JP2004288542A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2004288542A
JP2004288542A JP2003081112A JP2003081112A JP2004288542A JP 2004288542 A JP2004288542 A JP 2004288542A JP 2003081112 A JP2003081112 A JP 2003081112A JP 2003081112 A JP2003081112 A JP 2003081112A JP 2004288542 A JP2004288542 A JP 2004288542A
Authority
JP
Japan
Prior art keywords
electrode
conductive member
fuel cell
connection
connecting conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081112A
Other languages
Japanese (ja)
Other versions
JP4280974B2 (en
Inventor
Toshiya Abe
俊哉 阿部
Masahiro Kuroishi
正宏 黒石
Hiroaki Takeuchi
弘明 竹内
Susumu Aikawa
進 相川
Kentaro Suzuki
賢太郎 鈴木
Kosaku Fujinaga
幸作 藤永
Takeshi Saito
健 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003081112A priority Critical patent/JP4280974B2/en
Publication of JP2004288542A publication Critical patent/JP2004288542A/en
Application granted granted Critical
Publication of JP4280974B2 publication Critical patent/JP4280974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To relieve stress generated at an electrode-connecting conductive member caused by a difference of thermal expansion between an electrode and a fuel cell assembly at an operation temperature of a cylindrical solid oxide type fuel cell. <P>SOLUTION: The fuel cell system is composed of a cell assembly constructed by connecting a plurality of fuel cells having an anode and a cathode at both sides of an electrolyte respectively by cell connecting conductive members, an electrode member of which a longitudinal direction is made to run in parallel with an axial direction of the cell assembly, and the electrode-connecting conductive member electrically connecting the cell assembly to the electrode member. The electrode-connecting conductive member is made to have a property of transforming in the longitudinal direction of the electrode member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は円筒形固体電解質型燃料電池に関し、特にセル集合体と外部取り出し用電極の電気的接続に関する。
【0002】
【従来の技術】
従来の筒状固体酸化物形燃料電池セル(以下燃料電池セルともいう)から構成される燃料電池発電システムの一般的な構成図を図5に示す。
燃料電池セル1は、有底筒状のセラミックチューブである。燃料電池セル1の断面は多層円筒状をしており、空気極、固体酸化物、燃料極等の各層が積層されている。燃料電池セル1の各層の肉厚は数μm〜2.5mmであり、それぞれ必要な機能(導電性、通気性、固体酸化物、電気化学触媒性等)を有する酸化物を主成分とするセラミックス材で形成されている。この燃料電池セル1の内側に酸化剤ガス(空気や酸素リッチガス等、以下空気という)を流し、外側にH、CO、CHなどの燃料ガスを流すと、この燃料電池セル1内でO−イオンが移動して電気化学的発電反応(以下発電反応という)が起こり、空気極と燃料極との間に電位差が生じて発電が行われる。1本の燃料電池セルの出力は限られているため、実際の燃料電池発電システムでは、燃料電池セル1を複数本集合させたセル集合体を構成して使用する。
それぞれの燃料電池セル1の内側には、空気を供給するための細長い空気導入管2が内挿されており、その下端は燃料電池セル1の底近くにまで達している。この空気導入管2の下端から、空気が燃料電池セル1の底に供給される。燃料電池セル1の底に供給された空気は、上述の発電反応に寄与しつつ燃料電池セル1の内側を上方に向かい排出される(排出ラインは図示しない)。燃料電池セル1の外側には、下方から燃料ガス(H、CO、CH等)が供給される。燃料ガスは、上述の発電反応に寄与しつつ燃料電池セル1の外側を上方に向かい、未反応の燃料ガスと、燃料電池セル1での発電反応生成物ガス(CO、HO等)は、排燃料ガスとして排出される(排出ラインは図示しない)。固体酸化物形燃料電池の発電反応部の温度は、約800〜1000℃であるため、排空気や排燃料ガスの保有する顕熱を熱交換器によって回収し、空気や燃料ガスの予熱に用いることもある。また、排空気と排燃料ガスを混合燃焼させ、その燃焼熱を熱交換器により回収して予熱を行うこともある。
