JP2004288729A - Light emitting element and method of manufacture the same - Google Patents

Light emitting element and method of manufacture the same Download PDF

Info

Publication number
JP2004288729A
JP2004288729A JP2003076253A JP2003076253A JP2004288729A JP 2004288729 A JP2004288729 A JP 2004288729A JP 2003076253 A JP2003076253 A JP 2003076253A JP 2003076253 A JP2003076253 A JP 2003076253A JP 2004288729 A JP2004288729 A JP 2004288729A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
semiconductor layer
light emitting
metal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076253A
Other languages
Japanese (ja)
Inventor
Masahito Yamada
雅人 山田
Kingo Suzuki
金吾 鈴木
Masanori Takahashi
雅宣 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003076253A priority Critical patent/JP2004288729A/en
Publication of JP2004288729A publication Critical patent/JP2004288729A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting element in which a light retrieving efficiency can be improved without changing the structure of a semiconductor laminate structure including a light emitting layer. <P>SOLUTION: The light emitting element 1 includes the compound semiconductor layer having the light emitting layer 24. A metal electrode 9 for applying a light emission drive voltage to the light emitting layer 24 is disposed in the shape for covering the partial area of the light retrieving main surface of the compound semiconductor layer. At least the part of the compound semiconductor layer is formed as an Al-containing compound semiconductor layer 221 containing Al. An Al insulating layer 11 brought into contact with the Al-containing compound semiconductor layer 221 is disposed in a shape covering the area including the geometrical center of gravity position of the direct under-region. A metal electrode 9 is energized with the Al-containing compound semiconductor layer 221 at the non-forming region 13 of the Al insulating layer 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は発光素子及びその製造方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平5−102605号公報
【特許文献2】
特開平05−013813公報
【特許文献3】
特開平05−067849公報
【特許文献4】
特開平09−074221公報
【特許文献5】
特開平10−154831公報
【特許文献6】
特開平11−017218公報
【特許文献7】
特開平11−186595公報
【0003】
発光素子は、化合物半導体層を積層することにより、p−n接合部を含む発光層部を形成したものである。具体的には、発光層部を有する素子チップのp層側もしくはn層側のいずれかの主表面をステージ上に銀ペースト等を用いて固定する一方、他方の主表面側にAu等で構成された金属電極を配置し、これに通電用のAuワイヤをボンディングし、全体を樹脂モールドした構造が一般的である。
【0004】
この金属電極は遮光体として作用するため、例えば発光層部主表面の中央部のみを覆う形で形成され、その周囲の電極非形成領域から光を取り出すようにする。しかしながら、この電極に素子駆動のための電圧を印加した場合、素子内の電流密度は電極直下付近で高く、光取出領域となる電極の周囲領域では低くなることにより光取出効率が低下しやすくなる。この問題は、従来、主に発光層部を含んだ半導体積層構造そのものを改良する観点から解決が試みられてきた。その代表的なものに、電極と接する化合物半導体層の内部において電極直下位置に、該半導体層と導電型が逆となる反転層を埋め込み形成する方法がある(例えば特許文献1〜7)。
【0005】
【発明が解決しようとする課題】
しかしながら、反転層を埋め込み形成する方法では、電極領域に対応する反転層形成のためのフォトリソグラフィー工程を、化合物半導体層のエピタキシャル成長工程の途中に挿入する必要があり、工数の増加ひいては製造能率の低下につながりやすい問題がある。
【0006】
本発明の課題は、発光層部を含む半導体積層構造そのものの構造変更を行なうことなく、光取出効率を改善できる発光素子とその製造方法とを提供することにある。
【0007】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の発光素子は、
発光層部を有する化合物半導体層を有し、発光層部に発光駆動電圧を印加するための金属電極が、該化合物半導体層の光取出主表面の一部領域を覆う形で配置され、
化合物半導体層の少なくとも一部が、Alを含有したAl含有化合物半導体層とされ、
金属電極の直下領域の一部において、Al含有化合物半導体層と該金属電極との間に、Al含有化合物半導体層と接するAl系絶縁層が、直下領域の幾何学的重心位置を包含する領域を覆う形で配置され、
Al系絶縁層の形成領域の外側にて金属電極が、Al含有化合物半導体層と直接又は他の化合物半導体層を介して間接的に導通してなることを特徴とする。
【0008】
上記本発明の発光素子の構造によると、化合物半導体層の少なくとも一部をAl含有化合物半導体層とし、その光取出主表面側に配置される金属電極の直下領域の一部において、Al含有化合物半導体層と該金属電極との間に、Al含有化合物半導体層と接するAl系絶縁層を電流阻止層として配置する。具体的には、金属電極により光取出が最も妨げられる前記直下領域の幾何学的重心位置を包含する一部領域にAl系絶縁層を配置する。この構造によると、光取出の妨げられやすい領域をAl系絶縁層にて電流ブロックすることができ、該Al系絶縁層の面内方向に電流が拡散することで、電流の流れを金属電極の外周縁に近づけた後、該Al系絶縁層の外側にてAl含有化合物半導体層側に電流を流れ込ませることができる。これにより、金属電極の直下領域を回避した形で発光層部へ電流を供給でき、光取出し効率を向上させることができる。また、従来の発光素子のように反転層を埋め込み形成する必要がなくなり、結果として、発光層部を含む半導体積層構造そのものの構造変更を行なうことなく、光取出効率が改善された発光素子が実現する。また、Al系絶縁層は、Al含有化合物半導体層の表層部に含まれるAl成分を用いて簡単に形成できるので、従来の発光素子のごとく、反転層形成のためのフォトリソグラフィー工程を、化合物半導体層のエピタキシャル成長工程の途中に挿入する必要がなくなり、製造工程の簡略化を図ることができる。
【0009】
Al系絶縁層と金属電極との間には、別の絶縁層を介挿することもできるが、Al系絶縁層の電流阻止能が十分に高ければ、Al系絶縁層に金属電極を接して配置することができ、素子構造をより簡略化することができる。
【0010】
金属電極の直下領域での発光を低減するためには、金属電極の、化合物半導体層との接合側主表面の中央部に対向する形でAl系絶縁層を配置し、該Al系絶縁層の外側において、金属電極の接合側主表面とAl含有化合物半導体層とを導通させる構造を採用するのがよい。これにより、金属電極により遮られやすい電極中央部での発光が効果的に抑制され、光取出し効率をより向上させることができる。
【0011】
