JP2004286066A - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP2004286066A
JP2004286066A JP2003076210A JP2003076210A JP2004286066A JP 2004286066 A JP2004286066 A JP 2004286066A JP 2003076210 A JP2003076210 A JP 2003076210A JP 2003076210 A JP2003076210 A JP 2003076210A JP 2004286066 A JP2004286066 A JP 2004286066A
Authority
JP
Japan
Prior art keywords
pin
roller
stress
diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076210A
Other languages
Japanese (ja)
Inventor
Yoshihiko Shirosaki
喜彦 城崎
Yukio Sato
幸夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003076210A priority Critical patent/JP2004286066A/en
Publication of JP2004286066A publication Critical patent/JP2004286066A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/52Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers
    • F16C33/523Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers with pins extending into holes or bores on the axis of the rollers
    • F16C33/526Cages for rollers or needles with no part entering between, or touching, the bearing surfaces of the rollers with pins extending into holes or bores on the axis of the rollers extending through the rollers and joining two lateral cage parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller bearing of favorable strength balance with improved service life of a pin-shaped cage. <P>SOLUTION: A pin 3 penetrates a pin hole 2 formed in a roller 1, both end parts of the pin 3 are provided with the pin-shaped cages respectively fixed to a pair of circular side plates 4 facing each other in a bearing axis direction. The ratio of diameter dp of the pin hole 2 to average outer diameter Da of the roller 1 is set to be 0.04 or more and 0.25 or less. The ratio of distance between a pair of circular side plates 4 to the pin diameter Dp is set to be 5 or more and 10 or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、製鉄用の各種圧延機に使用されるミル減速機のような、急激な加減速や負荷変動が繰り返される箇所で用いられるころ軸受や、プレス機械のように大きな振動を伴う装置で用いられるころ軸受、つまり、ころの公転速度の変化が繰り返し発生したり軸受ラジアル方向の振動を繰り返し受けたりするような、ピン形保持器を備えたころ軸受に関するものである。
【0002】
【従来の技術】
ピン形保持器を備えたころ軸受としては、例えば先行技術文献1に記載されるものがある。
すなわち、転動体である各ころに対し中心軸を貫通するピン穴が形成されて中空ころとなると共に、上記ピン穴を貫通するピンでころが保持され、また、各ピンの両端部がそれぞれ、軸受の軸方向で対向する一対の環状側板に固定されている。なお、一対の環状側板とピンとの接合は、通常、一方がネジ締結による接合であり、他方が溶接による接合となっている。
【0003】
ここで、ピン形保持器の選定は、例えば図12に示すようなフローに沿って決定される。すなわち、保持器のピンに掛かる荷重が不明確とし、ピン穴径応力を重視してピン穴径及びピン径を目的に応じて決定することで行われていた。
また、先行技術文献2においては、ピン形でない保持器について、素材の許容応力値から各部の応力バランスを考え、強度的に最適な保持器の構造を断面2次モーメントの範囲で示している。
【0004】
【特許文献1】
実公昭53−41642号公報
【特許文献2】
特願2000−579905号
【0005】
【発明が解決しようとする課題】