【0003】
次に、筒状固体酸化物型燃料電池における燃料電池セル1の接続構造について説明する。図6は、筒状固体酸化物型燃料電池の従来の接続状況を示す図である。この例では、燃料電池セル1をセル接続用導電部材3により3直列2並列に接続されたセル集合体6、セル集合体6と外部への電気取出しのための電極部材4を電気的に接続する電極接続用導電部材5で構成されており、燃料電池セル1は筒状面のほぼ全面で発電されるよう設計されているので、導電抵抗を低減させるためおよび発電電流の偏りを防ぐためセル接続用導電部材3、電極部材4および電極接続用導電部材5は燃料電池セル1の軸方向の多くの部分において接続される。一般に燃料電池セル1とセル接続用導電部材3の接続およびセル接続用導電部材3と電極接続用導電部材5の接続は、製造過程の焼成処理または運転中の昇温で拡散接合される。また、電極部材4と電極接続用導電部材5は溶接、ボルト固定などの機械的接合がなされている。
【0004】
このような従来の燃料電池の構成では、電極接続用導電部材5を構成する金属材料の線膨張係数はニッケルの場合約16μ/Kであり、セラミック系材料で作られたセル集合体6の線膨張係数11μ/Kよりかなり大きいため、例えば運転温度1000℃時でセル集合体6と電極接続用導電部材5との接続部分長さが500mmの場合、2.5mmの歪が発生し、セル集合体6と電極接続用導電部材5との接続が損なわれる危険性があった。これに関しては、過去に電極接続用導電部材5を燃料電池セル1の軸方向に複数分割することで対策している。
(例えば、特許文献1参照)
【0005】
【特許文献1】
特開2001−297783号公報(第3〜4頁、第1図、第2図)
【0006】
【発明が解決しようとする課題】
前述の電極接続用導電部材5を燃料電池セル1の軸方向に複数分割する対策では、電極接続用導電部材5が燃料電池セル1の熱膨張に追随するが、その結果電極接続用導電部材5と電極部材4の接続において上記と同様の歪が発生し、セル接続用導電部材3と電極接続用導電部材5の接続または電極部材4と電極接続用導電部材5の接続が損なわれる危険性がある。
【0007】
本発明は、上記課題を解決し、セル接続用導電部材3と電極接続用導電部材5の接続または電極接続用導電部材5と電極部材4の接続において線膨張係数の違いに起因する歪から生じる応力を緩和することを目的とする。
【0008】
【課題を解決するための手段】
第一の発明においては、電極接続用導電部材が、電極部材の長手方向に変形機能を有していることを特徴とする燃料電池システムを提供する。
これにより運転温度800℃〜1000℃時に、セル接続用導電部材3と電極接続用導電部材5の接続または電極接続用導電部材5と電極部材4の接続において線膨張係数の違いに起因する歪から生じる応力を緩和し、安定した発電性能で信頼性の高い燃料電池を提供できる。
【0009】
第二の発明においては、電極接続用導電部材は電極部材に接続後、電極部材の周囲を半周以上巻きつけて設置することを特徴とする燃料電池システムを提供する。
これにより電極部材4の周囲に巻きついた部分の電極接続用導電部材5が螺旋状に変形することができ、比較的小さい力で電極部材4の軸方向に電極接続用導電部材5が変位することができる。よって、運転温度800℃〜1000℃時に、セル接続用導電部材3と電極接続用導電部材5の接続または電極接続用導電部材5と電極部材4の接続において線膨張係数の違いに起因する歪から生じる応力を緩和し、安定した発電性能で信頼性の高い燃料電池を提供できる。
【0010】
第三の発明においては、電極接続用導電部材は少なくとも1箇所は略S字状に滑らかに折り曲げられて電極部材に接続することを特徴とする燃料電池システムを提供する。
これにより、電極接続用導電部材5を2箇所滑らかに折り曲げて略S字状したその2箇所の折り曲げ部分の間が斜めになるよう2箇所の折り曲げ部分が少量捩れ方向に変形することで、比較的小さい力で電極部材4の軸方向に電極接続用導電部材5が変位することができる。よって、運転温度800℃〜1000℃時に、セル接続用導電部材3と電極接続用導電部材5の接続または電極接続用導電部材5と電極部材4の接続において線膨張係数の違いに起因する歪から生じる応力を緩和し、安定した発電性能で信頼性の高い燃料電池を提供できる。
【0011】
第四の発明においては、電極接続用導電部材は少なくとも1箇所はねじれ方向に変形後、電極部材に接続することを特徴とする燃料電池システムを提供する。
これにより、電極接続用導電部材5の面が水平となった部分で比較的小さい力で電極部材4の軸方向に電極接続用導電部材5が変位することができる。よって、運転温度800℃〜1000℃時に、セル接続用導電部材3と電極接続用導電部材5の接続または電極接続用導電部材5と電極部材4の接続において線膨張係数の違いに起因する歪から生じる応力を緩和し、安定した発電性能で信頼性の高い燃料電池を提供できる。
【0012】
第五の発明においては、電極接続用導電部材は絶縁部材とセル集合体との間に複数のスリット穴を設けていることを特徴とする燃料電池システムを提供する。
これにより、電極接続用導電部材5は簡単な加工で製造可能であり、また分割される必要がなく一体品として取り扱えるので電極接続用導電部材と電極部材の接続が容易となる。
【0013】
第六の発明においては、電極接続用導電部材は厚みが0.05mm〜1.5mmの範囲である部分を有することを特徴とする燃料電池システムを提供する。
これにより、第一から第四の発明において、電極接続用導電部材5の変形に必要な力が、セル接続用導電部材3と電極接続用導電部材5の接続または電極接続用導電部材5と電極部材4の接続部分を破損しない十分に小さい力になるよう抑えることができる。
【0014】
第七の発明においては、電極接続用導電部材は材質がニッケルまたはニッケル含有合金であることを特徴とする燃料電池システムを提供する。
これにより、導電部材にニッケルまたはニッケル含有合金であることによって、高温雰囲気でも耐酸化性および導電性に優れ、また特にニッケルは高温で非常に柔らかい材料であるため、電極接続用導電部材5の変形に必要な力が比較的小さくできる。
【0015】
第八の発明においては、電極接続用導電部材は燃料電池セルの軸方向に対して複数分割されていることを特徴とする燃料電池システムを提供する。
これにより、従来構造で考慮されたセル接続用導電部材3と電極接続用導電部材5間の応力緩和だけでなく、分割部分のそれぞれの位置に応じた変形量を担わせることでトータルとして変形に必要な力を最小限にすることができる。