Al含有化合物半導体層は、光取出主表面の金属電極により覆われていない領域が、Al含有化合物半導体層と接するAl系パッシベーション層により覆うことができる。これにより、Al含有化合物半導体層のAl成分の酸化による劣化が抑制され、素子の長寿命化を図ることができる。また、該Al系パッシベーション層は、Al含有化合物半導体層の表層部に含まれるAl成分を用いて簡単に形成できる。この場合、Al系パッシベーション層を、金属電極の、Al含有化合物半導体層との接合側主表面の外周縁部に入り込む形で形成しておくと、Al含有化合物半導体層に対する金属電極外周縁からの隙間腐食が進みにくくなり、素子のさらなる長寿命化を図ることができる。
【0012】
なお、上記隙間腐食抑制に効果的な別態様として、Al含有化合物半導体層の、光取出主表面の金属電極により覆われていない領域を、金属電極の側面及び該金属電極のAl含有化合物半導体層との非接合側主表面の外周縁部とともにパッシベーション層により覆った構造を例示することもできる。この場合、該パッシベーション膜は、Al含有化合物半導体層のAl成分の酸化を阻止できる材質であれば、Al系絶縁層に限られず、例えばSiO被膜などとして形成することが可能である。
【0013】
次に、発光層部は、AlGaInPにより、第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序にて積層されたダブルへテロ構造を有するものとして構成できる。これにより高輝度の発光素子を実現できる。該構成において、前述の金属電極に通電用の電極ワイヤを接合する場合、該第二導電型クラッド層上に、活性層よりもバンドギャップの大きいAl含有化合物半導体からなるクッション層を形成することができる。Al系絶縁層は、該クッション層と接して形成される。例えばワイヤの接合を、超音波溶接や、これにさらに熱を付加するサーモソニックボンディングにより行なう場合、金属電極直下の化合物半導体層には、超音波や加熱(さらには加圧)による衝撃応力が集中し、転位などの結晶欠陥が損傷として導入される。その損傷領域が活性層部に及んだ場合、具体的には次のような不具合を招く。
▲1▼発光輝度の直接的な低下。結晶欠陥による非発光遷移過程の増加が原因として考えられる。
▲2▼素子ライフの低下。転位の形成された発光層に通電を継続すると、転位に電流が集中して転位の増殖が起こりやすくなり、発光輝度の経時的な劣化を引き起こす。
【0014】
しかしながら、第二導電型クラッド層と金属電極との間に、上記のごとくAlを含有したクッション層を介挿することで、金属電極に電極ワイヤを接合する際の損傷領域が仮に生じても、該損傷領域の影響はクッション層に留まり、活性層にその影響が及びにくくなる。また、クッション層は、光吸収抑制のために活性層よりもAl成分が多く添加されているため、Al系絶縁層(あるいはAl系パッシベーション層)をより形成しやすい利点がある。
【0015】
さらに、上記クッション層は、発光層部の活性層よりもバンドギャップの大きい化合物半導体で構成されているので、発光層部からの光を吸収しにくく、光取出し効率の向上に寄与する。該クッション層の具体的な材質としては、AlGaAs、GaAsP、AlGaAsPを例示できる。また、クッション層を薄く形成すると、光吸収抑制の観点において有利に作用する。クッション層の厚さは、具体的には0.1μm以上30μm以下に調整することが望ましい。クッション層の厚さが0.1μm未満では、ボンディング側半導体層の全厚が不足しやすくなり、電極ワイヤ接合時の影響が発光層部へ及びやすくなる。また、クッション層の厚さが30μmを超えると、ドーパント濃度が低く抑えられている場合に層厚方向の抵抗率が増し、素子の直列抵抗増大による発光効率低下につながる。また、厚いクッション層を成長させるには長時間を要し、原料も多く必要になることから、製造能率の低下とコストの増大を招きやすい。クッション層の厚さは、0.5μm以上10μm以下とすることがより望ましい。クッション層は、例えば第二導電型クラッド層よりも高いドーパント濃度を有する電流拡散層とすることができる。
【0016】
次に、本発明の発光素子の製造方法は、上記本発明の発光素子の製造方法であって、化合物半導体層に含まれるAl含有化合物半導体層の最表層部に含有されるAl成分に基づいてAl系絶縁層を形成することを特徴とする。本発明の発光素子に用いるAl系絶縁層を、Al含有化合物半導体層の表層部に含まれるAl成分を用いて簡単に形成できるので、従来の発光素子のごとく、反転層形成のためのフォトリソグラフィー工程を、化合物半導体層のエピタキシャル成長工程の途中に挿入する必要がなくなり、製造工程の簡略化を図ることができる。
【0017】
Al系絶縁層は、例えばAl系窒化物層として構成することもできるが、Al成分は酸化処理が容易であるため、Al系絶縁層をAl系酸化物層として形成する方法が、工程の簡略化という観点においてより有利である。この場合、Al含有化合物半導体層の最表層部を酸化処理することにより、Al系酸化物層からなるAl系絶縁層を簡単に形成できる。Al系酸化物層は、例えばAl含有化合物半導体層の熱酸化処理によっても形成できるが、金属電極直下領域の一部にのみAl系酸化物層を形成する必要があるため、耐熱性のマスク材によりAl含有化合物半導体層の表面をパターンニングしなければならず、工程の煩雑化が避けがたくなる。そこで、Al含有化合物半導体層の主表面の、金属電極の配置予定領域の一部に酸化処理液を接触させることにより、Al系絶縁層をなすAl系酸化物層を形成する方法を採用することが望ましい。この方法によると、酸化処理液との接触を生じさるべき領域を、通常のフォトレジストを用いてパターニングすることができ、工程の簡略化を図ることができる。
【0018】
【発明の実施の形態】
図1は、本発明の一実施形態である発光素子1を示す概念図である。発光素子1は、n型GaAs単結晶基板(以下、単に「基板」ともいう)7の一方の主表面上に、n型GaAsバッファ層2を介してAlGaInPよりなる発光層部24を形成し、該発光層部24を覆うようにp型のクッション層221を形成したものである。さらに、クッション層221上には、その主表面の一部を覆う形で、Au等にて構成された金属電極9が配置され、ここにAu等で構成された電極ワイヤ47が接合されている。他方、基板7の他方の主表面側には、Au−Ge−Ni合金等の金属からなる裏面電極層15が全面に形成されている。
【0019】
発光層部24は、各々(AlGa1−xIn1−yP混晶とされるとともに、第一導電型クラッド層4、第二導電型クラッド層6、及び第一導電型クラッド層4と第二導電型クラッド層6との間に位置する活性層5からなるダブルへテロ構造とされている。具体的には、ノンドープ(AlGa1−xIn −yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、p型(AlGa1−xIn1−yPクラッド層6とn型(AlGa1−xIn1−yPクラッド層4とにより挟んだ構造となっている。図1の発光素子1では、クッション層221側にp型AlGaInPクラッド層6(p型ドーパントはZn:有機金属分子からのCもp型ドーパントとして寄与しうる)が配置されており、裏面電極層15側にn型AlGaInPクラッド層4(n型ドーパントはSi)が配置されている。なお、当業者には自明のことであるが、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行なわない」との意味であり、通常の製造工程上、不可避的に混入するドーパント成分の含有(例えば1013〜1016/cm程度を上限とする)をも排除するものではない。p型AlGaInPクラッド層6は、p型キャリア濃度(多数キャリア濃度)は、5×1016/cm以上1×1018/cm未満、望ましくは、1×1017/cm以上7×1017/cm以下である。
【0020】
また、クッション層221は、本実施形態ではZnをp型ドーパントとして添加したAlGaAs層(Al含有介在層:例えばAlGa1−xAsにおいて、x=0.7程度)からなる、Al含有化合物半導体層である。p型ドーパント濃度は1×1017/cm以上2×1019/cm以下、望ましくは5×1017/cm以上1×1019/cm以下の範囲内で、p型AlGaInPクラッド層6よりも大きく設定され、電流拡散層として機能するものである。該クッション層221の厚さは0.1μm以上30μm以下、望ましくは0.5μm以上10μm以下である。
【0021】
Al含有化合物半導体層をなすクッション層221の表面には、金属電極9の直下領域のうち、その幾何学的重心位置を包含する一部領域に、具体的には、金属電極9の接合側主表面の中央部に対向する形で、Al系絶縁層11が該クッション層221と接して形成されている。また、該Al系絶縁層11の外側において、金属電極9の接合側主表面はクッション層221と直接導通してなる。本実施形態では、金属電極9の周囲に沿った環状の導通領域13にて、該金属電極9とクッション層221とが導通してなる。
【0022】
また、クッション層221の光取出主表面は、金属電極9により覆われていない領域が、該クッション層221と接するAl系パッシベーション層12により覆われている。本実施形態では、クッション層221とともに発光層部24もAl含有化合物半導体層として構成され、その周側面もAl系パッシベーション層12により覆われている。
【0023】
以下、図1の発光素子1の製造方法について説明する。
まず、図2の工程Aに示すように、GaAs単結晶基板7の第一主表面に、n型GaAsバッファ層2を、次いで発光層部24として、n型AlGaInPクラッド層4、AlGaInP活性層5、及びp型AlGaInPクラッド層6(以上図1参照)をこの順序にエピタキシャル成長させる。次に、工程Bに示すように、AlGaAsよりなるクッション層221をエピタキシャル成長させる。
【0024】
これら各層のエピタキシャル成長は、公知の有機金属気相エピタキシャル成長(MetalOrganic Vapor Phase Epitaxy:MOVPE)法により行なうことができる。Al、Ga、In、P及びAsの各成分源となる原料ガスとしては以下のようなものを使用できる;
