JP2004286561A - Method and instrument for measuring 3-dimensional shape - Google Patents

Method and instrument for measuring 3-dimensional shape Download PDF

Info

Publication number
JP2004286561A
JP2004286561A JP2003078369A JP2003078369A JP2004286561A JP 2004286561 A JP2004286561 A JP 2004286561A JP 2003078369 A JP2003078369 A JP 2003078369A JP 2003078369 A JP2003078369 A JP 2003078369A JP 2004286561 A JP2004286561 A JP 2004286561A
Authority
JP
Japan
Prior art keywords
measured
data
shape
divided
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003078369A
Other languages
Japanese (ja)
Other versions
JP2004286561A5 (en
Inventor
Akira Terao
亮 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003078369A priority Critical patent/JP2004286561A/en
Publication of JP2004286561A publication Critical patent/JP2004286561A/en
Publication of JP2004286561A5 publication Critical patent/JP2004286561A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely measure the whole face to be measured by dividing the face exceeding a measuring range of an interference shape measuring instrument into a plurality of faces to be measured, and by reducing connection errors generated when connecting them. <P>SOLUTION: The face is divided to have one reference face overlapped with any of the divided faces, and accumulation of the connection errors on the plurality of divided faces of the measured face is evaded by connecting the respective divided faces to the reference face. The whole face shape is precisely restored by eliminating tilting and defocusing in the reference face to connect the plurality of divided faces to the reference face. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体露光装置などに搭載する球面レンズ等の3次元形状計測に関するもので、ナノメートルオーダーの精度の計測を可能とする3次元形状測定方法及び装置に関するものである。
【0002】
【従来の技術】
従来、被測定面が干渉計の測定範囲より大きい場合の測定法として開口合成法が知られている。この方法は被測定面を1回では測定できないので2回以上に分けて測定して、面形状をつなぎ合わせることにより被測定面全面形状を復元する方法である。
【0003】
従来の開口合成法について図5を用いて説明する。図5は従来行われていた開口合成を行うための構成の概要である。干渉計11を固定して被測定物12を平行移動可能なステージ13を用いて移動させる方法、あるいは干渉計11を移動させて被測定物12を固定させる方法により、被測定面を分割した複数の領域について面形状を取得する。このときに隣り合った領域の測定は必ず一部が重複するように測定する。そしてこの重複した部分の測定データについて最小二乗法等を適用して整合させることにより、分割面同士の接続を行っている(具体的な接続方法の詳細としては特許文献1参照。また、干渉計11としてフィゾー干渉計を用いた場合の測定方法は非特許文献1を参照)。
【0004】
この方法によれば、重複している2面の分割測定データをそれぞれ第1の測定データ、第2の測定データとして重複している各測定データを(xi,yi,zij)および(xm,yn,zmn)と表した場合、
【0005】
【数1】