【0016】
【発明の実施の形態】
以下に図面を参照して本発明をより具体的に説明する。
図1は本発明の一実施例を示す略示する図である。燃料電池セル1がセル接続用導電部材3により3直列2並列に接続されセル集合体6を構成し、セル集合体6が電極接続用導電部材5と拡散接合で接続され、電極接続用導電部材5が電極部材4に接続されることで電極部材4を介して外部に電力を取り出すことができる。図示していないがセル集合体6に電極接続用導電部材5が接続されている面の反対面またはセル集合体6が複数直列に接続された最終端面にも、同様に電極接続用導電部材5と拡散接合で接続され、電極接続用導電部材5が電極部材4に接続されて電気が取り出せる。このようにして発生電力の正極、負極が設けられている。
ここでは、電極接続用導電部材5の端面を電極部材4に溶接などの固定手段により接続後、電極部材4の周りを2周と3/4周巻きつけてセル集合体6に接続されている。例えば、3枚の電極接続用導電部材5の上端下端の位置寸法差が500mmで電極部材4の下端が熱膨張の変位基点である場合、電極部材4に接続された電極接続用導電部材5の上端は、運転温度1000℃において8mm上方に変位する。一方セル集合体6に接続された電極接続用導電部材5の上端は、分割によりほぼセル集合体6の熱膨張に従うと仮定すると5.5mm上方に変位する。よって電極接続用導電部材5の電極部材4側とセル集合体6側では2.5mmの変位差が生じる。この時発生する歪は、電極部材4の周りに巻きつけられた部分の電極接続用導電部材5が螺旋状に変形することで前記変位差を吸収することができる。この螺旋状変形では螺旋面の全面において軽微な捩れ変形を連続させることため小さな応力で大きな変位を実現できる。よって、半周程度の巻き数でも前記機能は発揮するが導電抵抗が許される範囲内で巻き数を増加させた方が、電極接続用導電部材5内および電極部材4またはセル接続用導電部材3との接続部に発生する応力を小さくすることができる。また、電極部材4の周りを巻きつける際には、各周間に若干のクリアランスを設けることが望ましい。
【0017】
図2は本発明の別の一実施例を示す略示する図である。ここでは電極接続用導電部材5を2箇所反対向きに180°ずつ折り滑らかに曲げてS字状にし、片端を電極部材4、もう片端をセル接続用導電部材3に接続している。これにより、2箇所の折り曲げ部分の間が斜めになるよう2箇所の折り曲げ部分が少量捩れ方向に変形することで、比較的小さい力で電極部材4の軸方向に電極接続用導電部材5が変位することができる。図中では折り曲げ部分は180°折り返されているが、30°などの浅い角度であってもよい。
【0018】
図3は本発明の別の一実施例を示す略示する図である。ここでは、電極接続用導電部材5をねじれ方向に90°変形後、電極部材4に接続している。これにより、電極接続用導電部材5の面が水平となった部分で比較的小さい力で電極部材4の軸方向に電極接続用導電部材5が変位することができる。図中は捩れ角度90°の例を表しているが、電極接続用導電部材5内および電極部材4またはセル接続用導電部材3との接続部に発生する応力が許容できる範囲内で捩れ角度は任意に選定できる。
【0019】
これら図1〜3の例では、電極接続用導電部材5の変形抵抗を小さくするため、部材の厚みを薄くすることが有利である。ただし電極接続用導電部材5のトータル断面積が小さくなると導電抵抗が増大するため、厚み0.05mm〜1.5mmの範囲で選定することが望ましい。
また、これら図1〜3の例では、電極接続用導電部材5を電極部材4の軸方向に複数分割することが望ましい。こうすることにより電極接続用導電部材5のセル接続用導電部材3との接続部分における熱膨張による歪量が分割されることにより1枚当りの歪量が小さくなるため、接続部分に発生する応力を緩和することができる。また、電極接続用導電部材5と電極部材4との高さ方向の変位量差を各箇所ごとに必要な変位量に分割させることで全体として電極接続用導電部材5内および電極部材4またはセル接続用導電部材3との接続部に発生する応力を最小限にすることができる。
また、前述の例のように電極部材4の下端が熱膨張の変位基点であるような場合が想定される。このように電極接続用導電部材5の電極部材4側変位とセル接続用導電部材3側変位が高さ方向で変わらない箇所付近においては、当然ながら本発明を適用する必要はなく従来通りの接続でよい。
【0020】
図4は本発明の別の一実施例を示す略示する図である。高さ方向に電極接続用導電部材5を変形する場合、同じ断面積であれば高さを低くし幅を大きくすることで断面係数を小さくすることが有利である。ここでは、電極接続用導電部材5に複数のスリット穴を設けることで断面係数を小さくしている。さらに前述の例と同様、電極部材の巻き付けおよびまたはS字状の変更と併用することで変形抵抗を低減することは可能である。実際には電極接続用導電部材5の厚みは1mm〜4mm程度、スリット高さを数mm程度の中から導電抵抗と変形抵抗がそれぞれ許容範囲に収まるよう設計される。スリット穴は一般にパンチングなどの機械加工による量産化が容易で安価に加工が可能である。また電極接続用導電部材5を電極部材4に接続する際、電極接続用導電部材5が一体型であるので組立工数を削減することができる。
【0021】
本発明の特定の実施例を例示の目的で説明したが、頭書の特許請求の範囲に定義された本発明から逸脱することなく、種々の変形例及び設計変更が可能である。
【図面の簡単な説明】
【図1】本発明の筒状固体酸化物形燃料電池の一実施例を略示する図である。
【図2】本発明の筒状固体酸化物形燃料電池の別の一実施例を略示する図である。
【図3】本発明の筒状固体酸化物形燃料電池の別の一実施例を略示する図である。
【図4】本発明の筒状固体酸化物形燃料電池の別の一実施例を略示する図である。
【図5】従来の筒状固体酸化物形燃料電池の断面構造例を模式的に示す図である。
【図6】従来の筒状固体酸化物形燃料電池を略示する図である。
【符号の説明】
1 燃料電池セル
2 空気導入管
3 セル接続用導電部材
4 電極部材
5 電極接続用導電部材
6 セル集合体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylindrical solid oxide fuel cell, and more particularly to an electrical connection between a cell assembly and an external extraction electrode.