しかしながら、ピン形保持器にあっては、製作上及び強度上、先行技術文献2で示される範囲に入らない。
また、使用条件の回転数から最大保持器回転数の速度変化を推定してピン形保持器のピンの断面係数から特定のパラメータを算出し、フィールドの実績値と比較して強度検討を行っても、振動条件が違う場合には強度評価に差異が生じる。ピンの疲労強度については、ピン形保持器のピン1本と環状側板とを切り出してなる試験片を使用したピンの疲労試験によって求められた、応力値と破損までの繰り返し数で表されるS−N線図から得られるが、上述のパラメータでは相関が取れず、従来の方式では応力値によっては強度検討ができないという問題点があった。
【0006】
また、ピン穴径を小さくすればピン穴径応力は小さくなるが、その分だけ保持器のピン径が小さくなりピン応力が増大するという欠点がある。すなわち、保持器破損の原因は保持器の強度不足が主な原因であるが、中空ころのピン穴径応力を重視して、ピン径を極端に小さくし且つピン長さを長くした場合には、その分だけ環状側板に接合するピン根元の応力が高くなり、破損に至るケースが有る。つまり、ピン穴応力とピン根元応力のバランスが悪くなる。
本発明は、上記のような点に着目してなされたもので、ピン形保持器の寿命を向上させ強度バランスの良い、ころ軸受を提供することを課題としている。
【0007】
【課題を解決するための手段】
すなわち、本発明は、実際の条件に見合った荷重を算出してピンの応力値を求め、S−N線図の応力値と比較して強度検討を行い、中空ころのピン穴径応力とピン応力のバランスを考慮して設計することで、適切な強度バランスを持ったピン形保持器付きころ軸受を提供せんとするものである。
【0008】
そして、上記課題を解決するために、本発明は、ころに形成されたピン穴をピンが貫通し、そのピンの両端部が、軸受の軸方向で対向する一対の環状側板にそれぞれ固定されて構成されるピン形保持器を備えたころ軸受において、
上記ころの平均外径に対する上記ピン穴の径の比を、0.04以上0.25以下とし、且つ、上記ピン径に対する上記一対の環状側板間の距離の比を5以上10以下とすることを特徴とするものである。
【0009】
本発明によれば、実際の条件に見合った荷重による応力に応じた精度の良いピンの強度評価ができる結果、使用条件に適正に設計されたピン形保持器を組み込んだ、ころ軸受を設計することができる。
そのために、実際の条件に見合ったピンに発生する荷重を算出してピンの応力値を求め、中空ころのピン穴径応力とピン応力のバランスを考慮して、上述のように、ころの平均外径に対する上記ピン穴の径の比、及び、上記ピン径に対する上記一対の環状側板間の距離(一対の環状側板間に位置するピン長さ)の比を特定したものである。
【0010】
そして、後述のように、ころの平均外径に対する上記ピン穴の径の比を、0.04以上0.25以下、好ましくは0.1〜0.2の範囲とすることで、ピン穴応力を許容値以下に出来ることを見出したため、このような範囲に特定している。
さらに、ころの平均外径に対する上記ピン穴の径の比を、0.04以上0.25以下とした場合に、後述するように、上記ピン径に対する上記一対の環状側板間の距離(上記一対の環状側板間に位置するピンの長さ)の比を10以下とすることで、ピン応力を限界応力未満とできることから、当該比を10以下とし、また、当該比が5未満では、ころの姿勢が不安定となり易いことから当該比を5以上とした。
【0011】
【発明の実施の形態】
次に、本発明の実施形態について図を参照しつつ説明する。
図1は、本発明に基づくころ軸受を模式的に記載した図であって、当該図1に示すように、不図示の内外輪の間に複数の中空ころ1が配置され、各中空ころ1に開口したピン穴2をピン3が貫通している。また、軸受軸方向で対向して一対の環状側板4が配置されていて、上記各ピン3の一端部が一方の環状側板4に固定され、また、ピン3の他端部が他方の環状側板4に固定されている。
【0012】
そして、本実施形態では、図2に示すように、上記ころ1の平均外径Daに対する上記ピン穴2の径dpの比(dp/Da)が、0.04〜0.25の範囲、好ましくは0.1〜0.2の範囲となるように設定し、且つ上記ピン径Dpに対する上記一対の環状側板4間の距離Lpの比(Lp/Dp)が5〜10の範囲となるように、軸受の使用条件に応じて、ころ1の平均外径Da及びピン穴径dpを選定すると共に、ピン3の径Dp及び一対の環状側板4間のピン3の長さLpを選定する。
【0013】
ここで、ころ1の平均外径Daとは、ころ1の最大外径と最小外径の算術平均値を言う。
このように設計することで、ピン穴応力σθが許容される応力値以下にできると共に、ピン3に掛かる応力も限界応力未満となって、使用条件に合わせて適正に設計された、ピン形保持器を組み込んだころ軸受を提供することができる。
【0014】
ここで、上記図1では、ころ1が円筒ころとなっているが、円錐ころなど他のころ形状のころ軸受であっても適用可能である。
上記数値限定の理由について、次に説明する。
▲1▼「ころ1の平均外径Daに対する上記ピン穴2の径dpの比(dp/Da)を、0.04以上0.25以下」とする理由:
ころ1の1本に掛かる最大転動体荷重をPLとすると、ピン穴径dpに作用する応力σθは、次の(1)式で表される(図3参照)。
【0015】

Figure 2004286066
ここで、
λ :無次元化された係数
Da:ころ1の平均外径
Lr:ころ1の長さ
である。
そして、上記式に基づき曲がり梁の理論に基づき上記係数λを求めると、次のような(2)式で表される。
【0016】
【数1】
Figure 2004286066
【0017】
さらに、上記(2)式を解いて、a=(dp/Da)と係数λとの相関関係を求めると、図4に示す結果が得られる。
