JP2004286477A - Core dislocation measuring unit - Google Patents

Core dislocation measuring unit Download PDF

Info

Publication number
JP2004286477A
JP2004286477A JP2003076119A JP2003076119A JP2004286477A JP 2004286477 A JP2004286477 A JP 2004286477A JP 2003076119 A JP2003076119 A JP 2003076119A JP 2003076119 A JP2003076119 A JP 2003076119A JP 2004286477 A JP2004286477 A JP 2004286477A
Authority
JP
Japan
Prior art keywords
measuring device
misalignment
lower opening
center position
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076119A
Other languages
Japanese (ja)
Inventor
Kenji Tamatoshi
研二 玉利
Yuji Matsumoto
優二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003076119A priority Critical patent/JP2004286477A/en
Publication of JP2004286477A publication Critical patent/JP2004286477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core dislocation measuring unit that can easily and precisely measure core dislocation and also has reproducibility. <P>SOLUTION: In the unit for measuring the amount of core dislocation between the central position of a lower opening 3 formed at the lower portion of a cylindrical member 1 and that of an upper opening 1a of the cylindrical member 1, the core dislocation measuring unit is installed near the lower opening 1a, the installation position of the measuring unit to the central position of the lower opening 1a is grasped, a suspension member 6 is suspended from the central position of the upper opening 1a of the cylindrical member 1 to the central position side of the lower opening 3, the distance between the suspension member 6 and the measuring unit is measured, and the core dislocation of the central position of the upper opening 1a of the cylindrical member 1 to the central position of the lower opening 1a is computed, based on the measurement value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば原子炉圧力容器(RPV)などの精密機械加工品の芯ずれを測定する芯ずれ測定装置に係り、特に下げ振りを利用した測定において、下げ振りの示す位置を1/1000mm単位で測定可能な芯ずれ測定装置に関する。
【0002】
【従来の技術】
縦置きで使用されるRPVにおいて、その軸方向の中心線は、RPV最下部中心に設けられている制御棒駆動機構用管台孔(CRDスタッブ孔)の内径中心とシュラウドサポートシリンダ最上部の内径中心を結ぶ線で定義される。そしてRPVの最上部フランジ部の平面上における周方向の0度−180度と90度−270度線の中心とのずれは0.4mm以内であることが要求されている。
【0003】
図3〜図5は従来の測定方法を説明するための図で、図3はRPV内にピアノ線を吊り下げた状態を示す断面図、図4は図3A部における芯ずれを測定する状態を示す拡大断面図、図5は透過型ターゲットを通して下側から下げ振り先端の位置を目視した状態を示す拡大図である。
これらの図において、1はRPV、1aはRPV上フランジ、2はRPVシュラウドサポータシリンダ、3はCRDスタッブ孔、4は下げ振り、4aは下げ振りの先端、5は透過型ターゲット、6はピアノ線、7は上向きアライメントスコープ(拡大望遠鏡)、8はターゲット保持具である。
【0004】
従来の測定方法は、
▲1▼.CRDスタッブ孔3の内径中心部に、ターゲット保持具8に保持された透過型ターゲット5を設置する。透過型ターゲット5は図5に示すように、寸法目盛り13が縦方向と横方向に施されている。
▲2▼.そしてRPVシュラウドサポートシリンダ2の内径中心からターゲット5に向けてピアノ線6に接続した下げ振り4を降ろし、
▲3▼.次に図4に示すようにRPVフランジの内径中心からターゲット5に向けて下げ振り4を降ろす。
▲4▼.CRDスタッブ孔3の真下に設置した上向きのアライメントスコープ7を用いて、ターゲット5の中心と下げ振り4の先端4aのずれを前記▲2▼及び▲3▼の場合について目視で測定していた。
【0005】
従来の公知技術として、下記の特許文献1〜3などを挙げることができる。
【0006】
【特許文献1】
特開2001−317945号公報
【0007】
【特許文献2】
特公平6−317423号公報
【0008】
【特許文献3】
特公平10−26523号公報
これら従来の芯ずれ測定装置は、下げ振り自身の位置を測定するもので、振り子の原理を利用したものであり、後述する本発明のように下げ振りを支えるピアノ線の位置を直接測定するものではない。
【0009】
【発明が解決しようとする課題】
従来の芯ずれ測定装置は、ターゲット5の中で下げ振り4の先端位置をアライメントスコープ7を用い0.01mm単位で読み取らなければならないため、読取者に熟練を要し、またアライメントスコープ7の設置・調整に時間がかかり、再現性のある測定を実施することは難しかった。
【0010】
また、下げ振り4の先端部4aの位置を1/100mmの精度で読み取る場合、必ずしもそれを支えるピアノ線6の中心を示している訳ではないから、補正するための測定や計算が別途必要であるなどの難点を有している。
【0011】
本発明の目的は、このような従来技術の欠点を解消し、芯ずれが簡単にかつ精度良く測定でき、しかも再現性のある芯ずれ測定装置を提供することにある。
【0012】
【課題を解決するための手段】
前記目的を達成するため本発明の第1の手段は、筒状部材の下方に形成した下部開口部の中心位置と、その筒状部材の上部開口部の中心位置との芯ずれ量を測定する芯ずれ測定装置において、その芯ずれ測定装置を前記下部開口部の付近に設置して、その下部開口部の中心位置に対する測定装置の設置位置を予め把握しておき、前記筒状部材の上部開口部の中心位置から前記下部開口部の中心位置側に向けて吊り下げ部材を吊り下げ、その吊り下げ部材と前記測定装置の間を距離を前記測定装置で測定して、その測定値に基づいて前記下部開口部の中心位置に対する前記筒状部材の上部開口部の中心位置の芯ずれを演算することを特徴とするものである。
【0013】
本発明の第2の手段は前記第1の手段において、前記吊り下げ部材が例えばピアノ線などの線状体からなり、その吊り下げ部材に例えば下げ振りなどの重りが接続されていることを特徴とするものである。
【0014】
本発明の第3の手段は前記第1の手段または第2の手段において、前記測定装置の先端部に例えば金属センサなどの近接センサが取り付けられ、その近接センサが前記吊り下げ部材に近接するとアラーム音あるいは画面表示などの警報を発する構成になっていることを特徴とするものである。
【0015】
本発明の第4の手段は前記第1の手段ないし第3の手段において、前記筒状部材が原子炉圧力容器であり、前記下部開口部が制御棒駆動機構用管台孔であることを特徴とするものである。
【0016】
本発明の第5の手段は前記第1の手段ないし第3の手段において、前記筒状部材が原子炉圧力容器の内側に設置したシュラウドサポートリングであり、前記下部開口部が制御棒駆動機構用管台孔であることを特徴とするものである。