[0002]
[Prior art]
FIG. 5 shows a general configuration diagram of a fuel cell power generation system including a conventional cylindrical solid oxide fuel cell (hereinafter also referred to as a fuel cell).
The fuel cell 1 is a bottomed cylindrical ceramic tube. The cross section of the fuel cell 1 has a multilayer cylindrical shape, and layers such as an air electrode, a solid oxide, and a fuel electrode are stacked. The thickness of each layer of the fuel cell unit 1 is several μm to 2.5 mm, and ceramics mainly composed of an oxide having necessary functions (conductivity, air permeability, solid oxide, electrochemical catalytic property, etc.) It is formed of a material. When an oxidizing gas (air, oxygen-rich gas or the like, hereinafter, referred to as air) flows inside the fuel cell 1, and a fuel gas such as H 2 , CO, or CH 4 flows outside the fuel cell 1, O The 2 -ions move to generate an electrochemical power generation reaction (hereinafter referred to as a power generation reaction), and a potential difference is generated between the air electrode and the fuel electrode to generate power. Since the output of one fuel cell is limited, in an actual fuel cell power generation system, a cell assembly in which a plurality of fuel cells 1 are assembled is used.
An elongated air introduction pipe 2 for supplying air is inserted inside each fuel cell 1, and its lower end reaches near the bottom of the fuel cell 1. From the lower end of the air introduction pipe 2, air is supplied to the bottom of the fuel cell 1. The air supplied to the bottom of the fuel cell 1 is discharged upward inside the fuel cell 1 while contributing to the above-described power generation reaction (a discharge line is not shown). Fuel gas (H 2 , CO, CH 4, etc.) is supplied to the outside of the fuel cell 1 from below. The fuel gas flows upward outside the fuel cell 1 while contributing to the above-described power generation reaction, and unreacted fuel gas and power generation reaction product gas (CO 2 , H 2 O, etc.) in the fuel cell 1. Is discharged as exhaust fuel gas (a discharge line is not shown). Since the temperature of the power generation reaction section of the solid oxide fuel cell is about 800 to 1000 ° C., the sensible heat of the exhaust air and the exhaust fuel gas is collected by a heat exchanger and used for preheating the air and the fuel gas. Sometimes. In some cases, exhaust air and exhaust fuel gas are mixed and combusted, and the combustion heat is recovered by a heat exchanger to perform preheating.
[0003]
Next, the connection structure of the fuel cell 1 in the cylindrical solid oxide fuel cell will be described. FIG. 6 is a diagram showing a conventional connection state of a cylindrical solid oxide fuel cell. In this example, the fuel cell unit 1 is connected in three series and two parallel by the cell connecting conductive member 3, and the cell assembly 6 is electrically connected to the electrode member 4 for taking out electricity to the outside. Since the fuel cell 1 is designed to generate electric power over substantially the entire cylindrical surface, the fuel cell 1 is designed to reduce the conductive resistance and prevent the generated current from being biased. The connection conductive member 3, the electrode member 4, and the electrode connection conductive member 5 are connected in many parts of the fuel cell 1 in the axial direction. In general, the connection between the fuel cell 1 and the conductive member 3 for connecting the cell and the connection between the conductive member 3 for connecting the cell and the conductive member 5 for connecting the electrode are diffusion-bonded by a sintering process in a manufacturing process or an increase in temperature during operation. The electrode member 4 and the electrode connecting conductive member 5 are mechanically joined by welding, bolt fixing, or the like.