そして、この図4から分かるように、(dp/Da)が0.1で係数λが最小値である8となる。また、係数λを10以下に抑えてピン穴応力σθを低くするには、上記(dp/Da)を0.04〜0.25の範囲とすればよいことが分かる。
【0018】
もっとも、(dp/Da)が0.10未満においては、後述するようにピン応力σpが増大する傾向となるため、好ましくは、(dp/Da)は、0.1〜0.2の範囲が好ましい。好ましい上限値を0.2としたのは、係数λが9となるλ値を選択したものである。
一方、図5に示す試験装置を使用して、ピン穴応力σθの限界応力を求めてみたところ、図6に示す結果を得た。
【0019】
上記図5に示す試験装置について説明すると、内径9.8mm×外径45mm×長さ45mmの中空ころ1を試験体として、下記試験条件にて実施したものである。
すなわち、ころ1の回転数Nを1000rpmに制御し且つ、ころ1に負荷するラジアル荷重Frとして、4〜35ton(40kN〜350kN)(応力σ=20〜100kgf/mm:200〜1000MPa)の範囲の複数の荷重において、ころ1に割れが発生するまでの繰り返し回数を求める。
【0020】
また、図6中、黒い菱形は、割れが発生した場合を示し、白い菱形は、その繰り返し回数で割れが発生しなかったことを示している。
そして、上記図6からピン穴応力σθの許容値が、25〜30kgf/mm(250〜300MPa)となっていることが分かる。
ここで、実験や経験から、(2PL)/(π・Da・Lr)は2以下となるようにして、Da及びLrを求めている。
【0021】
したがって、上述のように係数λを10以下とすれば、上記(1)式から、ピン穴応力σθは20kgf/mm(200MPa)以下となって、上記図6から求めた許容値未満のピン穴応力σθとなることが分かる。つまり、λが10以下となる、(dp/Da)=0.04〜0.25、好ましくは、0.1〜0.2の範囲とすることで、ピン穴2の応力σθを許容値未満とすることができることが分かる。
【0022】
▲2▼「上記ピン径Dpに対する上記一対の環状側板4間の距離Lpの比(Lp/Dp)を5以上10以下とする」理由:
1本のころ1がピン3に荷重FpでA点に衝突した場合(図1参照)、ピン3根元のピン応力σpは、次の(3)式で表される。
σp =(MB)/(ZB) ・・・(3)
ここで
【0023】
【数2】
Figure 2004286066
【0024】
なお、荷重点の位置をa/b=1/7としている。
【0025】
【数3】
Figure 2004286066
【0026】
とすると、次の(4)式となる。
【0027】
【数4】
Figure 2004286066
【0028】
ここで、本願発明では、上述のように(ピン穴径/ころ平均外径)である(dp/Da)を0.04〜0.25の範囲に特定しているので、この(dp/Da)=0.04〜0.25の範囲とすることで、ピン穴応力σθからピン径Dpが選定できる。さらに、実条件に近い保持器のピン3に掛かる力Fpが推定されれば、図7のようなピン応力σpと繰り返し回数との予め求めた相関関係からピン根元での限界応力が判明し、その限界応力未満となるように、ピン3の環状側板間の長さLpを決定できる。この図7については、後述する。
【0029】
例えば、ころ1の平均外径Daが65mmの場合には、(dp/Da)=0.04〜0.25から、ピン穴径dpは2.6〜16.25mmと特定される。望ましくは、(dp/Da)=0.1〜0.2から、ピン穴径dpは6.5〜13mmである。
【0030】
一方、保持器のピン3に掛かる力Fpは、後述する算術式のように、
Fp=Fg+Fα
但し、Fg=Wrd×Gd=Wrd×A×Gh :Gd=A・Gh
Fα=Wrd×α/g×B
で表され、
これに、
Wrd=42
Gh=1.5G
A=4
B=6
α/g=1
を代入すると、Fp=504kgf(≒5000N)となる。
【0031】
したがって、上記(4)式に疲労曲線から得られたσw=20kgf/mm2(200MPa)、dp=13mm、Fp=504kgf(≒5000N)を代入すると、Lp≒90mmとなり、 LPは90mm以下が好ましい。一方、ピン径Dpは、ピン穴径dp(=6.5〜13mm)より小さいのであるから、(Lp/Dp)は(90/13≒)7以下とすればよいことが分かる。
【0032】
そして、同様な計算を、ころ1の平均外径を200mmまで順次変えて行ったところ、図8に示すような結果を得た。
この図8から分かるように、(Lp/Dp)を10以下とすればよいことが分かる。
次に、(Lp/Dp)を5以上とした理由について述べる。
【0033】
(Lp/Dp)を5とした場合、仮にLp=Lr、Dp=dpとおくと(Lr/Da)=1に等しくなるが、(Lr/Da)が1未満の場合には、軸受の負荷容量が低下して、軸受が組み込まれる装置に必要とされる寿命を満足できないケースが生じることと、Lr<Daでは、ころ1のチルトが大きくなり易く、ころ1の姿勢が不安定になる(図9参照)。これに基づき、(Lr/Da)を1以上、つまり(Lp/Dp)を5以上とした。
▲3▼保持器のピン3に掛かる力の推定式
軸受の回転による保持器振動加速度から求められるピン3にかかる力(Fg)は、保持器と非負荷圏のころ1の重量(Wrd)が保持器の振動加速度(Gd)で負荷圏内の1本のピン3に衝突するとして、
Fg=Wrd×Gd=Wrd×A×Gh (Gd=A・Gh)
から求められる。
【0034】
また、保持器回転数が変化したことによる加速度から求められるピン3にかかる力(Fα)は、保持器と非負荷圏のころ1の重量(Wrd)が保持器の回転数変化率(α/g)で負荷圏内の1本のピン3に衝突するとして、
Fα=Wrd×(α/g)×B
から求められる。
【0035】
ここで、Ghは軸箱振動加速度、gは重力加速度、A、Bは補正係数である。