・Al源ガス;トリメチルアルミニウム(TMAl)、トリエチルアルミニウム(TEAl)など;
・Ga源ガス;トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)など;
・In源ガス;トリメチルインジウム(TMIn)、トリエチルインジウム(TEIn)など。
・P源ガス;ターシャルブチルホスフィン(TBP)、ホスフィン(PH)など。
・As源ガス;ターシャルブチルアルシン(TBA)、アルシン(AsH)など。
【0025】
また、ドーパントガスとしては、以下のようなものを使用できる;
(p型ドーパント)
・Mg源:ビスシクロペンタジエニルマグネシウム(CpMg)など。
・Zn源:ジメチル亜鉛(DMZn)、ジエチル亜鉛(DEZn)など。
(n型ドーパント)
・Si源:モノシランなどのシリコン水素化物など。
【0026】
上記各層の成長は、原料ガスの切り替えにより、同一の気相成長装置内で連続的に行なうことができる。また、各層のドーパント濃度は、原料ガスに対するドーパントガスの供給比率により、所望の値に調整することができる。次に、図2の工程Cに進み、基板7の第二主表面に真空蒸着法により裏面電極層15を形成する。さらに工程Dのように、クッション層221の、各発光素子チップに対応する領域毎に金属電極9を配置し、適当な温度で電極定着用のベーキングを施すことにより、発光素子ウェーハ50が得られる。
【0027】
工程Dの詳細を、図3に示す。まず、工程1のごとく、クッション層221の主表面にフォトレジスト層30を、導通領域13として予定された部分だけがフォトレジスト層30により覆われるように、周知のフォトリソグラフィー工程を用いてパターニングしつつ形成する。そして、この状態で、工程2に示すように、アンモニア/過酸化水素混合溶液からなる酸化処理液を、フォトレジスト層30で覆われていないクッション層221の主表面に接触させる。これにより、最表層部には、アンモニア/過酸化水素混合溶液によるAlGaAs中のAlの選択酸化により、Al系酸化物層11’,12’が形成される。Al系酸化物層11’,12’の厚さは、例えば100nm以上200nm以下とされる。Al系酸化物層11’,12’の厚さが100nm未満では絶縁効果が不足しやすくなり、200nmを超える膜厚は形成に長時間を有し、製造能率の低下を招くことにつながる。
【0028】
次いで、工程3に示すように、フォトレジスト層30を除去する。フォトレジスト層30により該領域のAlの酸化は阻止されており、AlGaAsよりなるクッション層221の表面が露出して、導通領域13が形成される。そして、工程4に示すように、該導通領域13と、その内側のAl系酸化物層11’とを覆うように金属電極9を蒸着あるいはスパッタリング等により形成する。これにより、金属電極9直下のAl系酸化物層11’は電流阻止層として機能するAl系絶縁層11となり、金属電極9の外側領域をなすAl系酸化物層12’は、Al系パッシベーション層12となる。
【0029】
次に、図4の工程Eに示すように発光素子ウェーハ50をハーフダイシングし、さらに工程Fに示すようにダイシング面の加工歪をメサエッチングにより除去した後、工程Gに示すスクライビングにより発光素子チップ51に分離される。そして、該分離後に、もしくは上記のハーフダイシング後に、クッション層221と発光層部24との周側面が、該周側面をなす化合物半導体層中のAlが選択酸化され、該面もAl系酸化物層で覆われる。そして、工程Hに示すように、裏面電極層15(図1参照)を、Agペースト等の導電性ペーストを用いて支持体を兼ねた端子電極9aに固着する一方、金属電極9に電極ワイヤ47を接合(ボンディング)し、工程Iに示すように樹脂モールド52を形成することにより発光素子1が得られる。
【0030】
上記のようにして得られた発光素子1によると、次のような効果が達成される。すなわち、各々Auよりなる金属電極9に電極ワイヤ47を接合する場合、例えば、超音波溶接(あるいはサーモソニックボンディング)が用いられる。この超音波溶接の衝撃応力が図1に示す活性層5に強く及ぶと、活性層5内に結晶欠陥等の損傷を生じ、発光強度の低下等につながる。しかし、本実施形態の発光素子においては、クッション層221が介在しているため、損傷領域がクッション層221内に留まり、その影響が発光層部24の奥深くに及びにくいので、その分、発光輝度が損なわれる心配がない。
【0031】
このクッション層221は、第二導電型クラッド層6よりもドーパント濃度が高いので、電流を十分に拡げることができ、発光層部24への均一な通電が可能となる。さらに、クッション層221の表面には、金属電極9の直下領域のうち、光取出の妨げられやすい中央領域を覆う形で、電流阻止層となるAl系絶縁層11が形成されている。これにより、光取出が困難な領域をAl系絶縁層11にて電流ブロックすることができ、該Al系絶縁層11の面内方向に電流が拡散することで、電流の流れを金属電極9の外周縁に近づけることができる。これにより、金属電極9の直下領域を回避した形で発光層部24へ電流を供給でき、光取出し効率を高めることができる。また、該Al系絶縁層11はAl系パッシベーション層12とともに、クッション層221のAl成分の酸化により形成されたものであり、製造が容易である。
【0032】
なお、図3の工程4に示すように、Al系パッシベーション層12を、金属電極9の、クッション層221との接合側主表面の外周縁部に入り込む形で形成しておくと、Alを含有したクッション層221に対する金属電極9の外周縁からの隙間腐食が進みにくくなり、素子のさらなる長寿命化を図ることができる。
【0033】
以下、本発明の発光素子の、種々の変形例を説明する(図1の発光素子1との共通部分には共通の符号を付与して、詳細な説明は省略する)。図5に示す発光素子100においては、活性層5よりもバンドギャップエネルギーの大きいAl含有化合物半導体、本実施形態ではAlGaAsよりなるクッション層221の主表面の、Al系絶縁層11の形成領域を除く部分の全面が、Al非含有化合物半導体層、本実施形態ではGaP層222により覆われている。GaP層222は、本実施形態では金属電極9との接触抵抗低減のために、クッション層221よりもドーパント濃度を高く設定してある。そして、Al系絶縁層11と、その外周を取り囲むAl非含有化合物半導体層222とに接する形で金属電極9が形成されている。金属電極9は、その接合側主表面の外周縁部にて、GaP層222を介してクッション層221と導通している。
【0034】
上記構造の製造工程は、以下の通りである。まず、図6の工程1に示すように、クッション層221の主表面の全面を覆うようにGaP層222をエピタキシャル成長し、さらに、該GaP層222の、Al系絶縁層11の形成予定領域を除く全面をフォトレジスト層30で覆う。そして、工程2に示すごとく、フォトレジスト層30のウィンドウ30w内に露出するGaP層222を、硫酸/過酸化水素混合溶液からなるエッチング液を用いて除去し、さらに、該除去により露出したAlGaAsよりなるクッション層221を、アンモニア/過酸化水素混合溶液からなる酸化処理液を用いて酸化処理する。これにより、露出したクッション層221の最表層部がAl系絶縁層11となる。そして、工程3に示すようにフォトレジスト層30を除去し、さらに工程4に示すように、Al系絶縁層11と周囲のGaP層222とを覆うように金属電極9を形成する。
【0035】
また、図7の発光素子200においては、Al含有化合物半導体よりなるクッション層221の、光取出主表面の金属電極9により覆われていない領域を、金属電極9の側面9d及び該金属電極9のクッション層221との非接合側主表面の外周縁部9eとともに、パッシベーション層14により覆っている。パッシベーション膜14は、本実施形態ではSiO被膜としている。上記構造の製造工程は、以下の通りである。まず、図8の工程1に示すように、クッション層221の、Al系絶縁層11の形成予定領域を除く全面をフォトレジスト層30で覆う。次に、工程2に示すごとく、フォトレジスト層30のウィンドウ30w内に露出するクッション層221の最表層部を、アンモニア/過酸化水素混合溶液からなる酸化処理液を用いて酸化処理し、Al系絶縁層11を形成する。工程3においてフォトレジスト層30を除去し、工程4に示すように、Al系絶縁層11と、その周囲のクッション層主表面領域を覆うように金属電極9を形成する。そして、工程5に示すように、クッション層221の主表面が、金属電極9の側面9d及び該金属電極9のクッション層221との非接合側主表面の外周縁部9eとともに覆われるように、パッシベーション層14をスパッタリング等により形成する。
【図面の簡単な説明】
【図1】本発明の発光素子の第一実施形態を積層構造にて示す模式図。
【図2】図1の発光素子の、製造工程の一例を示す説明図。
【図3】図2の工程Dの詳細説明図。
【図4】図2に続く説明図。
【図5】本発明の発光素子の第二実施形態を積層構造にて示す模式図。
【図6】図5の発光素子の、製造工程の一例を示す説明図。
【図7】本発明の発光素子の第三実施形態を積層構造にて示す模式図。
【図8】図7の発光素子の、製造工程の一例を示す説明図。
【符号の説明】
1,100,200 発光素子
4 n型クラッド層(第一導電型クラッド層)
5 活性層
6 p型クラッド層(第二導電型クラッド層)
9 金属電極
11 Al系絶縁層
12 Al系パッシベーション層
14 パッシベーション層
221 クッション層(Al含有半導体層)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting device and a method for manufacturing the same.