Figure 2004286561
【0006】
【0007】
【数2】
Figure 2004286561
【0008】
に対して、最小二乗法を適用して(p1,a1,b1)および(p2,a2,b2)を算出する。得られた差分値(Δp,Δa,Δb)に基づいて、例えば第1の測定データに「Δp+Δa・xi+Δb・yi」を加算すれば、第1と第2の測定データがスムーズに接続できる。
【0009】
【特許文献1】
特開平10−281737号公報
【非特許文献1】
APPLIED OPTICS 13 No.11 2693〜2703
【0010】
【発明が解決しようとする課題】
しかしながら、この方法ではあるいは球面レンズにおいては干渉計と球面レンズのアライメント誤差を含んだ状態で全面形状を復元してしまうといった問題点がある。
【0011】
まず干渉計と被測定物のアライメント誤差を含んで全面形状を復元してしまう問題を図6を用いて説明する。図6は仮に被測定面が刃先のようなとがった形状の被測定面(図3(B)参照)に対して、被測定面全面を一括測定できるような干渉計があったとして、その干渉計を用いて被測定面を計測したときの干渉縞を表している。分割領域A2〜D2のように被測定面を分割したとき、A2の面形状からアライメント誤差であるティルト、デフォーカスを除去する必要がある。しかし、A2の干渉縞のみからは、それが被測定物と干渉計とのアライメント誤差の1つであるティルト縞であるか面形状であるかの区別がつかない。従って、例えばA2に対してB2、B2に対してC2、C2に対してD2を接続していくと、A2の姿勢に対してはB2、C2、D2を接続することは可能であるが、A2のティルト、デフォーカス自体を除去することはできない。
【0012】
そこで図7に示す、従来の技術の欄で説明したような分割方法が考えられた。図7において各分割領域A1〜E1は隣接する領域と重複するように設けられている。たとえば領域A1は隣接する領域B1およびE1とその一部が重複している。しかしながら図6のような分割方法で測定を行った場合、領域A1からE1まで順に接続するため、接続誤差の二乗和平均の平方根がεであるとすると、領域A1とB1はεという誤差で接続される。領域C1をB1に対して接続するときも同様にεの誤差で接続され、同様に領域D1、E1も接続される。領域A1を基準に接続誤差の量を考えていくと、領域B1はε、C1は√2ε、D1は√3ε、E1は√4εと誤差の累積が起きてしまう。
【0013】
本発明は上記従来例に鑑みてなされたもので、複数分割面を接続した復元形状において干渉計のアライメント誤差であるティルト、デフォーカスの影響を排除した状態で、複数の分割面を接続するときの接続誤差の累積を排除することができる3次元形状測定方法及び装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明によれば、3次元形状を有する被測定面を複数の領域に分割して、該分割した複数の領域毎に前記被測定面の形状を干渉計を用いて測定し、各領域毎の測定値をつなぎ合わせる事で被測定面の形状を測定する3次元形状測定方法において、前記分割した複数の領域のうち少なくとも1つの領域は、他のすべての領域と重複するように設けられた基準面であり、前記基準面と前記他のすべての領域のそれぞれとの間のつなぎ合わせ誤差を補正する事で前記被測定面の形状を測定する3次元形状測定方法を提案している。
【0015】
また本発明によれば、前記つなぎ合わせ誤差の補正は、前記基準面の測定値から前記干渉計のアライメント誤差であるティルトとデフォーカスを排除した値を用いて行われる3次元形状測定方法を提案している。
【0016】
また本発明によれば、前記各領域毎の測定値をつなぎ合わせた後、更に各領域の重複回数に応じて平均化回数を変えて補正する3次元形状測定方法を提案している。
【0017】
【発明の実施形態】
[第1の実施の形態]
まず、図面を参照しつつ球面レンズをフィゾー干渉計で測定する場合の第1の実施の形態を説明する。図1は球面レンズを分割測定するための測定装置100の概要を示している。y軸まわりに回転する回転ステージ31、θz軸まわりに回転する回転ステージ32、被測定物である球面レンズ33を測定するためのフィゾー干渉計34を有する。回転ステージ31,32は、駆動部35によりそれぞれ指定された角度あるいは一定角度で回転される。そして測定時の各ステージの回転角度は、測定装置100に接続された不図示のコンピュータにディジタルデータとして格納される。
【0018】
測定時に得られる干渉像は、フィゾー干渉計34内に設けられたCCD等の撮像デバイス上に結像され、ディジタル画像データとして同じくコンピュータに格納される。面形状は、このディジタル画像データに基づいて得られる。
【0019】
<被測定面の分割方法>
被測定面の分割方法について示す。まず被測定面である球面レンズ33の中心とフィゾー干渉計34の光軸が一致するようにしたときの測定範囲を基準面とする。すなわち、被測定物である球面レンズ33の光軸をθz軸と一致するように回転ステージ32に載置しておき、回転ステージ31によるy軸の回転角を0度(y軸の回転角度は、θz軸が干渉計34の光軸と平行となる角度を0度とする。)として、球面レンズ33を測定する。この場合に測定される範囲が基準面となる。
【0020】
次に、この基準面と重複するように分割測定面(分割領域とも呼ぶことがある。)を測定する。分割測定面の数は任意でよいが、本実施形態では分割面数は4面とする。基準面および4面の各分割面で被測定面全面(すなわち球面レンズ33の被測定面)を測定することを考慮すると、被測定面外周と分割面外周が交わる2つの交点それぞれと被測定面の中心とを結ぶ線分のなす角が90度以上である必要がある。なお4分割以外の数に分割測定する場合でも、望ましい角度は均等に分割した場合の角度となる。たとえば、3分割であれは前記角度はおおむね120度程度であり、5分割であればおおむね72度程度が望ましい。なお、本実施形態においては、「分割」という用語を、互いに重複する部分を有する領域に分けることを含めて用いている。
【0021】
また、y軸まわりに回転する回転ステージ31を用いて被測定面を傾けることを考慮すると、傾ける角度が小さいほど傾きによる被測定面の重力変形が小さいので、なるべく基準面の中心と分割面の中心との距離が短いことが好ましい。そのためには、互いに隣接する分割領域の交差する2つの交点のうちの測定対象レンズ外周側の交点(以下、外周側交点と呼ぶ。)が、ほぼレンズ外周上あるいはそのやや外側にあることが望ましい。もしも外周側交点がレンズ外周よりの内側にあれば、測定されない領域が被測定面上に残ってしまい、一方外周側交点がレンズ外周よりの外側にあれば、測定されない領域が残ることは防止できるものの、基準面の中心と分割面の中心との距離をなるべく短くするという条件を満たせなくなるためである。したがって、回転ステージ31のy軸周りの回転角は、上記条件が満たされるように決定される。
【0022】
図2は、被測定面を、上記の条件を考慮して4つの領域に分割した例を示した図である。領域Bと被測定面のそれぞれ外周の交点をK1,K2として、被測定面の中心をA0、領域Bの中心をB0としたときに、∠K1A0K2が90度以上の条件の下で、A0とB0との距離はなるべく短くなるように分割してある。領域C,D,Eについても同様である。
【0023】
図中、分割領域A,B,C,D,Eについて測定し、基準面である領域Aの測定結果に、分割領域B、C、D、Eの測定結果を接続して被測定面全体についての測定結果を求める手順を説明する。
【0024】
あらかじめ、フィゾー干渉計における参照面の面形状(data_Rとする)を求めて(具体的な方法としてはAPPLIED OPTICS 13 No.11 2693〜2703を参照。)参照面の形状としてコンピュータに記憶しておく。コンピュータには参照面の面形状は正方行列として保存される。なお、これ以降に記す面形状は特に断りがないかぎり正方行列形式である。
【0025】
その後、領域Aの範囲の形状を測定する。つぎに領域Bの範囲を測定するためにy軸回りに回転する回転ステージ31を用いて必要な角度だけ球面レンズを傾ける。この場合の必要な角度は、たとえば、上述したように、互いに隣接する分割領域の交差する2つの交点のうちの測定対象レンズ外周側の交点が、ほぼレンズ外周上あるいはそのやや外側となるような角度が選ばれる。
【0026】
この状態で領域Aの範囲を計測したときと同じ要領で形状計測する。領域Cの範囲を測定するときはレンズを傾けたまま、θz軸まわりに回転する回転ステージ32を用いてレンズを回転させ計測する。本例では4つの領域に分割されているので、最初に領域Bについて計測した状態から、θz軸周りに回転ステージ32を90度一定の方向に回転させて、領域Aと同じ要領で領域Cの範囲について計測する。同様に領域D、Eの範囲についても計測する。このようにして得られた領域Aの範囲の測定データ(測定された面形状)をdata_A、領域Bの範囲をdata_B、以下data_C、data_D、data_Eと表記することにする。
【0027】
まず、測定データdata_A、data_B、data_C、data_D、data_Eから参照面の測定データdata_Rを差し引き、それぞれをdata_AR、data_BR、data_CR、data_DR、data_ERと表記する。この結果、data_AR、data_BR、data_CR、data_DR、data_ERは、それぞれ参照面の形状誤差が補正された値となる。
【0028】
次に、干渉測定の際に生じるdata_ARのアライメント誤差を除去し、基準面である領域Aの面形状を得る。次に領域Aと領域Bの重複する領域のデータを、領域A、領域Bそれぞれについて抽出し、領域Aの面形状を基にdata_BRのアライメント誤差を算出する。さらに、算出したdata_BRのアライメント誤差を用いてdata_BR全体のアライメント誤差を減算する。測定データdata_CR、data_DR、data_ERも同様にアライメント誤差を減算する。すべての分割面の測定データから参照面の形状とアライメント誤差を除去した面形状を基に被測定物の全面の面形状を出力する。
【0029】
<アラインメント誤差の補正>
測定データからアライメント誤差を除去する方法の1例を以下に示す。1つの方法としてはゼルニケ多項式を用いて分離する方法が知られている。
【0030】
ゼルニケ多項式とは数式3に示すとおりである。
【0031】
【数3】
Figure 2004286561
【0032】
ただし、n、m は整数、i は虚数単位、ρおよびθは極座標系での動径成分(0≦ρ≦1)、角度成分である。実用上、mが正のときexp(imθ)=cos(mθ)、mが負のときexp(imθ)=sin(mθ)とする。
【0033】
さらにゼルニケ多項式を結合すると(数式3中のnの和は理論上∞であるが説明の都合上n=15までの和としてある)、数式4のようになる。
【0034】
【数4】
Figure 2004286561
【0035】
ただし、W(ρ,θ)は波面を示している。Cn,mをゼルニケ係数と呼ぶことにする。数式4のようにゼルニケ多項式を結合させることにより任意の波面、すなわち干渉計においては形状情報を表現することができる。
【0036】
このゼルニケ多項式のうち、球面レンズのアライメント誤差として、Z(0,0,ρ,θ)=1、Z(1,1,ρ,θ)=ρcos(θ),Z(1,−1,ρ,θ)=ρsin(θ)、Z(2,0,ρ,θ)=2ρ2−1が、それぞれDC成分を意味するピストン成分、XおよびYティルト成分、デフォーカス成分を表している。
【0037】
次にdata_ARからゼルニケ多項式を用いてアライメント誤差であるピストン、ティルト、デフォーカス成分を除去する方法について示す。data_ARの正方行列データのアドレスを表す行列をI,Jと表記する。正方行列データの中心のアドレスcentX,centYを次のように定義する。
【0038】
【数5】
Figure 2004286561
【0039】
ただし、[ ]は整数への丸めを意味している。数式5のcentXおよびcentYを用いて、
I1=I−centX,J1=J−centY …(数6)
とアドレスを表すベクトル変換をする。上式の如く各データのアドレスを表すベクトル変換後、R1を
R1=I1.2+J1.2 …(数7)
とする。行列の直後の”.”(ドット)は行列の要素についての演算を意味する。
R1の最大値をMAXRとする。MAXRとI1、J1を用いて数式8の要領で座標X,Yを求める。
X=I1/MAXR,Y=J1/MAXR …(数8)
この座標XおよびYから数式3および数式4においてのρ、θを求める。
R=√(X.2+Y.2),T=tan−1Y./X …(数9)
ここでRがρに、Tがθに相当している。
【0040】
R、TおよびZを列ベクトルに変換し、変換したものをRv、Tvと表記する。以降記号の語尾にvをつけたものはベクトルを意味する。また、data_ARをベクトル化したものをZAvとする。数式4はゼルニケ多項式の線形結合であるので、ベクトルRv、Tvを用いて次のように表せる。
Wv=CA …(数10)
ただし
C=[C0,0 C1,−1 C1,0 ・・・ C15,14]t
A=[Z(0,0,Rv,Tv) Z(1,−1,Rv,Tv) Z(1,0,Rv,Tv) ・・・ Z(15,14,Rv,Tv) ]
Wvは波面である。よって、各ゼルニケ係数Cは、
C=A−1ZAv …(数11)
により算出できる。
【0041】
最後にZAvからアライメント誤差であるピストン、ティルト、デフォーカスを差し引いた値ZfAvを得るには、
ZfAv=ZAv−C’B …(数12)
ただし
C’=[C0,0 C1,−1 C1,1 C2,0]t
B=[Z(0,0,R,T) Z(1,−1,R,T) Z(1,0,R,T) ・・・ Z(15,14,R,T) ]
とする。すなわちBはアラインメント誤差を、C’はそのゼルニケ係数を表す。
【0042】
ベクトルZfAvがアライメント誤差を除去したAの範囲の形状情報でありdata_ARfと表記する。
【0043】
次にdata_BRからアライメント誤差を除去する手順について説明する。図3は球面レンズを傾けたときにデータピッチが変化することについて示したものである。球面レンズ61は回転前の状態を、球面レンズ62は回転後の状態をそれぞれ表している。回転前の座標系を(X1,Y1)とし、回転後の座標系を(X2,Y2)とする。(X2,Y2)は(X1,Y1)の座標系を回転させたものと等しい。データピッチは(X1,Y1),(X2,Y2)上においては等しい。しかし、球面レンズ全体の形状を例えば(X1,Y1)座標系で評価しようとすると、回転前のデータピッチと回転後のデータピッチは一致しないことは明らかである。
【0044】
そこでdata_BRのデータピッチをdata_ARのデータピッチに合わせるため、線形補間によりデータ補間を行う。data_BRを線形補間してdata_ARのデータピッチに合わせたものをdata_BRsと表記する。data_BRsの面形状をZBsとする。ZBsのアドレスからXY座標に変換するにはZBsのアドレスの中でTS光軸中心に相当するアドレスx_cent、y_centを求める。このx_cent、y_centは球面レンズの傾け角から計算することができる。
I2=I−x_cent,J2=J−y_cent …(数13)
I2およびJ2からXY座標に変換するには数式5、数式6に示した計算を実行すればよい。
【0045】
data_BRsとdata_ARfとが重複している範囲のデータをそれぞれ抽出してdata_BRsU,data_ARfUとする。data_BRsUには形状情報とアライメント誤差が含まれている。また、data_ARfUは形状情報のみであるので、data_BRsUからdata_ARfUを差し引いたデータ(data_SBとする)は、アライメント誤差であるピストン、ティルト、デフォーカス成分のみから構成されている。これらアライメント誤差からピストン、ティルト、デフォーカスを成分ごとに分離するにはdata_BRsUのXY座標とdata_SBのデータZSBvから数式10の行列Bを生成して、
C’=B−1ZSBv …(数14)
とすればよい。ここで求めたゼルニケ係数C’とdata_BRsのXY座標について数式12の行列Bを生成して、数式12の如くdata_BRsのアライメント誤差のみを除去する。ここでdata_BRsの面形状はZBsで表されるから下記の数式15により誤差が除去される。
ZfBv=ZBsv−C’B …(数15)
ZfBvがBの範囲の面形状であり、アライメント誤差を排除したAの範囲のデータに対してBの範囲の面形状が接続されたことになる。
【0046】
領域C、D、Eの範囲においてもBの範囲でZfBvを求めた手順でそれぞれZfCv 、ZfDv 、ZfEvを求めることができる。これによりすべてアライメント誤差を排除したAの範囲の面形状に対して領域B、C、D、Eとすべての分割面の面形状が接続されている。
【0047】
図2のように被測定面を基準面を含めて5つにの領域に分割して測定した場合、重複のない部分から5つの領域全てが重なる部分まで、5通りの重複状態の部分が存在する。図4にその重複状態を示す。図中、部分αはただひとつの分割領域のみによりカバーされて重複のない部分、部分βは二つの分割領域が重複した部分、部分γは三つの分割領域が重複した部分、部分δは四つの分割領域が重複した部分、部分εは五つの分割領域が重複した部分である。斜線部は被測定面外の部分である。
【0048】
そこで、各領域を接続して被測定面全体の面形状を求める際に、ZfAv〜ZfEvをすべて足し合わせて、図4にあるように部分によって重複した領域数が違うので、重複した領域数に応じて平均化回数を変えることによって全面形状を復元する。例えば、5重に重複した部分については、ZfAv〜ZfEvすべてにデータが含まれているために、それら全てを加算して、重複した領域数である5で平均する。これは他の部分についても同様である。
【0049】
重なる領域の数は各面のXY座標を基に導く。すなわち面形状ZfAv〜ZfEvと面形状の座標(X,Y)について、同じ座標値をもつ点が複数あれば、その座標値における面形状をすべて足し合わせて、足し合わせた回数により平均化する。このことで、ステージの運動誤差等により干渉計の測定点がずれたとしても、分割面が重複する領域ではその影響は平均化により緩和されるので全面形状を精度よく復元することができる。
【0050】
<測定処理のコンピュータによる実行>