【0017】
【発明の実施の形態】
次に本発明の実施形態を図とともに説明する。図1はRPV内にピアノ線を吊り下げた状態を示す断面図、図2は図1B部における芯ずれを測定する状態を示す拡大断面図である。
【0018】
これらの図において、1は筒状のRPV、1aはRPV上フランジ、2はRPV1内に設置された筒状のシュラウドサポータシリンダ、3はRPV1の最下部中心に設けられたCRDスタッブ孔、4は金属などの重りからなる逆円錐状の下げ振り、6は下げ振り4を吊り下げるピアノ線、9は近接センサである金属センサ、10はマイクロメータ、11はセンサ制御アンプ、12は測定台、14は測定台保持具、15は測定台12に形成された透孔である。
【0019】
図2に示すようCRDスタッブ孔3に上側フランジを有する測定台保持具14ががたなく嵌入され、その測定台保持具14の下端、すなわちCRDスタッブ孔3の下方に測定台12が水平状態に固定されている。
【0020】
測定台12には下げ振り4よりも径大の透孔15が形成され、その透孔15に下げ振り4を吊り下げたピアノ線6が挿通されている。測定台12上には、金属センサ9を1/1000mmの精度で正確に移動させるマイクロメータ10が設置され、マイクロメータ10の先端部に金属センサ9が取り付けられ、金属センサ9はピアノ線6と近接対向している。
【0021】
金属センサ9は予めピアノ線6と一定の距離に近づいた場合、アラーム音または画面表示で測定者に知らせる機構を有している。測定者は、シュラウドサポートシリンダ2の中心またはRPV上フランジ1aの中心から降りた下げ振り4を支える金属製のピアノ線6に向かってマイクロメータ10(金属センサ9)を微動させ、金属センサ9がピアノ線6に対して一定の距離に近づいたとき、金属センサ9がそれを検知して、検知信号をセンサ制御アンプ11に出力する。センサ制御アンプ11からの制御信号によってアラーム装置(図示せず)がアラーム音を出力した時点の位置を自動的に測定して、芯ずれ量を演算部(図示せず)で演算する。
【0022】
金属センサ9の位置は、測定台12をCRDスタッブ孔3に対しずれのないように設置して、CRDスタッブ孔3の内径中心からの距離を予め測定して測定基準位置を把握しておく。ピアノ線6の直径は、予め下げ振り4と同じ荷重で引っ張ったときの線直径を測定しておく。
【0023】
前記金属センサ9の代わりに光センサを用いる測定装置でも同様の作用効果が得られる。光センサは発光部と受光部を有し、発光部から規定の幅を有する光束が照射される。受光部はその光束を横切るピアノ線の陰を感知し、光束の端から何mmの位置に影が、どのくらいの長さをもって存在するか光学的に測定する。光束の位置が、測定基準位置からどの位置にあるかを予め設定しておくことにより、ピアノ線の通る位置が正確に求められる。この場合、下げ振りを支える物は、金属である必要も無く、光を遮る部材であれば何でも良い。
【0024】
【発明の効果】
本発明は前述のような構成になっており、従来の目視による方法に比べて芯ずれが簡単にかつ精度良く測定でき、しかも再現性のある芯ずれ測定装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態においてRPV内にピアノ線を吊り下げた状態を示す断面図である。
【図2】図1B部における芯ずれを測定する状態を示す拡大断面図である。
【図3】従来のRPV内にピアノ線を吊り下げた状態を示す断面図である。
【図4】図3A部における芯ずれを測定する状態を示す拡大断面図である。
【図5】透過型ターゲットを通して下げ振りの位置を目視した状態を示す拡大図である。
【符号の説明】
1:RPV、1a:RPV上フランジ、2:RPVシュラウドサポータシリンダ、3:CRDスタッブ孔、4:下げ振り、6:ピアノ線、9:金属センサ、10:マイクロメータ、11:センサ制御アンプ、12:測定台、14:測定台保持具、15:透孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a misalignment measuring device for measuring misalignment of a precision machined product such as a reactor pressure vessel (RPV), and particularly, in a measurement using a down swing, a position indicated by the down swing is represented by a unit of 1/1000 mm. The present invention relates to a misalignment measuring device which can be measured by using the method.
[0002]
[Prior art]
In an RPV used in a vertical position, the axial center line is the center of the inner diameter of the control rod drive mechanism nozzle hole (CRD stub hole) provided at the center of the lowermost part of the RPV and the inner diameter of the uppermost part of the shroud support cylinder. Defined by a line connecting the centers. The deviation between the center of the 0 ° -180 ° and the center of the 90 ° -270 ° line in the circumferential direction on the plane of the uppermost flange portion of the RPV is required to be within 0.4 mm.
[0003]
3 to 5 are views for explaining a conventional measuring method, FIG. 3 is a cross-sectional view showing a state in which a piano wire is suspended in an RPV, and FIG. FIG. 5 is an enlarged view showing a state in which the position of the tip of the swing-down tip is visually observed from below through the transmission type target.
In these figures, 1 is an RPV, 1a is an RPV upper flange, 2 is an RPV shroud supporter cylinder, 3 is a CRD stub hole, 4 is a down swing, 4a is a tip of a down swing, 5 is a transmission type target, 6 is a piano wire. , 7 is an upward alignment scope (magnifying telescope), and 8 is a target holder.
[0004]
The conventional measurement method is
▲ 1 ▼. At the center of the inner diameter of the CRD stub hole 3, the transmission target 5 held by the target holder 8 is set. As shown in FIG. 5, the transmission target 5 is provided with dimensional scales 13 in the vertical and horizontal directions.
▲ 2 ▼. Then, the down swing 4 connected to the piano wire 6 is lowered from the center of the inner diameter of the RPV shroud support cylinder 2 toward the target 5,
(3). Next, as shown in FIG. 4, the swing 4 is lowered from the center of the inner diameter of the RPV flange toward the target 5.
▲ 4 ▼. The displacement between the center of the target 5 and the tip 4a of the down swing 4 was visually measured in the cases (2) and (3) using an upward alignment scope 7 installed directly below the CRD stub hole 3.