したがって、軸箱振動加速度および保持器の回転数変化率(急加減速率)により保持器のピン3にかかる力Fpは、Fg+Fαとして求めることが可能である。
【0036】
そして、上述の図7は、疲労試験によって求めた、▲1▼ピン3と環状側板4との嵌合部にすきまの出来るタイプのピン形保持器(例えば図10に示すような2段ピン)における環状側板4と溶接した部分のピン強度(ピン根元の強度)、▲2▼ピン3と側板の嵌合部にすきまの出来ないタイプのピン形保持器(例えば図11に示すようなテーパブッシュ10を有するもの)の環状側板4と溶接した部分のピン3の強度、及び▲3▼ピン3と側板の嵌合部にすきまの出来ないタイプの保持器のピン3の胴部(ピン3母材)強度を、それぞれ示したS−N線図である。この図7は、縦軸にピン応力(σp)、横軸に力の作用する繰り返し数(N)として、ピン強度を表している。
このような疲労試験によるS−N線図からピン応力σpの限界応力は求められる。
【0037】
【発明の効果】
以上説明してきたように、本発明を採用することで、使用条件に適正に設計された、ピンが破損しにくいピン形保持器を組み込んだころ軸受を設計できるという効果がある。
【図面の簡単な説明】
【図1】本発明に基づく実施形態に係るころ軸受を示す模式図である。
【図2】本発明に基づく実施形態に係るころを示す軸方向からみた図である。
【図3】本発明に基づく実施形態に係るピン穴応力を示す図である。
【図4】(dp/Da)と係数λとの関係を示す図である。
【図5】試験機の構成を示す模式図である。
【図6】ピン穴応力σθと繰り返し回数との疲労線図を示す図である。
【図7】ピン応力σpと繰り返し回数との疲労線図を示す図である。
【図8】ころ平均外径Daと(Lp/Dp)との関係を示す図である。
【図9】ころとピンとの長さの関係を示す模式図であって、(a)は(Lr/Da)が1未満の場合を、(b)は1以上の場合を図示している。
【図10】2段ピンを示す図である。
【図11】ピンと環状側板との間にすきまの無いタイプの例を示す図である。
【図12】ころに組み込むピン形保持器の選定フローを示す図である。
【符号の説明】
1 ころ
2 ピン穴
3 ピン
4 環状側板
Da ころの平均外径
dp ピン穴径
Dp ピン径
Lp 一対の環状側板間の距離
Lr ころ長さ
σθ ピン穴応力
σp ピン応力(ピン根元での応力)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a roller bearing used in a place where rapid acceleration / deceleration and load fluctuation are repeated, such as a mill speed reducer used in various rolling mills for steelmaking, and a device with large vibration such as a press machine. The present invention relates to a roller bearing to be used, that is, a roller bearing provided with a pin-shaped retainer in which a change in the revolving speed of the roller is repeatedly generated or a vibration in a radial direction of the bearing is repeatedly received.
[0002]
[Prior art]
As a roller bearing provided with a pin type retainer, for example, there is one described in Prior Art Document 1.
That is, a pin hole that penetrates the center axis is formed for each roller that is a rolling element, forming a hollow roller, the roller is held by a pin that penetrates the pin hole, and both ends of each pin are respectively The bearing is fixed to a pair of annular side plates facing each other in the axial direction of the bearing. In addition, as for the joining between the pair of annular side plates and the pins, one is usually joined by screw fastening and the other is joined by welding.
[0003]
Here, the selection of the pin type cage is determined, for example, according to a flow as shown in FIG. That is, the load applied to the pins of the cage is unclear, and the pin hole diameter and the pin diameter are determined according to the purpose with emphasis on the pin hole diameter stress.