上記手順は、測定装置100に接続されたコンピュータにより実行される。ここでコンピュータにより上記手順を実行するためには、コンピュータの有するメモリやプロセッサというハードウエア資源を上記処理のため、特に測定されるデータの格納、計算手順を記録したプログラムおよび計算結果データの格納のために割り当て、処理を実行することになる。
【0051】
コンピュータを接続した測定装置の概略構成は図8のようになる。測定装置100内において、レーザ光源805から出射した光はレンズ804により広げられ、ビームスプリッタ803で反射されレンズ802を介して平行光に変換されレンズ801に入射する。レンズ801の最終面800はある曲率半径を有する球面形状であり、最終面800の反射光を参照光、透過光を被検光とする。被検光は、制御可能な回転ステージ31,32に載置された被測定物の球面レンズ33の表面で反射して再びレンズ801を通り平行光に変換される。参照光と被検光はビームスプリッタ803、レンズ806を通り撮像系807で干渉縞を形成する。撮像系807で形成された干渉縞はコンピュータ808に読み込まれて、以下に説明する手順で、上述した補正や変換、接続処理が施されて、被測定面の形状情報が得られる。コンピュータ808に読み込まれる干渉縞は、公知の方法により上述した形状情報に加工される。また、参照面800の形状データは上述したようにあらかじめ測定されてコンピュータ808に格納されている。
【0052】
なお、図8には示していないが、図1に示す測定部の回転ステージの制御をコンピュータにより行うこともできる。その場合には、各ステージはパルスモータ等により回転駆動され、コンピュータによりそのパルスモータの駆動量を制御することで、ステージの回転角が制御される。
【0053】
図9はコンピュータ808における形状情報の処理手順を示すフローチャートである。なお、図9の例では、図2に示すように基準領域Aと4つの分割領域B〜Eとに分けて、被測定面を測定した場合の例を示す。
【0054】
まずステップS901において、基準領域および各分割領域について測定を行い、得られた干渉縞の画像に基づき、正方行列で示される形状データdata_A、data_B、data_C、data_D、data_Eを生成する。この形状データは公知の手順により得ることができる。
【0055】
次にあらかじめ得ておいた参照面の形状データを、各分割領域の形状データから差し引くことで参照面の形状誤差を補正したdata_AR、data_BR、data_CR、data_DR、data_ERを求める(ステップS902)。
【0056】
次に基準領域Aについて、数式12を実行してアラインメント誤差を補正した基準領域Aの形状データZfAvを算出する(ステップS903)。
【0057】
次に、基準領域Aの形状データを基に、分割領域の各々に注目して、注目分割領域について数式13および数式5,6を計算して、注目分割領域測定時の測定ピッチを基準領域Aにおける測定ピッチに合わせて補間する。なお狭いピッチに合わせてデータを補間する代わりに、広い方のピッチに合わせて、対応しないデータを廃棄する方法もある。補間後の形状データに基づいて、数式10,14,15を実行してアラインメント誤差を補正した形状データZfXvを算出する(ステップS904)。ここで、添え字のXは、注目領域B〜Eいずれかを示す。
【0058】
ステップS904を、注目分割領域を順次代えつつ全ての分割領域について実行し、全領域についてアラインメント誤差を補正する(ステップS906)。
【0059】
それが終了したなら、ZfAv〜ZfEvについて、同じ座標値を持つ点が複数あれば、それらデータをすべて足し合わせて、加算した回数で除算して平均化する(ステップS906)。求められた値は、被測定面の形状データとして格納される(S907)。以上のようにして、測定結果から誤差補正された形状データが得られる。
【0060】
このように本発明によれば、分割面(分割領域)の接続の累積誤差が乗ることなく、ティルト、デフォーカスを精度よく排除した状態ですべての分割面を接続することが可能になり、被測定面全面の形状を精度よく復元することができる。
【0061】
また、被測定面を復元する際に分割面同士で重複する面での形状データはそれぞれ足し合わせて平均化することにより、重複面では測定点ずれの影響が緩和され被測定面全面を精度よく復元することができる。
【0062】
【発明の効果】
本発明の効果により分割面の接続の累積誤差が乗ることなく、ティルト、デフォーカスを精度よく排除した状態ですべての分割面を接続することが可能になり、被測定面全面を精度よく復元することができた。
【0063】
また、被測定面を復元する際に分割面同士で重複する面での形状データはそれぞれ足し合わせて平均化することにより、重複面では測定点ずれの影響が緩和され被測定面全面を精度よく復元することができる。
【図面の簡単な説明】
【図1】本発明にかかる形状測定装置の概略図
【図2】被測定面の分割した状態を示す図
【図3】球面レンズを傾けたときにデータピッチが変化することについて示した図
【図4】重複している回数が違う領域の状態を示した図
【図5】従来の形状測定装置の概略図
【図6】従来の被測定面の分割した状態を示す図
【図7】従来の被測定面の分割した状態を示す図
【図8】実施形態に係る、コンピュータを接続した形状測定装置全体の構成図
【図9】実施形態に係る、測定された形状データから被測定面全面の形状データを生成する手順のフローチャート
【符号の説明】
11 干渉計
12 被測定物
13 平行移動可能なステージ
31 y軸まわりに回転する回転ステージ
32 θz軸まわりに回転する回転ステージ
33 被測定物である球面レンズ
34 フィゾー干渉計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensional shape measurement of a spherical lens or the like mounted on a semiconductor exposure apparatus or the like, and more particularly, to a three-dimensional shape measurement method and apparatus capable of measuring with an accuracy on the order of nanometers.
[0002]
[Prior art]
Conventionally, an aperture synthesis method has been known as a measurement method when the surface to be measured is larger than the measurement range of the interferometer. In this method, the surface to be measured cannot be measured at one time, so that the measurement is performed in two or more steps, and the entire shape of the surface to be measured is restored by connecting the surface shapes.
[0003]
A conventional aperture synthesis method will be described with reference to FIG. FIG. 5 is an outline of a configuration for performing aperture synthesis that has been conventionally performed. A method in which the surface to be measured is divided by a method in which the interferometer 11 is fixed and the object 12 is moved by using the stage 13 which can be translated, or a method in which the interferometer 11 is moved and the object 12 is fixed. The surface shape is obtained for the region. At this time, the measurement of the adjacent area is always performed so that a part thereof is overlapped. Then, by applying the least squares method or the like to the measurement data of the overlapped portion and matching them, the connection between the divided surfaces is performed (for details of the specific connection method, see Patent Document 1. Further, the interferometer The measurement method when a Fizeau interferometer is used as 11 is described in Non-Patent Document 1.)
[0004]
According to this method, the divided measurement data of the two overlapping planes are respectively referred to as first measurement data, and the respective measurement data overlapping as the second measurement data are represented by (xi, yi, zij) and (xm, yn). , Zmn),
[0005]
(Equation 1)
Figure 2004286561
[0006]
[0007]
(Equation 2)
Figure 2004286561
[0008]
, The least squares method is applied to calculate (p1, a1, b1) and (p2, a2, b2). If, for example, “Δp + Δa · xi + Δb · yi” is added to the first measurement data based on the obtained difference values (Δp, Δa, Δb), the first and second measurement data can be smoothly connected.
[0009]
[Patent Document 1]
JP-A-10-281737
[Non-patent document 1]
APPLIED OPTICS 13 No. 11 2693-2703
[0010]
[Problems to be solved by the invention]
However, this method or the spherical lens has a problem that the entire shape is restored in a state where the alignment error between the interferometer and the spherical lens is included.
[0011]
First, the problem of restoring the entire shape including the alignment error between the interferometer and the DUT will be described with reference to FIG. FIG. 6 shows an example in which an interferometer capable of collectively measuring the entire surface of the measured surface with respect to the measured surface having a pointed shape such as a cutting edge (see FIG. 3B) is assumed. 7 shows interference fringes when a surface to be measured is measured using a meter. When the surface to be measured is divided as in the divided regions A2 to D2, it is necessary to remove tilt and defocus, which are alignment errors, from the surface shape of A2. However, from the interference fringe A2 alone, it cannot be distinguished whether it is a tilt fringe, which is one of the alignment errors between the object to be measured and the interferometer, or a surface shape. Therefore, for example, if B2 is connected to A2, C2 is connected to B2, and D2 is connected to C2, it is possible to connect B2, C2, and D2 to the posture of A2, but A2 Tilt and defocus itself cannot be removed.
[0012]
Therefore, a dividing method as described in the section of the prior art shown in FIG. 7 has been considered. In FIG. 7, each of the divided areas A1 to E1 is provided so as to overlap with an adjacent area. For example, the area A1 partially overlaps the adjacent areas B1 and E1. However, when the measurement is performed by the division method as shown in FIG. 6, since the regions A1 to E1 are connected in order, if the square root of the root mean square of the connection error is ε, the regions A1 and B1 are connected with an error of ε. Is done. Similarly, when the area C1 is connected to the area B1, the area C1 is connected with an error of ε, and the areas D1 and E1 are also connected. When the amount of connection error is considered based on the area A1, the error accumulates as follows: ε for the area B1, √2ε for the C1, 、 3ε for the D1, and √4ε for the E1.
[0013]
The present invention has been made in view of the above conventional example, and when connecting a plurality of divided planes in a state where the influence of tilt and defocus which are alignment errors of an interferometer in a restored shape in which a plurality of divided planes are connected is eliminated. It is an object of the present invention to provide a method and an apparatus for measuring a three-dimensional shape, which can eliminate the accumulation of connection errors.
[0014]
[Means for Solving the Problems]