[0005]
Conventionally known technologies include the following Patent Documents 1 to 3.
[0006]
[Patent Document 1]
JP 2001-317945 A
[Patent Document 2]
Japanese Patent Publication No. 6-317423
[Patent Document 3]
Japanese Patent Application Publication No. 10-26523 These conventional misalignment measuring devices measure the position of the pendulum itself and utilize the principle of the pendulum, and a piano wire that supports the pendulum as described later in the present invention. Is not directly measured.
[0009]
[Problems to be solved by the invention]
In the conventional misalignment measuring device, the position of the tip of the plunger 4 in the target 5 must be read in units of 0.01 mm using the alignment scope 7, so that the reader requires skill and the setting of the alignment scope 7 is required.・ It took a long time to adjust, and it was difficult to perform reproducible measurement.
[0010]
In addition, when the position of the tip 4a of the plunger 4 is read with an accuracy of 1/100 mm, it does not necessarily indicate the center of the piano wire 6 that supports it, so that measurement or calculation for correction is separately required. It has some disadvantages.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a misalignment measuring apparatus that can easily and accurately measure misalignment and that is reproducible.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a first means of the present invention measures an amount of misalignment between a center position of a lower opening formed below a tubular member and a center position of an upper opening of the tubular member. In the misalignment measuring device, the misalignment measuring device is installed in the vicinity of the lower opening, and the installation position of the measuring device with respect to the center position of the lower opening is grasped in advance, and the upper opening of the tubular member is A hanging member is suspended from the center position of the portion toward the center position side of the lower opening, a distance between the hanging member and the measuring device is measured by the measuring device, and based on the measured value. The center deviation of the center position of the upper opening of the tubular member with respect to the center position of the lower opening is calculated.
[0013]
According to a second aspect of the present invention, in the first aspect, the hanging member is formed of a linear body such as a piano wire, and a weight such as a plumb bob is connected to the hanging member. It is assumed that.
[0014]
A third means of the present invention is the first or second means, wherein a proximity sensor such as a metal sensor is attached to a tip portion of the measuring device, and an alarm is generated when the proximity sensor approaches the hanging member. It is characterized by issuing a warning such as a sound or a screen display.
[0015]
According to a fourth aspect of the present invention, in the first to third aspects, the cylindrical member is a reactor pressure vessel, and the lower opening is a nozzle for a control rod drive mechanism. It is assumed that.
[0016]
According to a fifth aspect of the present invention, in the first to third means, the tubular member is a shroud support ring installed inside a reactor pressure vessel, and the lower opening is for a control rod drive mechanism. It is characterized by being a nozzle hole.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a state in which a piano wire is suspended in an RPV, and FIG. 2 is an enlarged cross-sectional view showing a state in which the misalignment is measured in a portion shown in FIG. 1B.
[0018]
In these figures, 1 is a cylindrical RPV, 1a is an RPV upper flange, 2 is a cylindrical shroud supporter cylinder installed in the RPV 1, 3 is a CRD stub hole provided at the center of the lowermost part of the RPV 1, and 4 is An inverted conical down swing made of a weight of metal or the like, 6 is a piano wire for hanging the down swing 4, 9 is a metal sensor as a proximity sensor, 10 is a micrometer, 11 is a sensor control amplifier, 12 is a measuring table, 14 Denotes a measurement table holder, and 15 denotes a through hole formed in the measurement table 12.