[0002]
[Prior art]
[Patent Document 1]
JP-A-5-102605 [Patent Document 2]
Japanese Patent Application Laid-Open No. 05-013813 [Patent Document 3]
Japanese Patent Application Laid-Open No. 05-0667849 [Patent Document 4]
JP-A-09-07221 [Patent Document 5]
JP-A-10-154831 [Patent Document 6]
JP-A-11-017218 [Patent Document 7]
JP-A-11-186595
The light emitting element has a structure in which a compound semiconductor layer is laminated to form a light emitting layer portion including a pn junction. Specifically, one of the main surfaces on the p-layer side or the n-layer side of the element chip having the light emitting layer portion is fixed on the stage using a silver paste or the like, and the other main surface side is made of Au or the like. Generally, a structure is used in which a metal electrode is arranged, an Au wire for energization is bonded to the metal electrode, and the whole is resin-molded.
[0004]
Since this metal electrode functions as a light-shielding body, it is formed, for example, so as to cover only the central portion of the main surface of the light-emitting layer portion, and light is extracted from the surrounding electrode-free region. However, when a voltage for driving the device is applied to this electrode, the current density in the device is high immediately below the electrode, and is low in the region around the electrode which is the light extraction region, so that the light extraction efficiency is likely to be reduced. . Heretofore, attempts have been made to solve this problem mainly from the viewpoint of improving the semiconductor laminated structure itself including the light emitting layer portion. As a typical example, there is a method in which an inversion layer having a conductivity type opposite to that of the semiconductor layer is buried at a position directly below the electrode inside the compound semiconductor layer in contact with the electrode (for example, Patent Documents 1 to 7).
[0005]
[Problems to be solved by the invention]
However, in the method of burying the inversion layer, it is necessary to insert a photolithography step for forming the inversion layer corresponding to the electrode region in the middle of the epitaxial growth step of the compound semiconductor layer, which increases the number of steps and consequently decreases the manufacturing efficiency. There is a problem that easily leads to
[0006]
It is an object of the present invention to provide a light emitting device capable of improving light extraction efficiency without changing the structure of a semiconductor laminated structure itself including a light emitting layer portion, and a method of manufacturing the same.
[0007]
[Means for Solving the Problems and Functions / Effects]
In order to solve the above problems, the light emitting device of the present invention is
Having a compound semiconductor layer having a light emitting layer portion, a metal electrode for applying a light emission drive voltage to the light emitting layer portion is disposed so as to cover a partial region of the light extraction main surface of the compound semiconductor layer,
At least a part of the compound semiconductor layer is an Al-containing compound semiconductor layer containing Al,
In a part of the region directly below the metal electrode, between the Al-containing compound semiconductor layer and the metal electrode, the Al-based insulating layer in contact with the Al-containing compound semiconductor layer defines a region including the geometric center of gravity of the region directly below. Placed in a covering form,
The metal electrode is electrically connected to the Al-containing compound semiconductor layer directly or indirectly through another compound semiconductor layer outside the region where the Al-based insulating layer is formed.
[0008]
According to the structure of the light emitting device of the present invention, at least a part of the compound semiconductor layer is an Al-containing compound semiconductor layer, and the Al-containing compound semiconductor is formed in a part of a region directly below the metal electrode disposed on the light extraction main surface side. An Al-based insulating layer in contact with the Al-containing compound semiconductor layer is disposed between the layer and the metal electrode as a current blocking layer. Specifically, an Al-based insulating layer is disposed in a partial area including the geometric center of gravity of the area immediately below the area where light extraction is most hindered by the metal electrode. According to this structure, the region where light extraction is easily hindered can be blocked by the Al-based insulating layer, and the current is diffused in the in-plane direction of the Al-based insulating layer, so that the current flows through the metal electrode. After approaching the outer peripheral edge, a current can be caused to flow toward the Al-containing compound semiconductor layer outside the Al-based insulating layer. Thus, a current can be supplied to the light emitting layer in a form avoiding the region immediately below the metal electrode, and the light extraction efficiency can be improved. Further, unlike the conventional light emitting device, it is not necessary to bury the inversion layer, and as a result, a light emitting device with improved light extraction efficiency is realized without changing the structure of the semiconductor laminated structure itself including the light emitting layer portion. I do. Further, since the Al-based insulating layer can be easily formed by using the Al component contained in the surface layer portion of the Al-containing compound semiconductor layer, a photolithography step for forming an inversion layer is performed by using a compound semiconductor as in a conventional light emitting element. There is no need to insert the layer in the middle of the epitaxial growth process, and the manufacturing process can be simplified.
[0009]
Although another insulating layer can be interposed between the Al-based insulating layer and the metal electrode, if the current-blocking ability of the Al-based insulating layer is sufficiently high, the metal electrode may be in contact with the Al-based insulating layer. They can be arranged, and the element structure can be further simplified.
[0010]
In order to reduce light emission in a region directly below the metal electrode, an Al-based insulating layer is disposed so as to face the center of the main surface of the metal electrode on the bonding side with the compound semiconductor layer. On the outside, it is preferable to adopt a structure in which the junction-side main surface of the metal electrode is electrically connected to the Al-containing compound semiconductor layer. Thereby, light emission at the center of the electrode, which is easily blocked by the metal electrode, is effectively suppressed, and the light extraction efficiency can be further improved.
[0011]
In the Al-containing compound semiconductor layer, a region of the main light extraction surface that is not covered by the metal electrode can be covered by an Al-based passivation layer in contact with the Al-containing compound semiconductor layer. As a result, deterioration of the Al-containing compound semiconductor layer due to oxidation of the Al component is suppressed, and the life of the element can be extended. Further, the Al-based passivation layer can be easily formed by using an Al component contained in a surface portion of the Al-containing compound semiconductor layer. In this case, if the Al-based passivation layer is formed so as to enter the outer peripheral portion of the main surface of the metal electrode on the side of the junction with the Al-containing compound semiconductor layer, the Al-based passivation layer may be formed from the outer peripheral edge of the metal electrode with respect to the Al-containing compound semiconductor layer. Crevice corrosion does not easily progress, and the life of the element can be further extended.