[0004]
In such a conventional fuel cell configuration, the metallic material constituting the electrode connecting conductive member 5 has a linear expansion coefficient of about 16 μ / K in the case of nickel, and the linear expansion coefficient of the cell assembly 6 made of a ceramic material. Since the expansion coefficient is considerably larger than 11 μ / K, for example, when the connection portion length between the cell assembly 6 and the electrode-connecting conductive member 5 is 500 mm at an operating temperature of 1000 ° C., a strain of 2.5 mm occurs, and the cell assembly There was a risk that the connection between the body 6 and the conductive member 5 for electrode connection might be damaged. In the past, measures have been taken by dividing the electrode connecting conductive member 5 in the axial direction of the fuel cell 1 into a plurality.
(For example, see Patent Document 1)
[0005]
[Patent Document 1]
JP 2001-297783 A (Pages 3 and 4, FIGS. 1 and 2)
[0006]
[Problems to be solved by the invention]
In the above-described countermeasures for dividing the electrode connecting conductive member 5 into a plurality of parts in the axial direction of the fuel cell 1, the electrode connecting conductive member 5 follows the thermal expansion of the fuel cell 1, but as a result, the electrode connecting conductive member 5 In the connection between the electrode member 4 and the electrode member 4, the same strain as described above occurs, and the connection between the cell connection conductive member 3 and the electrode connection conductive member 5 or the connection between the electrode member 4 and the electrode connection conductive member 5 may be damaged. is there.
[0007]
The present invention solves the above-mentioned problem, and arises from a strain caused by a difference in linear expansion coefficient in connection between the conductive member for cell connection 3 and the conductive member for electrode connection 5 or connection between the conductive member for electrode connection 5 and the electrode member 4. The purpose is to relieve stress.
[0008]
[Means for Solving the Problems]
The first invention provides a fuel cell system, wherein the electrode connecting conductive member has a deforming function in the longitudinal direction of the electrode member.
Thereby, at an operating temperature of 800 ° C. to 1000 ° C., the strain caused by the difference in linear expansion coefficient in the connection between the conductive member for cell connection 3 and the conductive member for electrode connection 5 or the connection between the conductive member for electrode connection 5 and the electrode member 4 is reduced. It is possible to provide a highly reliable fuel cell with stable power generation performance by relaxing generated stress.
[0009]
According to a second aspect of the present invention, there is provided a fuel cell system characterized in that the electrode connecting conductive member is connected to the electrode member and then wound around the electrode member for at least half a turn to be installed.
As a result, the electrode connecting conductive member 5 of the portion wound around the electrode member 4 can be deformed in a spiral shape, and the electrode connecting conductive member 5 is displaced in the axial direction of the electrode member 4 with a relatively small force. be able to. Therefore, at the operating temperature of 800 ° C. to 1000 ° C., the strain caused by the difference in the coefficient of linear expansion in the connection between the conductive member for cell connection 3 and the conductive member for electrode connection 5 or the connection between the conductive member for electrode connection 5 and the electrode member 4 is reduced. It is possible to provide a highly reliable fuel cell with stable power generation performance by relaxing generated stress.
[0010]
In a third aspect of the present invention, there is provided a fuel cell system characterized in that at least one portion of the electrode connecting conductive member is smoothly bent in a substantially S-shape and connected to the electrode member.
As a result, the electrode connecting conductive member 5 is smoothly bent at two places and substantially S-shaped. The two bent parts are slightly deformed in the twisting direction so that the two bent parts become oblique. The electrode connecting conductive member 5 can be displaced in the axial direction of the electrode member 4 with a relatively small force. Therefore, at the operating temperature of 800 ° C. to 1000 ° C., the strain caused by the difference in the coefficient of linear expansion in the connection between the conductive member for cell connection 3 and the conductive member for electrode connection 5 or the connection between the conductive member for electrode connection 5 and the electrode member 4 is reduced. It is possible to provide a highly reliable fuel cell with stable power generation performance by relaxing generated stress.
[0011]
According to a fourth aspect of the present invention, there is provided a fuel cell system wherein at least one portion of the electrode connecting conductive member is deformed in a twisting direction and then connected to the electrode member.
Thereby, the conductive member 5 for electrode connection can be displaced in the axial direction of the electrode member 4 with a relatively small force in a portion where the surface of the conductive member 5 for electrode connection becomes horizontal. Therefore, at the operating temperature of 800 ° C. to 1000 ° C., the strain caused by the difference in the coefficient of linear expansion in the connection between the conductive member for cell connection 3 and the conductive member for electrode connection 5 or the connection between the conductive member for electrode connection 5 and the electrode member 4 is reduced. It is possible to provide a highly reliable fuel cell with stable power generation performance by relaxing generated stress.
[0012]
In a fifth aspect, the present invention provides a fuel cell system, wherein the electrode-connecting conductive member has a plurality of slit holes between the insulating member and the cell assembly.
Thus, the electrode-connecting conductive member 5 can be manufactured by simple processing, and can be handled as an integral product without having to be divided, so that the electrode-connecting conductive member and the electrode member can be easily connected.
[0013]
In a sixth aspect, the present invention provides a fuel cell system, wherein the electrode connecting conductive member has a portion having a thickness in a range of 0.05 mm to 1.5 mm.
Accordingly, in the first to fourth inventions, the force required for deformation of the electrode connecting conductive member 5 is obtained by connecting the cell connecting conductive member 3 and the electrode connecting conductive member 5 or the electrode connecting conductive member 5 and the electrode. The force can be suppressed to a sufficiently small force that does not damage the connection portion of the member 4.