Further, in Prior Art Document 2, for a cage that is not pin-shaped, the stress structure of each part is considered from the allowable stress value of the material, and the structure of the cage that is optimal in strength is shown in the range of the second moment of area.
[0004]
[Patent Document 1]
JP-B-53-41642 [Patent Document 2]
Japanese Patent Application No. 2000-579905 [0005]
[Problems to be solved by the invention]
However, the pin type cage does not fall within the range shown in Prior Art Document 2 in terms of manufacturing and strength.
Estimating the speed change of the maximum cage rotation speed from the rotation speed under the operating conditions, calculating a specific parameter from the section coefficient of the pin of the pin type cage, comparing the actual parameter with the actual value in the field, and examining the strength Also, when the vibration conditions are different, a difference occurs in the strength evaluation. The fatigue strength of a pin is expressed by a stress value obtained by a pin fatigue test using a test piece obtained by cutting out one pin and an annular side plate of a pin type cage, and expressed as a stress value and the number of repetitions up to breakage. Although it can be obtained from the −N diagram, there is a problem that the correlation cannot be obtained with the above-mentioned parameters, and the strength cannot be examined depending on the stress value in the conventional method.
[0006]
Further, if the pin hole diameter is reduced, the pin hole diameter stress is reduced, but there is a disadvantage that the pin diameter of the retainer is correspondingly reduced and the pin stress increases. In other words, the cause of cage damage is mainly the lack of strength of the cage, but if stress is placed on the pin hole diameter stress of the hollow rollers, the pin diameter is extremely reduced and the pin length is increased. However, there is a case where the stress at the root of the pin joined to the annular side plate is increased by that much, which may lead to breakage. That is, the balance between the pin hole stress and the pin root stress is deteriorated.
The present invention has been made in view of the above points, and an object of the present invention is to provide a roller bearing in which the life of a pin type cage is improved and the strength is well balanced.
[0007]
[Means for Solving the Problems]
That is, the present invention calculates the load corresponding to the actual condition, obtains the stress value of the pin, compares the stress value of the SN diagram with the stress value, and examines the strength. An object of the present invention is to provide a roller bearing with a pin type cage having an appropriate strength balance by designing in consideration of a balance of stress.
[0008]
In order to solve the above-described problem, the present invention is directed to a case in which a pin penetrates a pin hole formed in a roller, and both end portions of the pin are fixed to a pair of annular side plates facing each other in the axial direction of the bearing. In a roller bearing with a pin-shaped retainer
The ratio of the diameter of the pin hole to the average outer diameter of the rollers is not less than 0.04 and not more than 0.25, and the ratio of the distance between the pair of annular side plates to the diameter of the pin is not less than 5 and not more than 10. It is characterized by the following.
[0009]
According to the present invention, it is possible to accurately evaluate the strength of a pin according to a stress caused by a load corresponding to an actual condition, and as a result, design a roller bearing incorporating a pin-type cage appropriately designed for use conditions. be able to.
For this purpose, the load generated on the pin corresponding to the actual conditions is calculated to determine the stress value of the pin, and taking into account the balance between the pin hole diameter stress of the hollow roller and the pin stress, as described above, It specifies the ratio of the diameter of the pin hole to the outer diameter, and the ratio of the distance between the pair of annular side plates (the length of the pin located between the pair of annular side plates) to the pin diameter.
[0010]
Then, as described later, the ratio of the diameter of the pin hole to the average outer diameter of the roller is set to a range of 0.04 to 0.25, preferably 0.1 to 0.2, so that the pin hole stress is reduced. Has been found to be less than the allowable value, so that it is specified in such a range.
Furthermore, when the ratio of the diameter of the pin hole to the average outer diameter of the rollers is 0.04 or more and 0.25 or less, as described later, the distance between the pair of annular side plates with respect to the pin diameter (the By setting the ratio of the lengths of the pins located between the annular side plates to 10 or less, the pin stress can be made smaller than the limit stress. Therefore, the ratio is set to 10 or less. Since the posture is likely to be unstable, the ratio is set to 5 or more.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically illustrating a roller bearing according to the present invention. As shown in FIG. 1, a plurality of hollow rollers 1 are arranged between inner and outer rings (not shown). The pin 3 penetrates the pin hole 2 opened at the bottom. Further, a pair of annular side plates 4 are arranged facing each other in the bearing axial direction, one end of each of the pins 3 is fixed to one annular side plate 4, and the other end of the pin 3 is connected to the other annular side plate. 4 is fixed.