[0012]
As another mode effective for suppressing the crevice corrosion, a region of the Al-containing compound semiconductor layer, which is not covered by the metal electrode on the main light extraction surface, is formed on the side surface of the metal electrode and the Al-containing compound semiconductor layer of the metal electrode. A structure covered with a passivation layer together with the outer peripheral portion of the main surface on the non-joining side with the substrate can also be exemplified. In this case, the passivation film is not limited to the Al-based insulating layer as long as it can prevent oxidation of the Al component of the Al-containing compound semiconductor layer, and can be formed as, for example, a SiO 2 film.
[0013]
Next, the light emitting layer portion can be formed of AlGaInP as having a double hetero structure in which a first conductivity type clad layer, an active layer, and a second conductivity type clad layer are laminated in this order. Thereby, a light emitting element with high luminance can be realized. In this configuration, when a current-carrying electrode wire is bonded to the metal electrode, a cushion layer made of an Al-containing compound semiconductor having a band gap larger than that of the active layer may be formed on the second conductive type clad layer. it can. The Al-based insulating layer is formed in contact with the cushion layer. For example, when wires are joined by ultrasonic welding or thermosonic bonding that adds more heat, impact stress due to ultrasonic waves or heating (and pressurization) concentrates on the compound semiconductor layer immediately below the metal electrodes. Then, crystal defects such as dislocations are introduced as damage. When the damaged region reaches the active layer portion, the following problems are specifically caused.
(1) Direct decrease in light emission luminance. The cause is considered to be an increase in the non-light-emitting transition process due to crystal defects.
(2) Reduction in element life. When energization is continued to the light emitting layer in which dislocations are formed, current concentrates on the dislocations, so that the dislocations are likely to multiply, and the emission luminance deteriorates with time.
[0014]
However, by interposing the cushion layer containing Al as described above between the second conductivity type cladding layer and the metal electrode, even if a damaged region occurs when the electrode wire is joined to the metal electrode, The influence of the damaged region remains in the cushion layer and hardly affects the active layer. In addition, the cushion layer has an advantage that the Al-based insulating layer (or Al-based passivation layer) can be formed more easily because the Al component is added more than the active layer for suppressing light absorption.
[0015]
Further, since the cushion layer is made of a compound semiconductor having a larger band gap than the active layer in the light emitting layer portion, it is difficult to absorb light from the light emitting layer portion, which contributes to an improvement in light extraction efficiency. Specific examples of the material of the cushion layer include AlGaAs, GaAsP, and AlGaAsP. Further, when the cushion layer is formed thin, it works advantageously from the viewpoint of suppressing light absorption. Specifically, the thickness of the cushion layer is desirably adjusted to 0.1 μm or more and 30 μm or less. If the thickness of the cushion layer is less than 0.1 μm, the total thickness of the bonding-side semiconductor layer tends to be insufficient, and the effect of bonding the electrode wires tends to reach the light emitting layer portion. On the other hand, when the thickness of the cushion layer exceeds 30 μm, the resistivity in the layer thickness direction increases when the dopant concentration is kept low, leading to a decrease in luminous efficiency due to an increase in the series resistance of the device. In addition, it takes a long time to grow a thick cushion layer, and a large amount of raw materials are required, which tends to cause a decrease in manufacturing efficiency and an increase in cost. More preferably, the thickness of the cushion layer is 0.5 μm or more and 10 μm or less. The cushion layer can be, for example, a current diffusion layer having a higher dopant concentration than the second conductivity type cladding layer.
[0016]
Next, the method for manufacturing a light-emitting element of the present invention is the method for manufacturing a light-emitting element of the present invention, based on the Al component contained in the outermost layer portion of the Al-containing compound semiconductor layer contained in the compound semiconductor layer. It is characterized in that an Al-based insulating layer is formed. Since the Al-based insulating layer used in the light emitting device of the present invention can be easily formed by using the Al component contained in the surface layer portion of the Al-containing compound semiconductor layer, photolithography for forming an inversion layer is performed as in a conventional light emitting device. It is not necessary to insert the process in the middle of the epitaxial growth process of the compound semiconductor layer, and the manufacturing process can be simplified.
[0017]
The Al-based insulating layer can be formed as, for example, an Al-based nitride layer. However, since the Al component is easily oxidized, the method of forming the Al-based insulating layer as an Al-based oxide layer is a simple process. It is more advantageous from the viewpoint of conversion. In this case, by oxidizing the outermost layer of the Al-containing compound semiconductor layer, an Al-based insulating layer composed of an Al-based oxide layer can be easily formed. The Al-based oxide layer can be formed by, for example, thermal oxidation of an Al-containing compound semiconductor layer. However, since it is necessary to form the Al-based oxide layer only in a part of the region directly below the metal electrode, a heat-resistant mask material is used. Accordingly, the surface of the Al-containing compound semiconductor layer must be patterned, and it is difficult to avoid complicated processes. Therefore, a method of forming an Al-based oxide layer serving as an Al-based insulating layer by contacting an oxidizing solution with a part of a region where a metal electrode is to be arranged on the main surface of the Al-containing compound semiconductor layer is to be adopted. Is desirable. According to this method, a region that should be brought into contact with the oxidizing solution can be patterned using a normal photoresist, and the process can be simplified.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a conceptual diagram showing a light emitting device 1 according to one embodiment of the present invention. The light-emitting element 1 has a light-emitting layer portion 24 made of AlGaInP formed on one main surface of an n-type GaAs single crystal substrate (hereinafter, also simply referred to as “substrate”) 7 with an n-type GaAs buffer layer 2 interposed therebetween. A p-type cushion layer 221 is formed so as to cover the light emitting layer portion 24. Further, a metal electrode 9 made of Au or the like is arranged on the cushion layer 221 so as to cover a part of the main surface thereof, and an electrode wire 47 made of Au or the like is joined thereto. . On the other hand, on the other main surface side of the substrate 7, a back electrode layer 15 made of a metal such as an Au-Ge-Ni alloy is formed on the entire surface.
[0019]
The light-emitting layer portion 24 is made of (Al x Ga 1-x ) y In 1-y P mixed crystal, and has a first conductivity type clad layer 4, a second conductivity type clad layer 6, and a first conductivity type clad. The active layer 5 is located between the layer 4 and the cladding layer 6 of the second conductivity type and has a double hetero structure. Specifically, the active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1 -y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal is formed. has a p-type (Al x Ga 1-x) y in 1-y P cladding layer 6 and the n-type (Al x Ga 1-x) y in 1-y P cladding layer 4 and the sandwiched. In the light emitting device 1 of FIG. 1, the p-type AlGaInP cladding layer 6 (the p-type dopant is Zn: C from an organic metal molecule can also contribute as a p-type dopant) is disposed on the cushion layer 221 side. The n-type AlGaInP cladding layer 4 (the n-type dopant is Si) is disposed on the 15th side. It is obvious to those skilled in the art that the term "non-doped" as used herein means "do not actively add a dopant", and a dopant component unavoidably mixed in a normal manufacturing process. (For example, the upper limit is about 10 13 to 10 16 / cm 3 ) is not excluded. The p-type AlGaInP cladding layer 6 has a p-type carrier concentration (majority carrier concentration) of 5 × 10 16 / cm 3 or more and less than 1 × 10 18 / cm 3 , preferably 1 × 10 17 / cm 3 or more and 7 × 10 7 / cm 3. 17 / cm 3 or less.