[0019]
As shown in FIG. 2, the measuring table holder 14 having the upper flange is fitted into the CRD stub hole 3 without any gap, and the measuring table 12 is placed horizontally at the lower end of the measuring table holder 14, that is, below the CRD stub hole 3. Fixed.
[0020]
A through hole 15 having a diameter larger than that of the down swing 4 is formed in the measuring table 12, and the piano wire 6 in which the down swing 4 is hung is inserted through the through hole 15. A micrometer 10 for accurately moving the metal sensor 9 with an accuracy of 1/1000 mm is installed on the measurement table 12, and the metal sensor 9 is attached to the tip of the micrometer 10. They are close to each other.
[0021]
The metal sensor 9 has a mechanism for notifying a measurer of an alarm sound or a screen display when a predetermined distance from the piano wire 6 is approached in advance. The measurer finely moves the micrometer 10 (metal sensor 9) toward the metal piano wire 6 that supports the down swing 4 from the center of the shroud support cylinder 2 or the center of the RPV upper flange 1 a, and the metal sensor 9 is moved. When approaching a certain distance from the piano wire 6, the metal sensor 9 detects this and outputs a detection signal to the sensor control amplifier 11. The position at the time when an alarm device (not shown) outputs an alarm sound is automatically measured by a control signal from the sensor control amplifier 11, and the amount of misalignment is calculated by a calculation unit (not shown).
[0022]
As for the position of the metal sensor 9, the measuring table 12 is installed so as not to be displaced from the CRD stub hole 3, and the distance from the center of the inner diameter of the CRD stub hole 3 is measured in advance to grasp the measurement reference position. The diameter of the piano wire 6 is measured beforehand under the same load as that of the swing 4.
[0023]
A similar effect can be obtained with a measuring device using an optical sensor instead of the metal sensor 9. The optical sensor has a light emitting unit and a light receiving unit, and a light beam having a specified width is emitted from the light emitting unit. The light receiving unit senses the shadow of the piano wire crossing the light beam, and optically measures the length of the shadow at what position from the end of the light beam. By setting in advance the position of the light beam from the measurement reference position, the position through which the piano wire passes can be accurately obtained. In this case, the object that supports the plunger need not be metal, and may be any member that blocks light.
[0024]
【The invention's effect】
The present invention has the above-described configuration, and can provide a misalignment measuring apparatus that can easily and accurately measure misalignment as compared with a conventional visual method and that has high reproducibility.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which a piano wire is suspended in an RPV in an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view showing a state in which misalignment is measured in a portion shown in FIG. 1B.
FIG. 3 is a cross-sectional view showing a state in which a piano wire is suspended in a conventional RPV.
FIG. 4 is an enlarged cross-sectional view showing a state of measuring a misalignment in a portion A of FIG. 3;
FIG. 5 is an enlarged view showing a state where a down swing position is visually observed through a transmission type target.
[Explanation of symbols]
1: RPV, 1a: RPV upper flange, 2: RPV shroud supporter cylinder, 3: CRD stub hole, 4: swing down, 6: piano wire, 9: metal sensor, 10: micrometer, 11: sensor control amplifier, 12 : Measurement table, 14: Measurement table holder, 15: Through hole

Claims (5)

筒状部材の下方に形成した下部開口部の中心位置と、その筒状部材の上部開口部の中心位置との芯ずれ量を測定する芯ずれ測定装置において、
その芯ずれ測定装置を前記下部開口部の付近に設置して、その下部開口部の中心位置に対する測定装置の設置位置を予め把握しておき、
前記筒状部材の上部開口部の中心位置から前記下部開口部の中心位置側に向けて吊り下げ部材を吊り下げ、その吊り下げ部材と前記測定装置の間を距離を前記測定装置で測定して、その測定値に基づいて前記下部開口部の中心位置に対する前記筒状部材の上部開口部の中心位置の芯ずれを演算することを特徴とする芯ずれ測定装置。
In the misalignment measuring device for measuring the misalignment amount between the center position of the lower opening formed below the tubular member and the center position of the upper opening of the tubular member,
The misalignment measuring device is installed near the lower opening, and the installation position of the measuring device with respect to the center position of the lower opening is grasped in advance,
The hanging member is suspended from the center position of the upper opening of the cylindrical member toward the center position side of the lower opening, and the distance between the hanging member and the measuring device is measured by the measuring device. And calculating a misalignment between a center position of the upper opening of the tubular member and a center position of the lower opening based on the measured value.
請求項1記載の芯ずれ測定装置において、前記吊り下げ部材が線状体からなり、その吊り下げ部材に重りが接続されていることを特徴とする芯ずれ測定装置。2. The misalignment measuring device according to claim 1, wherein the suspension member is formed of a linear body, and a weight is connected to the suspension member. 請求項1または請求項2記載の芯ずれ測定装置において、前記測定装置の先端部に近接センサが取り付けられ、その近接センサが前記吊り下げ部材に近接すると警報を発する構成になっていることを特徴とする芯ずれ測定装置。3. The misalignment measuring device according to claim 1, wherein a proximity sensor is attached to a tip of the measuring device, and an alarm is issued when the proximity sensor approaches the hanging member. Misalignment measuring device. 請求項1ないし請求項3のいずれか1項記載の芯ずれ測定装置において、前記筒状部材が原子炉圧力容器であり、前記下部開口部が制御棒駆動機構用管台孔であることを特徴とする芯ずれ測定装置。4. The misalignment measuring apparatus according to claim 1, wherein the tubular member is a reactor pressure vessel, and the lower opening is a control rod driving mechanism nozzle. Misalignment measuring device. 請求項1ないし請求項3のいずれか1項記載の芯ずれ測定装置において、前記筒状部材が原子炉圧力容器の内側に設置したシュラウドサポートリングであり、前記下部開口部が制御棒駆動機構用管台孔であることを特徴とする芯ずれ測定装置。4. The misalignment measuring device according to claim 1, wherein the tubular member is a shroud support ring installed inside a reactor pressure vessel, and the lower opening is for a control rod driving mechanism. A misalignment measuring device characterized by a nozzle hole.
JP2003076119A 2003-03-19 2003-03-19 Core dislocation measuring unit Pending JP2004286477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076119A JP2004286477A (en) 2003-03-19 2003-03-19 Core dislocation measuring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076119A JP2004286477A (en) 2003-03-19 2003-03-19 Core dislocation measuring unit