[0012]
In the present embodiment, as shown in FIG. 2, the ratio (dp / Da) of the diameter dp of the pin hole 2 to the average outer diameter Da of the roller 1 is in a range of 0.04 to 0.25, preferably. Is set so as to be in the range of 0.1 to 0.2, and the ratio (Lp / Dp) of the distance Lp between the pair of annular side plates 4 to the pin diameter Dp is in the range of 5 to 10. In addition to selecting the average outer diameter Da and the pin hole diameter dp of the roller 1 according to the use conditions of the bearing, the diameter Dp of the pin 3 and the length Lp of the pin 3 between the pair of annular side plates 4 are selected.
[0013]
Here, the average outer diameter Da of the roller 1 refers to an arithmetic average value of the maximum outer diameter and the minimum outer diameter of the roller 1.
By designing in this way, the pin hole stress σθ can be reduced to an allowable stress value or less, and the stress applied to the pin 3 becomes less than the limit stress. A roller bearing incorporating a vessel can be provided.
[0014]
Here, in FIG. 1 described above, the roller 1 is a cylindrical roller, but a roller bearing having another roller shape such as a tapered roller is also applicable.
The reason for the numerical limitation is described below.
{Circle around (1)} The reason why the ratio (dp / Da) of the diameter dp of the pin hole 2 to the average outer diameter Da of the roller 1 is 0.04 or more and 0.25 or less:
Assuming that the maximum rolling element load applied to one of the rollers 1 is PL, the stress σθ acting on the pin hole diameter dp is expressed by the following equation (1) (see FIG. 3).
[0015]
Figure 2004286066
here,
λ: dimensionless coefficient Da: average outer diameter Lr of roller 1: length of roller 1.
Then, when the coefficient λ is obtained based on the bending beam theory based on the above equation, it is expressed by the following equation (2).
[0016]
(Equation 1)
Figure 2004286066
[0017]
Furthermore, when the above equation (2) is solved to find the correlation between a = (dp / Da) and the coefficient λ, the result shown in FIG. 4 is obtained.
As can be seen from FIG. 4, (dp / Da) is 0.1 and the coefficient λ is 8, which is the minimum value. Further, it can be seen that the above (dp / Da) may be set in the range of 0.04 to 0.25 in order to reduce the pin hole stress σθ while keeping the coefficient λ to 10 or less.
[0018]
However, when (dp / Da) is less than 0.10, since the pin stress σp tends to increase as described later, (dp / Da) is preferably in the range of 0.1 to 0.2. preferable. The reason why the preferable upper limit value is set to 0.2 is that a λ value at which the coefficient λ is 9 is selected.
On the other hand, when the limit stress of the pin hole stress σθ was obtained by using the test device shown in FIG. 5, the result shown in FIG. 6 was obtained.
[0019]
The test apparatus shown in FIG. 5 will be described. The test was performed under the following test conditions using a hollow roller 1 having an inner diameter of 9.8 mm, an outer diameter of 45 mm, and a length of 45 mm as a test body.
That is, the rotational speed N of the roller 1 is controlled to 1000 rpm, and the radial load Fr applied to the roller 1 is in a range of 4 to 35 ton (40 kN to 350 kN) (stress σ = 20 to 100 kgf / mm 2 : 200 to 1000 MPa). The number of repetitions up to the occurrence of cracks in the roller 1 is determined for a plurality of loads.
[0020]
In FIG. 6, a black diamond indicates that a crack has occurred, and a white diamond indicates that no crack has occurred in the number of repetitions.
It can be seen from FIG. 6 that the allowable value of the pin hole stress σθ is 25 to 30 kgf / mm 2 (250 to 300 MPa).
Here, from experiments and experiences, Da and Lr are determined such that (2PL) / (π · Da · Lr) is 2 or less.
[0021]
Therefore, if the coefficient λ is set to 10 or less as described above, the pin hole stress σθ becomes 20 kgf / mm 2 (200 MPa) or less from the above equation (1), and the pin hole stress σθ is less than the allowable value obtained from FIG. It can be seen that the hole stress becomes σθ. That is, by setting (dp / Da) = 0.04 to 0.25, preferably 0.1 to 0.2, where λ is 10 or less, the stress σθ of the pin hole 2 is less than the allowable value. It can be seen that
[0022]
{Circle over (2)} The ratio of the distance Lp between the pair of annular side plates 4 to the pin diameter Dp (Lp / Dp) is set to 5 or more and 10 or less.
When one roller 1 collides with the pin 3 at the point A with the load Fp (see FIG. 1), the pin stress σp at the root of the pin 3 is expressed by the following equation (3).
σp = (MB) / (ZB) (3)
Here [0023]
(Equation 2)
Figure 2004286066
[0024]
The position of the load point is set to a / b = 1/7.
[0025]
[Equation 3]
Figure 2004286066
[0026]
Then, the following equation (4) is obtained.