[0020]
In the present embodiment, the cushion layer 221 is made of an AlGaAs layer containing Zn as a p-type dopant (an Al-containing intermediate layer: for example, Al x Ga 1-x As, x = about 0.7), an Al-containing compound. It is a semiconductor layer. The p-type AlGaInP cladding layer has a p-type dopant concentration of 1 × 10 17 / cm 3 or more and 2 × 10 19 / cm 3 or less, preferably 5 × 10 17 / cm 3 or more and 1 × 10 19 / cm 3 or less. It is set to be larger than 6 and functions as a current spreading layer. The thickness of the cushion layer 221 is 0.1 μm or more and 30 μm or less, preferably 0.5 μm or more and 10 μm or less.
[0021]
On the surface of the cushion layer 221 forming the Al-containing compound semiconductor layer, a part of the region immediately below the metal electrode 9 that includes the geometric center of gravity, The Al-based insulating layer 11 is formed in contact with the cushion layer 221 so as to face the center of the surface. Outside the Al-based insulating layer 11, the bonding-side main surface of the metal electrode 9 is directly connected to the cushion layer 221. In the present embodiment, the metal electrode 9 and the cushion layer 221 are electrically connected in the annular conductive region 13 along the periphery of the metal electrode 9.
[0022]
The light extraction main surface of the cushion layer 221 is covered with an Al-based passivation layer 12 in a region not covered with the metal electrode 9 in contact with the cushion layer 221. In the present embodiment, the light emitting layer portion 24 as well as the cushion layer 221 is configured as an Al-containing compound semiconductor layer, and the peripheral side surface is also covered with the Al-based passivation layer 12.
[0023]
Hereinafter, a method for manufacturing the light emitting device 1 of FIG. 1 will be described.
First, as shown in step A of FIG. 2, the n-type GaAs buffer layer 2 is formed on the first main surface of the GaAs single crystal substrate 7, and then the n-type AlGaInP cladding layer 4 and the AlGaInP active layer 5 are formed as the light emitting layer 24. , And a p-type AlGaInP cladding layer 6 (see FIG. 1) are epitaxially grown in this order. Next, as shown in Step B, a cushion layer 221 made of AlGaAs is epitaxially grown.
[0024]
The epitaxial growth of each of these layers can be performed by a known metal organic vapor phase epitaxy (MOVPE) method. The following can be used as a source gas serving as a component source of Al, Ga, In, P, and As;
-Al source gas; trimethyl aluminum (TMAl), triethyl aluminum (TEAl), etc .;
Ga source gas; trimethylgallium (TMGa), triethylgallium (TEGa), etc.
In source gas: trimethyl indium (TMIn), triethyl indium (TEIn), or the like.
P source gas: tert-butyl phosphine (TBP), phosphine (PH 3 ), etc.
· As source gas; tertiary butyl arsine (TBA), such as arsine (AsH 3).
[0025]
The following can be used as the dopant gas;
(P-type dopant)
· Mg source: such as biscyclopentadienyl magnesium (Cp 2 Mg).
-Zn source: dimethyl zinc (DMZn), diethyl zinc (DEZn) and the like.
(N-type dopant)
-Si source: silicon hydride such as monosilane.
[0026]
The growth of each layer can be performed continuously in the same vapor phase growth apparatus by switching the source gas. Further, the dopant concentration of each layer can be adjusted to a desired value by the supply ratio of the dopant gas to the source gas. Next, the process proceeds to step C in FIG. 2, where the back electrode layer 15 is formed on the second main surface of the substrate 7 by a vacuum deposition method. Further, as in the step D, the metal electrode 9 is arranged in each region of the cushion layer 221 corresponding to each light emitting element chip, and baking for fixing the electrode is performed at an appropriate temperature, whereby the light emitting element wafer 50 is obtained. .
[0027]
FIG. 3 shows the details of the step D. First, as in Step 1, the photoresist layer 30 is patterned on the main surface of the cushion layer 221 by using a well-known photolithography step so that only the portion intended as the conductive region 13 is covered with the photoresist layer 30. While forming. Then, in this state, as shown in Step 2, an oxidizing solution composed of an ammonia / hydrogen peroxide mixed solution is brought into contact with the main surface of the cushion layer 221 not covered with the photoresist layer 30. As a result, Al-based oxide layers 11 'and 12' are formed in the outermost layer by selective oxidation of Al in AlGaAs using a mixed solution of ammonia and hydrogen peroxide. The thickness of the Al-based oxide layers 11 'and 12' is, for example, 100 nm or more and 200 nm or less. If the thickness of the Al-based oxide layers 11 ′ and 12 ′ is less than 100 nm, the insulating effect tends to be insufficient. If the thickness exceeds 200 nm, the formation takes a long time, leading to a reduction in manufacturing efficiency.
[0028]
Next, as shown in Step 3, the photoresist layer 30 is removed. Oxidation of Al in the region is prevented by the photoresist layer 30, and the surface of the cushion layer 221 made of AlGaAs is exposed to form the conduction region 13. Then, as shown in Step 4, a metal electrode 9 is formed by vapor deposition or sputtering so as to cover the conductive region 13 and the Al-based oxide layer 11 'inside thereof. As a result, the Al-based oxide layer 11 'immediately below the metal electrode 9 becomes the Al-based insulating layer 11 functioning as a current blocking layer, and the Al-based oxide layer 12' forming the outer region of the metal electrode 9 becomes the Al-based passivation layer. It becomes 12.
[0029]
Next, the light emitting element wafer 50 is half-diced as shown in step E of FIG. 4, and the processing strain on the dicing surface is removed by mesa etching as shown in step F, and then the light emitting element chip is scribed in step G. 51. Then, after the separation or after the above-mentioned half dicing, the peripheral side surfaces of the cushion layer 221 and the light emitting layer portion 24 are selectively oxidized to Al in the compound semiconductor layer forming the peripheral side surfaces. Covered with layers. Then, as shown in step H, the back electrode layer 15 (see FIG. 1) is fixed to the terminal electrode 9a also serving as a support using a conductive paste such as an Ag paste, while the electrode wire 47 is connected to the metal electrode 9. Are bonded, and the resin mold 52 is formed as shown in Step I, whereby the light emitting element 1 is obtained.
[0030]
According to the light emitting element 1 obtained as described above, the following effects are achieved. That is, when the electrode wires 47 are joined to the metal electrodes 9 made of Au, for example, ultrasonic welding (or thermosonic bonding) is used. When the impact stress of this ultrasonic welding strongly affects the active layer 5 shown in FIG. 1, damage such as crystal defects occurs in the active layer 5, which leads to a decrease in light emission intensity and the like. However, in the light emitting device of the present embodiment, since the cushion layer 221 is interposed, the damaged area remains in the cushion layer 221 and the influence is hard to extend deep into the light emitting layer portion 24, so that the light emission luminance is correspondingly increased. There is no worry that it will be damaged.
[0031]
Since the cushion layer 221 has a higher dopant concentration than the second conductivity type cladding layer 6, the current can be sufficiently spread, and the light-emitting layer portion 24 can be uniformly energized. Further, an Al-based insulating layer 11 serving as a current blocking layer is formed on the surface of the cushion layer 221 so as to cover a central region of the region immediately below the metal electrode 9 where light extraction is easily hindered. This makes it possible to block a current in a region where light extraction is difficult with the Al-based insulating layer 11, and to diffuse the current in the in-plane direction of the Al-based insulating layer 11, so that the current flows through the metal electrode 9. It can be close to the outer peripheral edge. As a result, current can be supplied to the light emitting layer portion 24 in a manner avoiding the region immediately below the metal electrode 9, and the light extraction efficiency can be increased. Further, the Al-based insulating layer 11 is formed by oxidizing the Al component of the cushion layer 221 together with the Al-based passivation layer 12, and is easy to manufacture.
[0032]
As shown in Step 4 of FIG. 3, when the Al-based passivation layer 12 is formed so as to enter the outer peripheral edge of the main surface of the metal electrode 9 on the side of the joint with the cushion layer 221, the Al-containing passivation layer 12 contains Al. Crevice corrosion from the outer peripheral edge of the metal electrode 9 to the cushion layer 221 does not easily progress, and the life of the element can be further extended.