[0014]
In a seventh aspect, the present invention provides a fuel cell system, wherein the conductive material for electrode connection is made of nickel or a nickel-containing alloy.
Accordingly, since the conductive member is made of nickel or a nickel-containing alloy, it has excellent oxidation resistance and conductivity even in a high-temperature atmosphere. In particular, since nickel is a very soft material at a high temperature, the deformation of the electrode-connecting conductive member 5 Required force can be relatively small.
[0015]
In an eighth aspect, the present invention provides a fuel cell system, wherein the electrode connecting conductive member is divided into a plurality in the axial direction of the fuel cell.
As a result, not only the stress relaxation between the conductive member for cell connection 3 and the conductive member for electrode connection 5 considered in the conventional structure, but also the amount of deformation corresponding to each position of the divided portion allows deformation as a whole. The required force can be minimized.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the present invention. The fuel cell unit 1 is connected in three series and two parallel by the cell connecting conductive member 3 to form a cell assembly 6, and the cell assembly 6 is connected to the electrode connecting conductive member 5 by diffusion bonding, and the electrode connecting conductive member is formed. By connecting the electrode 5 to the electrode member 4, electric power can be taken out through the electrode member 4. Although not shown, the electrode connecting conductive member 5 is similarly formed on the surface opposite to the surface where the electrode connecting conductive member 5 is connected to the cell assembly 6 or on the final end surface where a plurality of cell assemblies 6 are connected in series. And the electrode connection conductive member 5 is connected to the electrode member 4 to extract electricity. Thus, the positive and negative electrodes of the generated power are provided.
Here, after the end surface of the electrode connecting conductive member 5 is connected to the electrode member 4 by a fixing means such as welding, the electrode member 4 is connected to the cell assembly 6 by winding around the electrode member 2 two and three quarters. . For example, when the positional dimension difference between the upper end and the lower end of the three electrode connecting conductive members 5 is 500 mm and the lower end of the electrode member 4 is a displacement starting point of thermal expansion, the electrode connecting conductive member 5 connected to the electrode member 4 The upper end is displaced 8 mm upward at an operating temperature of 1000 ° C. On the other hand, the upper end of the electrode connecting conductive member 5 connected to the cell assembly 6 is displaced upward by 5.5 mm assuming that the division substantially follows the thermal expansion of the cell assembly 6. Therefore, a displacement difference of 2.5 mm occurs between the electrode member 4 side of the electrode connecting conductive member 5 and the cell assembly 6 side. The distortion generated at this time can absorb the displacement difference by deforming the electrode connecting conductive member 5 of the portion wound around the electrode member 4 into a spiral shape. In this helical deformation, a large amount of displacement can be realized with a small stress because slight torsional deformation is continued over the entire surface of the helical surface. Therefore, the above function is exhibited even with the number of turns of about half a circumference, but it is better to increase the number of turns within the range where the conductive resistance is allowed, within the electrode connecting conductive member 5 and the electrode member 4 or the cell connecting conductive member 3. Can be reduced at the connection portion. Also, when winding around the electrode member 4, it is desirable to provide a slight clearance between each circumference.
[0017]
FIG. 2 is a schematic view showing another embodiment of the present invention. Here, the electrode-connecting conductive member 5 is smoothly bent in two opposite directions by 180 ° to form an S-shape, and one end is connected to the electrode member 4 and the other end is connected to the cell-connecting conductive member 3. Thereby, the two bent portions are slightly deformed in the twisting direction so that the two bent portions are inclined, so that the electrode connecting conductive member 5 is displaced in the axial direction of the electrode member 4 with a relatively small force. can do. In the figure, the bent portion is turned 180 °, but may be a shallow angle such as 30 °.
[0018]
FIG. 3 is a schematic view showing another embodiment of the present invention. Here, the electrode connecting conductive member 5 is connected to the electrode member 4 after being deformed by 90 ° in the twisting direction. Thereby, the conductive member 5 for electrode connection can be displaced in the axial direction of the electrode member 4 with a relatively small force in a portion where the surface of the conductive member 5 for electrode connection becomes horizontal. Although the figure shows an example of a twist angle of 90 °, the twist angle is within a range in which the stress generated in the electrode connecting conductive member 5 and the connection with the electrode member 4 or the cell connecting conductive member 3 can be tolerated. It can be selected arbitrarily.
[0019]
In these examples of FIGS. 1 to 3, it is advantageous to reduce the thickness of the electrode connecting conductive member 5 in order to reduce the deformation resistance. However, when the total cross-sectional area of the electrode connecting conductive member 5 is reduced, the conductive resistance increases, and therefore, it is desirable to select the thickness in the range of 0.05 mm to 1.5 mm.
In the examples shown in FIGS. 1 to 3, it is preferable that the electrode connecting conductive member 5 is divided into a plurality of parts in the axial direction of the electrode member 4. By doing so, the amount of strain due to thermal expansion in the connection portion of the conductive member for electrode connection 5 with the conductive member for cell connection 3 is divided to reduce the amount of strain per sheet, and therefore the stress generated in the connected portion Can be alleviated. In addition, the difference in the amount of displacement in the height direction between the electrode-connecting conductive member 5 and the electrode member 4 is divided into the required amount of displacement for each location, so that the entire electrode-connecting conductive member 5 and the electrode member 4 or the cell are separated. It is possible to minimize the stress generated at the connection with the conductive member 3 for connection.