According to the present invention, the surface to be measured having a three-dimensional shape is divided into a plurality of regions, and the shape of the surface to be measured is measured using an interferometer for each of the plurality of divided regions. In a three-dimensional shape measuring method for measuring the shape of a surface to be measured by joining measured values, at least one of the plurality of divided regions is provided with a reference provided so as to overlap with all other regions. And proposes a three-dimensional shape measuring method for measuring the shape of the surface to be measured by correcting a joining error between the reference surface and each of the other regions.
[0015]
Further, according to the present invention, there is proposed a three-dimensional shape measuring method in which the joint error is corrected using a value obtained by excluding a tilt and a defocus, which are alignment errors of the interferometer, from the measured values of the reference plane. are doing.
[0016]
Further, according to the present invention, a three-dimensional shape measuring method is proposed in which the measured values of the respective regions are connected, and then the correction is performed by changing the number of times of averaging in accordance with the number of overlaps of each region.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
[First Embodiment]
First, a first embodiment in the case of measuring a spherical lens with a Fizeau interferometer will be described with reference to the drawings. FIG. 1 shows an outline of a measuring apparatus 100 for split measurement of a spherical lens. It has a rotating stage 31 rotating around the y-axis, a rotating stage 32 rotating around the θz-axis, and a Fizeau interferometer 34 for measuring a spherical lens 33 as an object to be measured. The rotation stages 31 and 32 are rotated at an angle designated by the drive unit 35 or at a fixed angle, respectively. The rotation angle of each stage at the time of measurement is stored as digital data in a computer (not shown) connected to the measuring device 100.
[0018]
The interference image obtained at the time of the measurement is formed on an imaging device such as a CCD provided in the Fizeau interferometer 34, and stored in the computer as digital image data. The surface shape is obtained based on the digital image data.
[0019]
<Method of dividing the surface to be measured>
A method of dividing the surface to be measured will be described. First, a measurement range when the optical axis of the Fizeau interferometer 34 coincides with the center of the spherical lens 33 that is the surface to be measured is set as a reference surface. That is, the optical axis of the spherical lens 33 to be measured is mounted on the rotary stage 32 so as to coincide with the θz axis, and the rotation angle of the y axis by the rotary stage 31 is 0 degree (the rotation angle of the y axis is , The angle at which the θz axis is parallel to the optical axis of the interferometer 34 is set to 0 °), and the spherical lens 33 is measured. The range measured in this case is the reference plane.
[0020]
Next, a divided measurement plane (also referred to as a divided area) is measured so as to overlap with the reference plane. Although the number of divided measurement surfaces may be arbitrary, the number of divided surfaces is four in the present embodiment. Considering that the entire surface to be measured (that is, the surface to be measured of the spherical lens 33) is measured on each of the reference surface and the four divided surfaces, each of two intersections where the outer periphery of the measured surface and the outer periphery of the divided surface intersect, and the surface to be measured The angle formed by the line segment connecting the center of the image and the center must be 90 degrees or more. Note that, even when the measurement is performed by dividing the number into divisions other than four, the desired angle is the angle when the division is performed equally. For example, in the case of three divisions, the angle is approximately 120 degrees, and in the case of five divisions, approximately 72 degrees is desirable. Note that in the present embodiment, the term “division” is used including division into regions having mutually overlapping portions.
[0021]
Also, considering that the surface to be measured is tilted using the rotating stage 31 that rotates around the y axis, the smaller the angle of tilt, the smaller the gravitational deformation of the surface to be measured due to the tilt. Preferably, the distance from the center is short. For this purpose, it is desirable that an intersection (hereinafter, referred to as an outer peripheral side intersection) on the outer peripheral side of the lens to be measured, of the two intersecting points of the divided regions adjacent to each other, is substantially on or slightly outside the outer periphery of the lens. . If the outer intersection is located inside the outer periphery of the lens, an unmeasured region remains on the surface to be measured.On the other hand, if the outer intersection is located outside the outer periphery of the lens, the unmeasured region can be prevented from remaining. However, this is because the condition that the distance between the center of the reference plane and the center of the division plane is made as short as possible cannot be satisfied. Therefore, the rotation angle of the rotation stage 31 around the y-axis is determined so that the above condition is satisfied.
[0022]
FIG. 2 is a diagram showing an example in which the surface to be measured is divided into four regions in consideration of the above conditions. When K1 and K2 are the intersections of the outer periphery of the area B and the measured surface, and the center of the measured surface is A0 and the center of the area B is B0, A0 and A0 are determined under the condition that ∠K1A0K2 is 90 degrees or more. The distance from B0 is divided so as to be as short as possible. The same applies to the areas C, D, and E.
[0023]
In the figure, the measurement is performed for the divided areas A, B, C, D, and E, and the measurement result of the divided areas B, C, D, and E is connected to the measurement result of the area A that is the reference plane. The procedure for obtaining the measurement results of the above will be described.
[0024]
The surface shape (referred to as data_R) of the reference surface in the Fizeau interferometer is obtained in advance (refer to APPLIED OPTICS 13 No. 11 2693-2703 for a specific method) and stored in the computer as the shape of the reference surface. . The computer stores the surface shape of the reference surface as a square matrix. The surface shapes described hereinafter are in the form of a square matrix unless otherwise specified.
[0025]
Then, the shape of the area A is measured. Next, in order to measure the range of the region B, the spherical lens is tilted by a necessary angle using the rotating stage 31 that rotates around the y-axis. The required angle in this case is, for example, as described above, such that the intersection on the outer peripheral side of the lens to be measured, of the two intersecting intersections of the divided regions adjacent to each other, is almost on or slightly outside the outer periphery of the lens. The angle is chosen.
[0026]
In this state, the shape is measured in the same manner as when the range of the area A is measured. When measuring the range of the region C, the lens is rotated using the rotation stage 32 that rotates around the θz axis while the lens is tilted, and the measurement is performed. In this example, since the area is divided into four areas, the rotation stage 32 is rotated around the θz axis in a fixed direction by 90 degrees from the state measured first for the area B, and the area C is rotated in the same manner as the area A. Measure over the range. Similarly, the measurement is performed for the ranges of the regions D and E. The measurement data (measured surface shape) of the range of the region A obtained in this manner is referred to as data_A, the range of the region B is referred to as data_B, and hereinafter data_C, data_D, and data_E.
[0027]