Publications (1)

Publication Number Publication Date
JP2004286477A true JP2004286477A (en) 2004-10-14

Family

ID=33291252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076119A Pending JP2004286477A (en) 2003-03-19 2003-03-19 Core dislocation measuring unit

Country Status (1)

Country Link
JP (1) JP2004286477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389004A (en) * 2017-08-16 2017-11-24 浙江富春江水电设备有限公司 Sound and light measurement instrument and its measuring method for the installation of turbine-generator units central shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389004A (en) * 2017-08-16 2017-11-24 浙江富春江水电设备有限公司 Sound and light measurement instrument and its measuring method for the installation of turbine-generator units central shaft
CN107389004B (en) * 2017-08-16 2023-09-26 浙江富春江水电设备有限公司 Acousto-optic measuring instrument for central shaft installation of hydroelectric generating set and measuring method thereof

Similar Documents

Publication Publication Date Title
EP0144437B1 (en) Rheometer
CN109238398A (en) A kind of liquid level detection device and liquid-level detecting method
CN108444411B (en) A kind of Linearity surveying system and method
CN108844477A (en) A kind of portable pipe external diameter measuring device
CN203908516U (en) Crane suspension arm linearity automatic detection device
CN105300321B (en) A kind of Small-deep Hole coaxiality detecting method and device
CN102661958B (en) Laser distance measurement-source device for pipeline radiographic inspection
CN207688877U (en) Spatial angle measuring positioning device
JP2004286477A (en) Core dislocation measuring unit
CN207881655U (en) A kind of integrated correction device
CN103968768A (en) Device and method for precisely measuring inner diameters of workpieces in non-contact manner
CN211178417U (en) Laser detector for concrete floor pouring elevation
CN210863368U (en) Fiber laser Young modulus tester
CN208313228U (en) A kind of portable pipe external diameter measuring device
CN110006358B (en) Vertical deformation measuring device
CN103115714A (en) Full-automatic magnetic gauge stand detecting device
CN203772802U (en) Sacrificial anode broken core detecting system based on through type eddy current
ITMI940491A1 (en) PORTABLE MEASURING APPARATUS FOR DETECTION OF THE ARROWS OF A TRACK
CN213120813U (en) Novel calibration system for acoustic power meter
CN209802307U (en) Pipe steel stand interval measuring device
CN110926549B (en) Verticality-adjustable high-precision fluid flow measuring device
JP2013108947A (en) Hole position measuring instrument
CN211904897U (en) Optical lever system
CN209945280U (en) Concentricity detects instrument
KR20150000376U (en) Portable apparatus for measuring a slope of object