Further, it is assumed that the lower end of the electrode member 4 is a displacement base point of thermal expansion as in the above-described example. In the vicinity of a position where the displacement of the electrode connecting conductive member 5 on the electrode member 4 side and the displacement of the cell connecting conductive member 3 on the cell connection side do not change in the height direction, it is not necessary to apply the present invention. Is fine.
[0020]
FIG. 4 is a schematic view showing another embodiment of the present invention. When deforming the electrode-connecting conductive member 5 in the height direction, it is advantageous to reduce the section modulus by reducing the height and increasing the width for the same sectional area. Here, the section modulus is reduced by providing a plurality of slit holes in the conductive member 5 for electrode connection. Furthermore, similarly to the above-described example, it is possible to reduce the deformation resistance by using the electrode member together with the winding and / or the S-shaped change. Actually, the thickness of the electrode connecting conductive member 5 is about 1 mm to 4 mm, and the height of the slit is about several mm, and the conductive resistance and the deformation resistance are designed to be within the allowable ranges. Generally, slit holes can be easily mass-produced by mechanical processing such as punching and can be processed at low cost. Further, when the electrode-connecting conductive member 5 is connected to the electrode member 4, the number of assembly steps can be reduced because the electrode-connecting conductive member 5 is integrated.
[0021]
While particular embodiments of the present invention have been described for purposes of illustration, various modifications and changes may be made without departing from the invention as defined in the appended claims.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an embodiment of a cylindrical solid oxide fuel cell according to the present invention.
FIG. 2 is a view schematically showing another embodiment of the cylindrical solid oxide fuel cell of the present invention.
FIG. 3 is a diagram schematically showing another embodiment of the cylindrical solid oxide fuel cell of the present invention.
FIG. 4 is a view schematically showing another embodiment of the cylindrical solid oxide fuel cell of the present invention.
FIG. 5 is a diagram schematically showing an example of a cross-sectional structure of a conventional cylindrical solid oxide fuel cell.
FIG. 6 is a diagram schematically showing a conventional cylindrical solid oxide fuel cell.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fuel cell 2 air introduction pipe 3 cell connecting conductive member 4 electrode member 5 electrode connecting conductive member 6 cell assembly

Claims (8)

電解質の両側にアノード及びカソードを備えた燃料電池セルをセル接続用導電部材により複数接続したセル集合体と、
長手方向をセル集合体の軸方向と平行に配置した電極部材と、
前記セル集合体と前記電極部材を電気的に接続する電極接続用導電部材と、
を備えた燃料電池システムであって、
前記電極接続用導電部材が、前記電極部材の長手方向に変形機能を有していることを特徴とする燃料電池システム。
A cell assembly in which a plurality of fuel cells each having an anode and a cathode on both sides of an electrolyte are connected by a cell connection conductive member,
An electrode member whose longitudinal direction is arranged parallel to the axial direction of the cell assembly,
An electrode-connecting conductive member that electrically connects the cell assembly and the electrode member,
A fuel cell system comprising:
The fuel cell system, wherein the electrode connecting conductive member has a deforming function in a longitudinal direction of the electrode member.
前記電極接続用導電部材は前記電極部材に接続後、前記電極部材の周囲を半周以上巻きつけて設置することを特徴とする請求項1に記載の燃料電池システム。2. The fuel cell system according to claim 1, wherein after the electrode connection conductive member is connected to the electrode member, the electrode connection member is wound around the electrode member by half or more. 前記電極接続用導電部材は少なくとも1箇所は略S字状に滑らかに折り曲げられて前記電極部材に接続することを特徴とする請求項1に記載の燃料電池システム。The fuel cell system according to claim 1, wherein at least one portion of the electrode connecting conductive member is smoothly bent in a substantially S-shape to be connected to the electrode member. 前記電極接続用導電部材は少なくとも1箇所はねじれ方向に変形後、前記電極部材に接続することを特徴とする請求項1に記載の燃料電池システム。2. The fuel cell system according to claim 1, wherein at least one portion of the electrode connection conductive member is connected to the electrode member after being deformed in a twisting direction. 3. 前記電極接続用導電部材は前記絶縁部材と前記セル集合体との間に複数のスリット穴を設けていることを特徴とする請求項1〜3に記載の燃料電池システム。The fuel cell system according to claim 1, wherein the electrode connecting conductive member has a plurality of slit holes provided between the insulating member and the cell assembly. 前記電極接続用導電部材は厚みが0.05mm〜1.5mmの範囲である部分を有することを特徴とする請求項1〜4のいずれか一項に記載の燃料電池システム。The fuel cell system according to any one of claims 1 to 4, wherein the conductive member for electrode connection has a portion having a thickness in a range of 0.05 mm to 1.5 mm. 前記電極接続用導電部材は材質がニッケルまたはニッケル含有合金であることを特徴とする請求項1〜6のいずれか一項に記載の燃料電池システム。The fuel cell system according to any one of claims 1 to 6, wherein a material of the conductive member for electrode connection is nickel or a nickel-containing alloy. 前記電極接続用導電部材は前記燃料電池セルの軸方向に対して複数分割されていることを特徴とする請求項1〜4および請求項6〜7のいずれか一項に記載の燃料電池システム。8. The fuel cell system according to claim 1, wherein the electrode connecting conductive member is divided into a plurality of parts in the axial direction of the fuel cell. 9.