First, the measurement data data_R of the reference surface is subtracted from the measurement data data_A, data_B, data_C, data_D, and data_E, and these are respectively described as data_AR, data_BR, data_CR, data_DR, and data_ER. As a result, data_AR, data_BR, data_CR, data_DR, and data_ER are values in which the shape error of the reference surface has been corrected.
[0028]
Next, the alignment error of data_AR generated at the time of the interference measurement is removed, and the surface shape of the region A as the reference surface is obtained. Next, data of an overlapping area of the area A and the area B is extracted for each of the area A and the area B, and an alignment error of data_BR is calculated based on the surface shape of the area A. Further, the alignment error of the entire data_BR is subtracted using the calculated alignment error of data_BR. The measurement data data_CR, data_DR, and data_ER also subtract the alignment error in the same manner. The surface shape of the whole object to be measured is output based on the surface shape obtained by removing the shape of the reference surface and the alignment error from the measurement data of all the divided surfaces.
[0029]
<Correction of alignment error>
An example of a method for removing an alignment error from measurement data will be described below. As one method, a separation method using a Zernike polynomial is known.
[0030]
The Zernike polynomial is as shown in Expression 3.
[0031]
[Equation 3]
Figure 2004286561
[0032]
Here, n and m are integers, i is an imaginary unit, ρ and θ are radial components (0 ≦ ρ ≦ 1) and angle components in a polar coordinate system. For practical use, when m is positive, exp (imθ) = cos (mθ), and when m is negative, exp (imθ) = sin (mθ).
[0033]
When the Zernike polynomials are further combined (the sum of n in Equation 3 is theoretically ∞, but for the sake of explanation, it is a sum up to n = 15), and Equation 4 is obtained.
[0034]
(Equation 4)
Figure 2004286561
[0035]
Here, W (ρ, θ) indicates a wavefront. Let Cn, m be called the Zernike coefficient. By combining Zernike polynomials as in Expression 4, an arbitrary wavefront, that is, shape information can be expressed in an interferometer.
[0036]
Among the Zernike polynomials, Z (0,0, ρ, θ) = 1, Z (1,1, ρ, θ) = ρcos (θ), Z (1, −1, ρ) , Θ) = ρ sin (θ) and Z (2, 0, ρ, θ) = 2ρ 2-1 represent a piston component, a X and Y tilt component, and a defocus component, respectively, which mean a DC component.
[0037]
Next, a method for removing the piston, tilt, and defocus components, which are alignment errors, from data_AR using Zernike polynomials will be described. Matrices representing the addresses of the square matrix data of data_AR are denoted by I and J. The center addresses centX and centY of the square matrix data are defined as follows.
[0038]
(Equation 5)
Figure 2004286561
[0039]
However, [] means rounding to an integer. Using centX and centY of Equation 5,
I1 = I-centX, J1 = J-centY (Equation 6)
And a vector conversion representing the address. After the vector conversion representing the address of each data as in the above equation, R1 is
R1 = I1.2 + J1.2 (Equation 7)
And "." (Dot) immediately after the matrix means an operation on elements of the matrix.
The maximum value of R1 is MAXR. Using MAXR, I1, and J1, coordinates X and Y are obtained in the manner of Expression 8.
X = I1 / MAXR, Y = J1 / MAXR (Equation 8)
From these coordinates X and Y, ρ and θ in Expressions 3 and 4 are obtained.
R = √ (X.2 + Y.2), T = tan-1Y. / X (Equation 9)
Here, R corresponds to ρ and T corresponds to θ.
[0040]
R, T and Z are converted into column vectors, and the converted ones are denoted as Rv and Tv. Hereafter, the suffix “v” means a vector. A vectorized version of data_AR is defined as ZAv. Since Equation 4 is a linear combination of Zernike polynomials, it can be expressed as follows using the vectors Rv and Tv.
Wv = CA (Equation 10)
However
C = [C0,0 C1, -1 C1,0 ... C15,14] t
A = [Z (0,0, Rv, Tv) Z (1, -1, Rv, Tv) Z (1,0, Rv, Tv) ... Z (15,14, Rv, Tv)]
Wv is the wavefront. Therefore, each Zernike coefficient C is
C = A-1ZAv (Equation 11)
Can be calculated by
[0041]
Finally, to obtain a value ZfAv obtained by subtracting the piston, tilt, and defocus, which are alignment errors, from ZAv:
ZfAv = ZAv−C′B (Equation 12)
However
C ′ = [C0,0 C1, −1 C1,1 C2,0] t
B = [Z (0,0, R, T) Z (1, -1, R, T) Z (1,0, R, T)... Z (15,14, R, T)]
And That is, B represents the alignment error, and C ′ represents its Zernike coefficient.
[0042]
The vector ZfAv is the shape information of the range A from which the alignment error has been removed, and is expressed as data_ARf.
[0043]
Next, a procedure for removing an alignment error from data_BR will be described. FIG. 3 shows that the data pitch changes when the spherical lens is tilted. The spherical lens 61 shows a state before rotation, and the spherical lens 62 shows a state after rotation. The coordinate system before rotation is (X1, Y1), and the coordinate system after rotation is (X2, Y2). (X2, Y2) is equivalent to a rotated coordinate system of (X1, Y1). The data pitch is equal on (X1, Y1) and (X2, Y2). However, when trying to evaluate the entire shape of the spherical lens in, for example, the (X1, Y1) coordinate system, it is clear that the data pitch before rotation does not match the data pitch after rotation.
[0044]
Therefore, in order to match the data pitch of data_BR with the data pitch of data_AR, data interpolation is performed by linear interpolation. Data_BRs obtained by linearly interpolating data_BR to the data pitch of data_AR are referred to as data_BRs. The surface shape of data_BRs is ZBs. To convert the ZBs address into the XY coordinates, the addresses x_cent and y_cent corresponding to the center of the TS optical axis are obtained from the ZBs address. X_cent and y_cent can be calculated from the tilt angle of the spherical lens.
I2 = Ix_cent, J2 = Jy_cent (Expression 13)
In order to convert I2 and J2 into XY coordinates, the calculations shown in Expressions 5 and 6 may be performed.
[0045]
Data in a range where data_BRs and data_ARf overlap each other are extracted as data_BRsU and data_ARfU. data_BRsU includes shape information and an alignment error. Since data_ARfU is only shape information, data (data_SB) obtained by subtracting data_ARfU from data_BRsU includes only piston, tilt, and defocus components, which are alignment errors. To separate the piston, tilt, and defocus for each component from these alignment errors, a matrix B of Expression 10 is generated from the XY coordinates of data_BRsU and the data ZSBv of data_SB,
C ′ = B−1ZSBv (Equation 14)
And it is sufficient. A matrix B of Expression 12 is generated for the Zernike coefficients C ′ and the XY coordinates of data_BRs obtained here, and only the alignment error of data_BRs is removed as in Expression 12. Here, since the surface shape of data_BRs is represented by ZBs, an error is removed by the following equation (15).
ZfBv = ZBsv−C′B (Equation 15)
ZfBv is the surface shape in the range B, and the surface shape in the range B is connected to the data in the range A excluding the alignment error.
[0046]
ZfCv, ZfDv, and ZfEv can be obtained by the procedure for obtaining ZfBv in the range B even in the ranges C, D, and E. As a result, the areas B, C, D, and E and the surface shapes of all the divided surfaces are connected to the surface shape in the range A where all the alignment errors are eliminated.
[0047]
When the surface to be measured is divided into five regions including the reference surface as shown in FIG. 2, there are five overlapping portions from a non-overlapping portion to a portion where all five regions overlap. I do. FIG. 4 shows the overlapping state. In the figure, the portion α is a portion that is covered by only one divided region and does not overlap, the portion β is a portion where two divided regions overlap, a portion γ is a portion where three divided regions overlap, and a portion δ is four portions. The portion where the divided regions overlap, the portion ε is a portion where the five divided regions overlap. The hatched portion is a portion outside the surface to be measured.
[0048]
Therefore, when connecting the respective regions to obtain the surface shape of the entire surface to be measured, ZfAv to ZfEv are all added up, and as shown in FIG. The entire shape is restored by changing the number of times of averaging accordingly. For example, for a quintuple overlapping portion, since data is included in all of ZfAv to ZfEv, all of them are added and averaged by 5 which is the number of overlapping regions. This is the same for the other parts.
[0049]
The number of overlapping regions is derived based on the XY coordinates of each surface. That is, if there are a plurality of points having the same coordinate value for the surface shapes ZfAv to ZfEv and the coordinates (X, Y) of the surface shape, all the surface shapes at the coordinate values are added up and averaged by the number of additions. As a result, even if the measurement point of the interferometer is shifted due to a stage motion error or the like, in a region where the divided planes overlap, the effect is reduced by averaging, so that the entire shape can be accurately restored.
[0050]
<Execution of measurement processing by computer>
The above procedure is executed by a computer connected to the measuring device 100. Here, in order to execute the above procedure by a computer, hardware resources such as a memory and a processor of the computer are used for the above processing, especially for storing measured data, a program recording a calculation procedure, and storing calculation result data. And execute the processing.
[0051]
FIG. 8 shows a schematic configuration of a measuring device to which a computer is connected. In the measurement apparatus 100, light emitted from the laser light source 805 is spread by a lens 804, reflected by a beam splitter 803, converted into parallel light via a lens 802, and incident on a lens 801. The final surface 800 of the lens 801 has a spherical shape with a certain radius of curvature, and the reflected light of the final surface 800 is used as reference light and the transmitted light is used as test light. The test light is reflected by the surface of the spherical lens 33 of the object placed on the controllable rotating stages 31 and 32, passes through the lens 801 again, and is converted into parallel light. The reference light and the test light pass through the beam splitter 803 and the lens 806 to form an interference fringe in the imaging system 807. The interference fringes formed by the imaging system 807 are read into the computer 808, and are subjected to the above-described correction, conversion, and connection processing in the procedure described below to obtain shape information of the surface to be measured. The interference fringes read into the computer 808 are processed into the above-described shape information by a known method. The shape data of the reference plane 800 is measured in advance and stored in the computer 808 as described above.
[0052]
Although not shown in FIG. 8, the control of the rotary stage of the measuring unit shown in FIG. 1 can be performed by a computer. In that case, each stage is driven to rotate by a pulse motor or the like, and the rotation amount of the stage is controlled by controlling the drive amount of the pulse motor by a computer.
[0053]
FIG. 9 is a flowchart showing a processing procedure of the shape information in the computer 808. Note that the example of FIG. 9 shows an example in which the surface to be measured is measured in the reference region A and the four divided regions B to E as shown in FIG.
[0054]
First, in step S901, measurement is performed on the reference region and each divided region, and based on the obtained interference fringe images, shape data data_A, data_B, data_C, data_D, and data_E represented by a square matrix are generated. This shape data can be obtained by a known procedure.
[0055]
Next, data_AR, data_BR, data_CR, data_DR, and data_ER in which the shape error of the reference surface has been corrected by subtracting the shape data of the reference surface obtained in advance from the shape data of each divided region are obtained (step S902).
[0056]
Next, for the reference region A, the shape data ZfAv of the reference region A in which the alignment error is corrected by executing Expression 12 is calculated (step S903).
[0057]
Next, based on the shape data of the reference area A, focusing on each of the divided areas, Expressions 13 and 5 and 6 are calculated for the noticed divided area, and the measurement pitch at the time of measurement of the noticed divided area is set as Is interpolated according to the measurement pitch in. Instead of interpolating data according to a narrow pitch, there is also a method of discarding uncorresponding data according to a wider pitch. Based on the interpolated shape data, formulas 10, 14, and 15 are executed to calculate shape data ZfXv in which an alignment error has been corrected (step S904). Here, the suffix X indicates one of the attention areas B to E.
[0058]
Step S904 is performed for all the divided regions while sequentially changing the divided region of interest, and the alignment error is corrected for all the regions (step S906).
[0059]
When the processing is completed, if there are a plurality of points having the same coordinate value for ZfAv to ZfEv, those data are all added, divided by the number of additions, and averaged (step S906). The obtained value is stored as shape data of the surface to be measured (S907). As described above, error-corrected shape data is obtained from the measurement result.
[0060]
As described above, according to the present invention, it is possible to connect all the divided planes while eliminating tilt and defocus with high accuracy without accumulating errors in the connection of the divided planes (divided areas). The shape of the entire measurement surface can be accurately restored.
[0061]
In addition, when restoring the surface to be measured, the shape data on the surfaces that overlap each other on the divided surfaces are added together and averaged, so that the influence of the measurement point shift is reduced on the overlapping surface, and the entire surface to be measured can be accurately measured. Can be restored.
[0062]
【The invention's effect】
According to the effects of the present invention, it is possible to connect all the divided surfaces without tilting and defocusing accurately without accumulating accumulated errors in the connection of the divided surfaces, and to accurately restore the entire surface to be measured. I was able to.
[0063]
In addition, when restoring the surface to be measured, the shape data on the surfaces that overlap each other on the divided surfaces are added together and averaged, so that the influence of the measurement point shift is reduced on the overlapping surface, and the entire surface to be measured can be accurately measured. Can be restored.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a shape measuring apparatus according to the present invention.
FIG. 2 is a view showing a state where a surface to be measured is divided;
FIG. 3 is a diagram showing that a data pitch changes when a spherical lens is tilted.
FIG. 4 is a diagram showing a state of an area where the number of times of overlap is different;
FIG. 5 is a schematic view of a conventional shape measuring device.
FIG. 6 is a diagram showing a conventional state where a surface to be measured is divided.
FIG. 7 is a diagram showing a state where a surface to be measured is divided according to the related art.
FIG. 8 is a configuration diagram of an entire shape measuring apparatus connected to a computer according to the embodiment;
FIG. 9 is a flowchart of a procedure for generating shape data of the entire surface to be measured from measured shape data according to the embodiment;
[Explanation of symbols]
11 Interferometer
12 DUT
13 Parallel movable stage
31 Rotary stage rotating around y-axis
32 Rotary stage rotating around θz axis
33 Spherical lens to be measured
34 Fizeau Interferometer

Claims (5)

被測定面の形状を測定する3次元測定方法であって、
前記被測定面を、少なくとも1つは他の全てとの重複部分を有する基準領域を含めた複数の分割領域に分けて、各分割領域ごとにその形状データを干渉計により測定し、
前記基準領域の形状データの誤差を補正し、
前記複数の分割領域を、前記重複部分における補正後の前記基準領域の形状データに基づいて接続することを特徴とする3次元形状測定方法。
A three-dimensional measuring method for measuring a shape of a surface to be measured,
The surface to be measured is divided into a plurality of divided regions including a reference region having at least one overlapping portion with all others, and the shape data of each divided region is measured by an interferometer,
Correct the error of the shape data of the reference area,
A method of measuring a three-dimensional shape, wherein the plurality of divided regions are connected based on corrected shape data of the reference region in the overlapping portion.
3次元形状を有する被測定面を複数の領域に分割して、該分割した複数の領域毎に前期比測定面の形状を干渉計を用いて測定し、各領域毎の測定値をつなぎ合わせることで被測定面の形状を測定する3次元形状測定方法であって、
前記分割した複数の領域のうち少なくとも1つの領域は、他のすべての領域と重複するように設けられた基準面であり、基準領域面と前記他のすべての領域のそれぞれとの間のつなぎ合わせ誤差を補正することで前記被測定面の形状を測定することを特徴とする3次元形状測定方法。
Dividing the surface to be measured having a three-dimensional shape into a plurality of regions, measuring the shape of the measurement surface using an interferometer for each of the plurality of divided regions, and joining the measured values for each region A three-dimensional shape measuring method for measuring the shape of the surface to be measured with
At least one of the plurality of divided regions is a reference plane provided so as to overlap with all other regions, and is a joint between the reference region surface and each of the other regions. A three-dimensional shape measuring method, wherein the shape of the surface to be measured is measured by correcting an error.
前記つなぎ合わせ誤差の補正は、前記基準面の測定値から前記干渉計のアライメント誤差であるティルトとフォーカスを排除した値を用いて行われることを特徴とする請求項1または2に記載の3次元形状測定方法。3. The three-dimensional structure according to claim 1, wherein the correction of the joining error is performed using a value obtained by excluding a tilt and a focus, which are alignment errors of the interferometer, from a measured value of the reference plane. 4. Shape measurement method. 前記各領域毎の測定値をつなぎ合わせた後、更に各領域の重複回数に応じて平均化回数を変えて補正することを特徴とする請求項1または2に記載の3次元形状測定方法。The three-dimensional shape measurement method according to claim 1, further comprising, after joining the measured values of the respective regions, further changing the number of times of averaging in accordance with the number of overlaps of each region. 被測定面の形状を測定する3次元測定装置であって、
前記被測定面を、少なくとも1つは他の全てとの重複部分を有する基準領域を含めた複数の分割領域に分けて、各分割領域ごとにその形状データを測定する干渉計と、
前記基準領域の形状データの誤差を補正する補正手段と、
前記複数の分割領域を、前記重複部分における前記基準領域の補正後の形状データに基づいて接続する接続手段と
を備えることを特徴とする3次元形状測定装置。
A three-dimensional measuring device for measuring a shape of a surface to be measured,
The surface to be measured is divided into a plurality of divided regions including a reference region having at least one overlapping portion with all others, and an interferometer for measuring the shape data of each divided region,
Correction means for correcting an error in the shape data of the reference area,
A connection unit that connects the plurality of divided regions based on the corrected shape data of the reference region in the overlapping portion, and a connection unit that connects the plurality of divided regions.
JP2003078369A 2003-03-20 2003-03-20 Method and instrument for measuring 3-dimensional shape Pending JP2004286561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078369A JP2004286561A (en) 2003-03-20 2003-03-20 Method and instrument for measuring 3-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078369A JP2004286561A (en) 2003-03-20 2003-03-20 Method and instrument for measuring 3-dimensional shape

Publications (2)

Publication Number Publication Date
JP2004286561A true JP2004286561A (en) 2004-10-14
JP2004286561A5 JP2004286561A5 (en) 2005-07-21

Family

ID=33292868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078369A Pending JP2004286561A (en) 2003-03-20 2003-03-20 Method and instrument for measuring 3-dimensional shape

Country Status (1)

Country Link
JP (1) JP2004286561A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533439A (en) * 2005-02-01 2008-08-21 テイラー・ホブソン・リミテッド measurement tool
JP2009192369A (en) * 2008-02-14 2009-08-27 Olympus Corp Shape measuring method
EP2177872A1 (en) * 2008-10-15 2010-04-21 Fujinon Corporation Optical wave interference measuring apparatus
EP2177870A1 (en) 2008-10-20 2010-04-21 Fujinon Corporation Optical wave interference measuring apparatus
JP2011021991A (en) * 2009-07-15 2011-02-03 Iwate Univ Spectroscopic three-dimensional shape measuring instrument and method of measuring spectroscopic three-dimensional shape
JP2011085492A (en) * 2009-10-15 2011-04-28 Canon Inc Measurement method and measuring system
WO2012008031A1 (en) * 2010-07-15 2012-01-19 キヤノン株式会社 Method and apparatus for measuring shape of surface to be inspected, and method for manufacturing optical element
JP2012154810A (en) * 2011-01-26 2012-08-16 Canon Inc Shape measurement method for combining partial measurement
JP2013024781A (en) * 2011-07-22 2013-02-04 Canon Inc Measurement method, measurement device, and program
JP2014037986A (en) * 2012-08-10 2014-02-27 Canon Inc Measuring method and measuring device
JP2014219372A (en) * 2013-05-12 2014-11-20 夏目光学株式会社 Surface shape measuring apparatus
JP2014240826A (en) * 2013-05-12 2014-12-25 夏目光学株式会社 Surface shape measurement instrument or wavefront aberration measurement instrument
WO2016098469A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Shape measuring device and shape measuring method
US9719773B2 (en) 2009-11-12 2017-08-01 Canon Kabushiki Kaisha Measuring method and measuring apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533439A (en) * 2005-02-01 2008-08-21 テイラー・ホブソン・リミテッド measurement tool
US8296098B2 (en) 2005-02-01 2012-10-23 Taylor Hobson Limited Metrological instrument
JP2009192369A (en) * 2008-02-14 2009-08-27 Olympus Corp Shape measuring method
US8059278B2 (en) 2008-10-15 2011-11-15 Fujinon Corporation Optical wave interference measuring apparatus
EP2177872A1 (en) * 2008-10-15 2010-04-21 Fujinon Corporation Optical wave interference measuring apparatus
EP2177870A1 (en) 2008-10-20 2010-04-21 Fujinon Corporation Optical wave interference measuring apparatus
US7982882B2 (en) 2008-10-20 2011-07-19 Fujinon Corporation Optical wave interference measuring apparatus
JP2011021991A (en) * 2009-07-15 2011-02-03 Iwate Univ Spectroscopic three-dimensional shape measuring instrument and method of measuring spectroscopic three-dimensional shape
JP2011085492A (en) * 2009-10-15 2011-04-28 Canon Inc Measurement method and measuring system
US8868366B2 (en) 2009-10-15 2014-10-21 Canon Kabushiki Kaisha Calculation method and calculation apparatus
US9719773B2 (en) 2009-11-12 2017-08-01 Canon Kabushiki Kaisha Measuring method and measuring apparatus
WO2012008031A1 (en) * 2010-07-15 2012-01-19 キヤノン株式会社 Method and apparatus for measuring shape of surface to be inspected, and method for manufacturing optical element
JP5442122B2 (en) * 2010-07-15 2014-03-12 キヤノン株式会社 Measuring method for measuring shape of test surface, measuring apparatus and optical element manufacturing method
US8675206B2 (en) 2010-07-15 2014-03-18 Canon Kabushiki Kaisha Measurement method for measuring shape of test surface, measurement apparatus, and method for manufacturing optical element
JP2012154810A (en) * 2011-01-26 2012-08-16 Canon Inc Shape measurement method for combining partial measurement
JP2013024781A (en) * 2011-07-22 2013-02-04 Canon Inc Measurement method, measurement device, and program
JP2014037986A (en) * 2012-08-10 2014-02-27 Canon Inc Measuring method and measuring device
JP2014240826A (en) * 2013-05-12 2014-12-25 夏目光学株式会社 Surface shape measurement instrument or wavefront aberration measurement instrument
JP2014219372A (en) * 2013-05-12 2014-11-20 夏目光学株式会社 Surface shape measuring apparatus
WO2016098469A1 (en) * 2014-12-16 2016-06-23 富士フイルム株式会社 Shape measuring device and shape measuring method
JP6162907B2 (en) * 2014-12-16 2017-07-12 富士フイルム株式会社 Shape measuring apparatus and shape measuring method
JPWO2016098469A1 (en) * 2014-12-16 2017-07-20 富士フイルム株式会社 Shape measuring apparatus and shape measuring method
CN107003113A (en) * 2014-12-16 2017-08-01 富士胶片株式会社 Shape measuring apparatus and process for measuring shape
CN107003113B (en) * 2014-12-16 2018-10-30 富士胶片株式会社 Shape measuring apparatus and process for measuring shape

Similar Documents

Publication Publication Date Title
JP5399304B2 (en) Aspherical surface measuring method and apparatus
JP2004286561A (en) Method and instrument for measuring 3-dimensional shape
JP6494205B2 (en) Wavefront measuring method, shape measuring method, optical element manufacturing method, optical device manufacturing method, program, wavefront measuring apparatus
JP5971965B2 (en) Surface shape measuring method, surface shape measuring apparatus, program, and optical element manufacturing method
JP3613906B2 (en) Wavefront aberration measuring device
JP3661865B2 (en) Spherical shape measurement analysis method
US20200141832A1 (en) Eccentricity measuring method, lens manufacturing method, and eccentricity measuring apparatus
JP6080592B2 (en) Shape measuring method, shape measuring apparatus, program, and recording medium
US7609389B2 (en) Measurement apparatus for measuring surface map
JP6162907B2 (en) Shape measuring apparatus and shape measuring method
JP2011122857A (en) Method and device for measuring aspherical object
KR101002677B1 (en) System error calibration method of interferometer
JP5955001B2 (en) Aspherical shape measurement method, shape measurement program, and shape measurement device
JP2011242544A (en) Reflection deflector, relative tilt measuring device, and aspherical surface lens measuring device
JPH0996589A (en) Method and apparatus for measuring performance of lens
JP3903022B2 (en) Interferometer
JP2011080875A (en) Apparatus and method for measuring refraction index distribution
JP2007064965A (en) Method of measuring wave aberration of optical element, and method of correcting wave aberration
JP5413072B2 (en) Waveform analysis apparatus, waveform measurement apparatus, waveform analysis program, interferometer apparatus, pattern projection shape measurement apparatus, and waveform analysis method
WO2013084565A1 (en) Data correction apparatus and data correction program
JP5618727B2 (en) Shape measuring method and shape measuring device
JP4125113B2 (en) Interfering device
JPH10281737A (en) Method for synthesizing wave front
WO2023079741A1 (en) Optical measuring method, and optical measuring system
JPH10221007A (en) Method and apparatus for absolute wave front calibration

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060728

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060915

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070226

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070309