[0027]
(Equation 4)
Figure 2004286066
[0028]
Here, in the present invention, since (dp / Da) which is (pin hole diameter / roller average outer diameter) is specified in the range of 0.04 to 0.25 as described above, this (dp / Da) is specified. ) = 0.04 to 0.25, the pin diameter Dp can be selected from the pin hole stress σθ. Further, if the force Fp applied to the pin 3 of the cage close to the actual condition is estimated, the critical stress at the root of the pin is found from the correlation obtained in advance between the pin stress σp and the number of repetitions as shown in FIG. The length Lp between the annular side plates of the pin 3 can be determined so as to be less than the limit stress. FIG. 7 will be described later.
[0029]
For example, when the average outer diameter Da of the roller 1 is 65 mm, the pin hole diameter dp is specified as 2.6 to 16.25 mm from (dp / Da) = 0.04 to 0.25. Desirably, from (dp / Da) = 0.1 to 0.2, the pin hole diameter dp is 6.5 to 13 mm.
[0030]
On the other hand, the force Fp applied to the pin 3 of the retainer is expressed by an arithmetic expression described below.
Fp = Fg + Fα
Here, Fg = Wrd × Gd = Wrd × A × Gh: Gd = A · Gh
Fα = Wrd × α / g × B
Represented by
to this,
Wrd = 42
Gh = 1.5G
A = 4
B = 6
α / g = 1
Is substituted, Fp = 504 kgf (≒ 5000 N).
[0031]
Therefore, when σw = 20 kgf / mm 2 (200 MPa), dp = 13 mm, and Fp = 504 kgf (≒ 5000 N) obtained from the fatigue curve are substituted into the above equation (4), Lp ≒ 90 mm, and LP is preferably 90 mm or less. On the other hand, since the pin diameter Dp is smaller than the pin hole diameter dp (= 6.5 to 13 mm), it can be seen that (Lp / Dp) should be (90/13 °) 7 or less.
[0032]
Then, the same calculation was performed by sequentially changing the average outer diameter of the roller 1 to 200 mm, and the result as shown in FIG. 8 was obtained.
As can be seen from FIG. 8, it is sufficient to set (Lp / Dp) to 10 or less.
Next, the reason why (Lp / Dp) is set to 5 or more will be described.
[0033]
If (Lp / Dp) is 5, if Lp = Lr and Dp = dp, then (Lr / Da) = 1, but if (Lr / Da) is less than 1, the load on the bearing In some cases, the capacity is reduced and the life required for the device in which the bearing is incorporated cannot be satisfied, and when Lr <Da, the tilt of the roller 1 tends to increase, and the attitude of the roller 1 becomes unstable ( (See FIG. 9). Based on this, (Lr / Da) was set to 1 or more, that is, (Lp / Dp) was set to 5 or more.
{Circle around (3)} Formula for estimating the force applied to the pin 3 of the cage The force (Fg) applied to the pin 3 obtained from the vibration acceleration of the cage due to the rotation of the bearing is determined by the weight (Wrd) of the cage and the roller 1 in the non-load zone. Assuming that the vibration acceleration (Gd) of the cage collides with one pin 3 in the load area,
Fg = Wrd × Gd = Wrd × A × Gh (Gd = A · Gh)
Required from.
[0034]
In addition, the force (Fα) applied to the pin 3 obtained from the acceleration due to the change in the rotation speed of the cage is determined by the weight (Wrd) of the cage and the roller 1 in the non-load zone, and the rotation speed change rate (α / g) colliding with one pin 3 in the load area,
Fα = Wrd × (α / g) × B
Required from.
[0035]
Here, Gh is the axle box vibration acceleration, g is the gravitational acceleration, and A and B are the correction coefficients.
Therefore, the force Fp applied to the pin 3 of the cage can be obtained as Fg + Fα from the vibration of the axle box and the rate of change in the rotational speed of the cage (rapid acceleration / deceleration rate).
[0036]
FIG. 7 described above shows a pin-type retainer (for example, a two-stage pin as shown in FIG. 10) of a type which can be cleared at the fitting portion between (1) the pin 3 and the annular side plate 4 obtained by the fatigue test. Pin strength of the portion welded to the annular side plate 4 (strength at the base of the pin), (2) a pin-type retainer of a type in which there is no clearance at the fitting portion between the pin 3 and the side plate (for example, a tapered bush as shown in FIG. 11). 10), the strength of the pin 3 at the portion welded to the annular side plate 4, and (3) the trunk (pin 3 mother) of the pin 3 of the retainer of the type in which there is no clearance in the fitting portion between the pin 3 and the side plate. FIG. 3 is an SN diagram showing the strengths of the respective materials. FIG. 7 shows the pin strength as the pin stress (σp) on the vertical axis and the number of repetitions (N) on which the force acts on the horizontal axis.