JP2003081112A 2003-03-24 2003-03-24 Fuel cell system Expired - Fee Related JP4280974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081112A JP4280974B2 (en) 2003-03-24 2003-03-24 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081112A JP4280974B2 (en) 2003-03-24 2003-03-24 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2004288542A true JP2004288542A (en) 2004-10-14
JP4280974B2 JP4280974B2 (en) 2009-06-17

Family

ID=33294778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081112A Expired - Fee Related JP4280974B2 (en) 2003-03-24 2003-03-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4280974B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216416A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly bundle for tube type fuel cell
JP2007317612A (en) * 2006-05-29 2007-12-06 Kyocera Corp Fuel cell stack device, fuel cell stack coupling device, and fuel cell
JP2007335226A (en) * 2006-06-15 2007-12-27 Toto Ltd Fuel cell
JP2008159566A (en) * 2006-11-27 2008-07-10 Ngk Insulators Ltd Device with ceramic thin plate and metal thin plate
DE112006002945T5 (en) 2005-11-10 2008-10-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Tubular fuel cell module and method of making the same
WO2009041532A1 (en) * 2007-09-27 2009-04-02 Kyocera Corporation Fuel cell stack device, fuel cell stack connection device, and fuel cell device
JP2014011038A (en) * 2012-06-29 2014-01-20 Kyocera Corp Cell stack device and fuel battery module and fuel battery device
US8658228B2 (en) 2005-02-04 2014-02-25 Toyota Jidosha Kabushiki Kaisha Fuel cell module and fuel cell comprising fuel cell module
CN114976450A (en) * 2021-02-19 2022-08-30 本田技研工业株式会社 End plate and storage battery module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216416A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly bundle for tube type fuel cell
US8658228B2 (en) 2005-02-04 2014-02-25 Toyota Jidosha Kabushiki Kaisha Fuel cell module and fuel cell comprising fuel cell module
DE112006002945T5 (en) 2005-11-10 2008-10-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Tubular fuel cell module and method of making the same
JP2007317612A (en) * 2006-05-29 2007-12-06 Kyocera Corp Fuel cell stack device, fuel cell stack coupling device, and fuel cell
JP2007335226A (en) * 2006-06-15 2007-12-27 Toto Ltd Fuel cell
JP2008159566A (en) * 2006-11-27 2008-07-10 Ngk Insulators Ltd Device with ceramic thin plate and metal thin plate
WO2009041532A1 (en) * 2007-09-27 2009-04-02 Kyocera Corporation Fuel cell stack device, fuel cell stack connection device, and fuel cell device
JP5119257B2 (en) * 2007-09-27 2013-01-16 京セラ株式会社 Fuel cell stack device, fuel cell stack coupling device and fuel cell device
US8389181B2 (en) 2007-09-27 2013-03-05 Kyocera Corporation Fuel cell stack device, fuel cell stack connection device, and fuel cell device
JP2014011038A (en) * 2012-06-29 2014-01-20 Kyocera Corp Cell stack device and fuel battery module and fuel battery device
CN114976450A (en) * 2021-02-19 2022-08-30 本田技研工业株式会社 End plate and storage battery module

Also Published As

Publication number Publication date
JP4280974B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US9105916B2 (en) Fuel cell module
EP2136428B1 (en) Solid state oxide fuel cell
EP3276729B1 (en) Cell stack device, module, and module housing device
JP5922267B2 (en) Cylindrical SOFC assembly and fuel cell device using the same
US20070287053A1 (en) Collecting Plate, Fuel Cell, and Method for Manufacturing Same
JP2007035498A (en) Current collection structure in fuel battery cell stack
JP2007141815A (en) Compliant feed tube for planar solid oxide fuel cell system
JP4863657B2 (en) Fuel cell, fuel cell stack, and fuel cell
JP2011129489A (en) Fuel cell module
JP4842630B2 (en) Solid oxide fuel cell
JP4280974B2 (en) Fuel cell system
JP5191303B2 (en) Fuel cell
JP4920958B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP4407235B2 (en) Solid oxide fuel cell
JP6951676B2 (en) Fuel cell unit
US20060219282A1 (en) Thermoelectric conversion element and production method therefor
JP4942293B2 (en) Current collecting member for fuel cell, fuel cell stack using the same, and fuel cell
JP4984374B2 (en) Fuel cell
JP2005317241A (en) Supporting film type solid oxide fuel cell stack, and manufacturing method of the same
JPWO2017104226A1 (en) Fuel cell stack
US20130045435A1 (en) Solid oxide fuel cell stack
JP2004288541A (en) Fuel cell system
JP2003282102A (en) Cylindrical solid oxide fuel cell
JP2008010335A (en) Fuel cell
JP5423526B2 (en) Flat plate fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees