitride semiconductor element and group iii nitride semiconductor element manufacturing method
US9425348B2 (en) 2013-10-24 2016-08-23 Summitomo Electric Industries, Ltd. Group III nitride semiconductor device, and method for fabricating group III nitride semiconductor device
CN104576869B (en) * 2013-10-24 2018-12-28 住友电气工业株式会社 The manufacturing method of III nitride semiconductor element, III nitride semiconductor element

Also Published As

Publication number Publication date
JP4371681B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP3794876B2 (en) Manufacturing method of semiconductor device
JP4966865B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US7601553B2 (en) Method of manufacturing a gallium nitride semiconductor light emitting device
JP4599442B2 (en) Manufacturing method of semiconductor light emitting device
JP3344257B2 (en) Gallium nitride based compound semiconductor and device manufacturing method
WO2012101856A1 (en) Method for manufacturing nitride semiconductor element
JP2010080955A (en) Semiconductor device
WO2004109782A1 (en) Nitride semiconductor device and method for manufacturing same
WO2018208957A1 (en) Fabrication of ultraviolet light emitting diode with tunnel junction
CN1306560C (en) n-electrode for III group nitride based compound semiconductor element
JPH11220169A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP3772707B2 (en) Method for manufacturing group 3 nitride compound semiconductor light emitting device
JP2006128527A (en) Method of manufacturing garium nitride system compound semiconductor
JP4371681B2 (en) GaN compound semiconductor p-type activation method
JP4295535B2 (en) Method for activating p-type AlGaN compound semiconductor
KR100664039B1 (en) Nitride compound semiconductor device manufacturing method
KR100734810B1 (en) Method for fabricating a zno based light emitting device and a zno based light emitting device fabricated by the method
JP2022110973A (en) Manufacturing method of light-emitting element and extracting method of hydrogen from light-emitting element
JPH11274557A (en) Manufacture of p-type gallium nitride compound semiconductor layer
JP2001320084A (en) Group iii nitride semiconductor and method of its production, and semiconductor device
JP2004363401A (en) Method for manufacturing semiconductor device
KR100432246B1 (en) III-Nitride compound semiconductor light emitting device
CN114122199B (en) Method for manufacturing p-type group III nitride semiconductor
JP2000306854A (en) Activation method of potassium nitride-based p-type compound semiconductor layer
JP7540714B2 (en) Method for manufacturing semiconductor device structures

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180911

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term