[0033]
Hereinafter, various modifications of the light emitting device of the present invention will be described (common portions are denoted by the same reference numerals as those of the light emitting device 1 in FIG. 1 and detailed description is omitted). In the light emitting element 100 shown in FIG. 5, the region where the Al-based insulating layer 11 is formed is excluded from the main surface of the Al-containing compound semiconductor having a larger band gap energy than the active layer 5, that is, the cushion layer 221 made of AlGaAs in this embodiment. The entire surface of the portion is covered with an Al-free compound semiconductor layer, in this embodiment, a GaP layer 222. In the present embodiment, the dopant concentration of the GaP layer 222 is set higher than that of the cushion layer 221 in order to reduce the contact resistance with the metal electrode 9. The metal electrode 9 is formed in contact with the Al-based insulating layer 11 and the Al-free compound semiconductor layer 222 surrounding the outer periphery thereof. The metal electrode 9 is electrically connected to the cushion layer 221 via the GaP layer 222 at the outer peripheral edge of the joint-side main surface.
[0034]
The manufacturing process of the above structure is as follows. First, as shown in Step 1 of FIG. 6, a GaP layer 222 is epitaxially grown so as to cover the entire main surface of the cushion layer 221. Further, a region of the GaP layer 222 except for a region where the Al-based insulating layer 11 is to be formed is removed. The entire surface is covered with a photoresist layer 30. Then, as shown in Step 2, the GaP layer 222 exposed in the window 30w of the photoresist layer 30 is removed using an etching solution composed of a sulfuric acid / hydrogen peroxide mixed solution, and further, the AlGaAs exposed by the removal is removed. The cushion layer 221 is oxidized using an oxidizing solution comprising an ammonia / hydrogen peroxide mixed solution. Thereby, the outermost layer portion of the exposed cushion layer 221 becomes the Al-based insulating layer 11. Then, as shown in step 3, the photoresist layer 30 is removed, and as shown in step 4, the metal electrode 9 is formed so as to cover the Al-based insulating layer 11 and the surrounding GaP layer 222.
[0035]
In the light emitting device 200 of FIG. 7, the region of the cushion layer 221 made of the Al-containing compound semiconductor that is not covered by the metal electrode 9 on the main light extraction surface is formed by the side surface 9 d of the metal electrode 9 and the metal electrode 9. It is covered by the passivation layer 14 together with the outer peripheral edge 9e of the main surface on the non-joining side with the cushion layer 221. In the present embodiment, the passivation film 14 is a SiO 2 film. The manufacturing process of the above structure is as follows. First, as shown in Step 1 of FIG. 8, the entire surface of the cushion layer 221 except for the region where the Al-based insulating layer 11 is to be formed is covered with the photoresist layer 30. Next, as shown in Step 2, the outermost layer portion of the cushion layer 221 exposed in the window 30w of the photoresist layer 30 is oxidized using an oxidizing solution composed of an ammonia / hydrogen peroxide mixed solution to form an Al-based material. An insulating layer 11 is formed. In step 3, the photoresist layer 30 is removed, and as shown in step 4, the metal electrode 9 is formed so as to cover the Al-based insulating layer 11 and the surrounding cushion layer main surface area. Then, as shown in Step 5, the main surface of the cushion layer 221 is covered together with the side surface 9d of the metal electrode 9 and the outer peripheral edge 9e of the main surface of the metal electrode 9 on the non-joining side with the cushion layer 221. The passivation layer 14 is formed by sputtering or the like.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first embodiment of a light emitting device of the present invention in a laminated structure.
FIG. 2 is an explanatory view showing an example of a manufacturing process of the light emitting device of FIG.
FIG. 3 is a detailed explanatory view of a step D in FIG. 2;
FIG. 4 is an explanatory view following FIG. 2;
FIG. 5 is a schematic view showing a second embodiment of the light emitting device of the present invention in a laminated structure.
FIG. 6 is an explanatory view showing an example of a manufacturing process of the light emitting device of FIG.
FIG. 7 is a schematic diagram showing a third embodiment of the light emitting device of the present invention in a laminated structure.
FIG. 8 is an explanatory view showing an example of a manufacturing process of the light-emitting element of FIG.
[Explanation of symbols]
1,100,200 Light-emitting element 4 n-type cladding layer (first conductivity type cladding layer)
5 Active layer 6 p-type cladding layer (second conductivity type cladding layer)
9 Metal electrode 11 Al-based insulating layer 12 Al-based passivation layer 14 Passivation layer 221 Cushion layer (Al-containing semiconductor layer)

Claims (10)

発光層部を有する化合物半導体層を有し、前記発光層部に発光駆動電圧を印加するための金属電極が、該化合物半導体層の光取出主表面の一部領域を覆う形で配置され、
前記化合物半導体層の少なくとも一部が、Alを含有したAl含有化合物半導体層とされ、
前記金属電極の直下領域の一部において、前記Al含有化合物半導体層と該金属電極との間に、前記Al含有化合物半導体層と接するAl系絶縁層が、前記直下領域の幾何学的重心位置を包含する領域を覆う形で配置され、
前記Al系絶縁層の形成領域の外側にて前記金属電極が、前記Al含有化合物半導体層と直接又は他の化合物半導体層を介して間接的に導通してなることを特徴とする発光素子。
Having a compound semiconductor layer having a light emitting layer portion, a metal electrode for applying a light emission drive voltage to the light emitting layer portion is disposed so as to cover a partial region of the light extraction main surface of the compound semiconductor layer,
At least a part of the compound semiconductor layer is an Al-containing compound semiconductor layer containing Al.
In a part of the region directly below the metal electrode, between the Al-containing compound semiconductor layer and the metal electrode, an Al-based insulating layer that is in contact with the Al-containing compound semiconductor layer sets the geometric center of gravity of the region immediately below. It is arranged so as to cover the containing area,
A light-emitting element, wherein the metal electrode is electrically connected to the Al-containing compound semiconductor layer directly or indirectly via another compound semiconductor layer outside a region where the Al-based insulating layer is formed.
前記Al系絶縁層が前記金属電極と接して配置されてなることを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, wherein the Al-based insulating layer is disposed in contact with the metal electrode. 前記金属電極の、前記化合物半導体層との接合側主表面の中央部に対向する形で前記Al系絶縁層が形成され、該Al系絶縁層の外側において、前記金属電極の前記接合側主表面と前記Al含有化合物半導体層とが導通してなることを特徴とする請求項1又は2に記載の発光素子。The Al-based insulating layer is formed so as to face a central portion of the main surface of the metal electrode on the bonding side with the compound semiconductor layer, and the bonding-side main surface of the metal electrode is provided outside the Al-based insulating layer. 3. The light emitting device according to claim 1, wherein the light emitting device is electrically connected to the Al-containing compound semiconductor layer. 4. 前記Al含有化合物半導体層は、前記光取出主表面の前記金属電極により覆われていない領域が、前記Al含有化合物半導体層と接するAl系パッシベーション層により覆われてなる請求項1ないし3のいずれか1項に記載の発光素子。4. The Al-containing compound semiconductor layer, wherein a region of the light extraction main surface that is not covered by the metal electrode is covered by an Al-based passivation layer in contact with the Al-containing compound semiconductor layer. Item 2. The light-emitting element according to item 1. 前記Al系パッシベーション層が、前記金属電極の、前記Al含有化合物半導体層との接合側主表面の外周縁部に入り込む形で形成されている請求項4記載の発光素子。The light emitting device according to claim 4, wherein the Al-based passivation layer is formed so as to penetrate an outer peripheral portion of a main surface of the metal electrode on a bonding side with the Al-containing compound semiconductor layer. 前記Al含有化合物半導体層は、前記光取出主表面の前記金属電極により覆われていない領域が、前記金属電極の側面及び該金属電極の前記Al含有化合物半導体層との非接合側主表面の外周縁部とともにパッシベーション層により覆われてなる請求項1ないし3のいずれか1項に記載の発光素子。In the Al-containing compound semiconductor layer, a region of the light extraction main surface that is not covered by the metal electrode is located outside a side surface of the metal electrode and a main surface of the metal electrode on a non-joining side with the Al-containing compound semiconductor layer. The light emitting device according to claim 1, wherein the light emitting device is covered with a passivation layer together with a peripheral portion. 前記発光層部はAlGaInPにより、第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序にて積層されたダブルへテロ構造を有するものとして構成されてなり、該第二導電型クラッド層上に、前記活性層よりもバンドギャップの大きいAl含有化合物半導体からなるクッション層が形成され、該クッション層と接して前記Al系絶縁層が形成されてなることを特徴とする請求項1ないし6のいずれか1項に記載の発光素子。The light emitting layer portion is made of AlGaInP and has a double hetero structure in which a first conductivity type clad layer, an active layer, and a second conductivity type clad layer are laminated in this order, and the second conductivity type is formed. 2. A cushion layer made of an Al-containing compound semiconductor having a larger band gap than the active layer is formed on the clad layer, and the Al-based insulating layer is formed in contact with the cushion layer. 7. The light-emitting device according to any one of items 6 to 6. 請求項1ないし7のいずれか1項に記載の発光素子の製造方法であって、前記化合物半導体層に含まれる前記Al含有化合物半導体層の最表層部に含有されるAl成分に基づいて前記Al系絶縁層を形成することを特徴とする発光素子の製造方法。The method for manufacturing a light emitting device according to any one of claims 1 to 7, wherein the Al component is contained based on an Al component contained in an outermost layer portion of the Al-containing compound semiconductor layer contained in the compound semiconductor layer. A method for manufacturing a light emitting element, comprising forming a system insulating layer. 前記Al含有化合物半導体層の最表層部を酸化処理することにより、前記Al系絶縁層をAl系酸化物層として形成することを特徴とする請求項8記載の発光素子の製造方法。The method according to claim 8, wherein the Al-based insulating layer is formed as an Al-based oxide layer by oxidizing an outermost layer of the Al-containing compound semiconductor layer. 前記Al含有化合物半導体層の主表面の、前記金属電極の配置予定領域の一部に酸化処理液を接触させることにより、前記Al系絶縁層をなす前記Al系酸化物層を形成することを特徴とする請求項10記載の発光素子の製造方法。The Al-based oxide layer forming the Al-based insulating layer is formed by contacting an oxidation treatment liquid with a part of the main surface of the Al-containing compound semiconductor layer where the metal electrode is to be arranged. The method for manufacturing a light emitting device according to claim 10, wherein
JP2003076253A 2003-03-19 2003-03-19 Light emitting element and method of manufacture the same Pending JP2004288729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076253A JP2004288729A (en) 2003-03-19 2003-03-19 Light emitting element and method of manufacture the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076253A JP2004288729A (en) 2003-03-19 2003-03-19 Light emitting element and method of manufacture the same

Publications (1)

Publication Number Publication Date
JP2004288729A true JP2004288729A (en) 2004-10-14

Family

ID=33291355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076253A Pending JP2004288729A (en) 2003-03-19 2003-03-19 Light emitting element and method of manufacture the same

Country Status (1)

Country Link
JP (1) JP2004288729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120028676A (en) * 2010-09-15 2012-03-23 엘지이노텍 주식회사 Light emitting device
JP2013110374A (en) * 2011-10-26 2013-06-06 Sony Corp Light emitting element, method of manufacturing the same, and light emitting device
CN114038966A (en) * 2021-07-27 2022-02-11 重庆康佳光电技术研究院有限公司 LED epitaxial structure, manufacturing method thereof and LED device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678473U (en) * 1979-11-14 1981-06-25
JPH04167569A (en) * 1990-10-31 1992-06-15 Mitsubishi Kasei Polytec Co Protective film forming method and compound semiconductor light emitting diode provided therewith
JPH04340288A (en) * 1991-01-28 1992-11-26 Nippon Telegr & Teleph Corp <Ntt> Surface type light emitting element
JPH1051028A (en) * 1996-08-06 1998-02-20 Toshiba Corp Gallium nitride based compound semiconductor light-emitting element
JPH10223929A (en) * 1996-12-05 1998-08-21 Showa Denko Kk Substrate for algainp light emitting element
JP2003023180A (en) * 2001-07-05 2003-01-24 Seiwa Electric Mfg Co Ltd Compound semiconductor light emitting element and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678473U (en) * 1979-11-14 1981-06-25
JPH04167569A (en) * 1990-10-31 1992-06-15 Mitsubishi Kasei Polytec Co Protective film forming method and compound semiconductor light emitting diode provided therewith
JPH04340288A (en) * 1991-01-28 1992-11-26 Nippon Telegr & Teleph Corp <Ntt> Surface type light emitting element
JPH1051028A (en) * 1996-08-06 1998-02-20 Toshiba Corp Gallium nitride based compound semiconductor light-emitting element
JPH10223929A (en) * 1996-12-05 1998-08-21 Showa Denko Kk Substrate for algainp light emitting element
JP2003023180A (en) * 2001-07-05 2003-01-24 Seiwa Electric Mfg Co Ltd Compound semiconductor light emitting element and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120028676A (en) * 2010-09-15 2012-03-23 엘지이노텍 주식회사 Light emitting device
KR101650021B1 (en) * 2010-09-15 2016-08-30 엘지이노텍 주식회사 Light emitting device
JP2013110374A (en) * 2011-10-26 2013-06-06 Sony Corp Light emitting element, method of manufacturing the same, and light emitting device
US9455373B2 (en) 2011-10-26 2016-09-27 Sony Corporation Light emitting element, method of manufacturing the same, and light emitting device
CN114038966A (en) * 2021-07-27 2022-02-11 重庆康佳光电技术研究院有限公司 LED epitaxial structure, manufacturing method thereof and LED device
CN114038966B (en) * 2021-07-27 2023-04-25 重庆康佳光电技术研究院有限公司 LED epitaxial structure, manufacturing method thereof and LED device

Similar Documents

Publication Publication Date Title
JP4091261B2 (en) Semiconductor light emitting device and manufacturing method thereof
US7671375B2 (en) Nitride-based semiconductor device of reduced voltage drop, and method of fabrication
US7400000B2 (en) Nitride-based semiconductor device
JP4004378B2 (en) Semiconductor light emitting device
US6995401B2 (en) Light emitting device and method of fabricating the same
JP3207773B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
JP2014204095A (en) Semiconductor light emitting element and manufacturing method of the same
JP4569859B2 (en) Method for manufacturing light emitting device
JP4140007B2 (en) Light emitting device and method for manufacturing light emitting device
JP4174581B2 (en) Method for manufacturing light emitting device
JP4366522B2 (en) Light emitting element
JP4569858B2 (en) Method for manufacturing light emitting device
JP2005277218A (en) Light-emitting element and its manufacturing method
JP4341623B2 (en) Light emitting device and manufacturing method thereof
JP2004288729A (en) Light emitting element and method of manufacture the same
JP4108439B2 (en) Light emitting device manufacturing method and light emitting device
JP2004288988A (en) Light emitting device
JP2005347714A (en) Light emitting device and its manufacturing method
JP4061497B2 (en) Method for manufacturing light emitting device
JP2004260109A (en) Method of manufacturing light-emitting element, composite translucent substrate, and light-emitting element
JPH09172198A (en) Light emitting diode and its manufacture
JP2004214232A (en) Light emitting element and manufacturing method therefor
JP2004200184A (en) Light-emitting element and its manufacturing method
JP2006128425A (en) Light emitting element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014