The critical stress of the pin stress σp is determined from the SN diagram obtained by such a fatigue test.
[0037]
【The invention's effect】
As described above, by adopting the present invention, there is an effect that it is possible to design a roller bearing incorporating a pin-shaped retainer that is appropriately designed for use conditions and is hard to break a pin.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a roller bearing according to an embodiment according to the present invention.
FIG. 2 is a diagram illustrating a roller according to an embodiment of the present invention, as viewed from an axial direction.
FIG. 3 is a diagram showing a pin hole stress according to an embodiment according to the present invention.
FIG. 4 is a diagram showing a relationship between (dp / Da) and a coefficient λ.
FIG. 5 is a schematic diagram illustrating a configuration of a tester.
FIG. 6 is a diagram showing a fatigue diagram of a pin hole stress σθ and the number of repetitions.
FIG. 7 is a diagram showing a fatigue diagram of the pin stress σp and the number of repetitions.
FIG. 8 is a diagram showing a relationship between a roller average outer diameter Da and (Lp / Dp).
9A and 9B are schematic diagrams illustrating the relationship between the length of a roller and a pin, wherein FIG. 9A illustrates a case where (Lr / Da) is less than 1 and FIG. 9B illustrates a case where (Lr / Da) is 1 or more.
FIG. 10 is a view showing a two-stage pin.
FIG. 11 is a view showing an example of a type having no clearance between a pin and an annular side plate.
FIG. 12 is a diagram showing a flow of selecting a pin-type cage to be incorporated in a roller.
[Explanation of symbols]
1 Roller 2 Pin Hole 3 Pin 4 Annular Side Plate Da Average Outer Diameter of Roller dp Pin Hole Diameter Dp Pin Diameter Lp Distance Lr between a Pair of Annular Side Plates Roller Length σθ Pin Hole Stress σp Pin Stress (Stress at Pin Root)

Claims (1)

ころに形成されたピン穴をピンが貫通し、そのピンの両端部が、軸受の軸方向で対向する一対の環状側板にそれぞれ固定されて構成されるピン形保持器を備えたころ軸受において、
上記ころの平均外径に対する上記ピン穴の径の比を、0.04以上0.25以下とし、且つ、上記ピン径に対する上記一対の環状側板間の距離の比を5以上10以下とすることを特徴とするころ軸受。
A pin bearing penetrates a pin hole formed in the roller, and both ends of the pin are fixed to a pair of annular side plates facing each other in the axial direction of the bearing.
The ratio of the diameter of the pin hole to the average outer diameter of the rollers is not less than 0.04 and not more than 0.25, and the ratio of the distance between the pair of annular side plates to the diameter of the pin is not less than 5 and not more than 10. Featured roller bearing.
JP2003076210A 2003-03-19 2003-03-19 Roller bearing Pending JP2004286066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076210A JP2004286066A (en) 2003-03-19 2003-03-19 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076210A JP2004286066A (en) 2003-03-19 2003-03-19 Roller bearing

Publications (1)

Publication Number Publication Date
JP2004286066A true JP2004286066A (en) 2004-10-14

Family

ID=33291321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076210A Pending JP2004286066A (en) 2003-03-19 2003-03-19 Roller bearing

Country Status (1)

Country Link
JP (1) JP2004286066A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226357A (en) * 2005-02-16 2006-08-31 Ntn Corp Roller bearing
DE102012220262A1 (en) 2012-11-07 2014-05-08 Schaeffler Technologies Gmbh & Co. Kg Retainer for radial rolling bearing, has side rails and pivoted bars for interconnecting side rails, where bars form pocket into which rolling body is to be received, and bars are rotatably mounted on side rings
DE102013218503A1 (en) 2013-09-16 2015-03-19 Schaeffler Technologies AG & Co. KG Cage for a rolling bearing and associated rolling bearing
JPWO2013146362A1 (en) * 2012-03-27 2015-12-10 Thk株式会社 Cylindrical roller, motion guide device including the same, and rotary bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226357A (en) * 2005-02-16 2006-08-31 Ntn Corp Roller bearing
JPWO2013146362A1 (en) * 2012-03-27 2015-12-10 Thk株式会社 Cylindrical roller, motion guide device including the same, and rotary bearing
DE102012220262A1 (en) 2012-11-07 2014-05-08 Schaeffler Technologies Gmbh & Co. Kg Retainer for radial rolling bearing, has side rails and pivoted bars for interconnecting side rails, where bars form pocket into which rolling body is to be received, and bars are rotatably mounted on side rings
DE102013218503A1 (en) 2013-09-16 2015-03-19 Schaeffler Technologies AG & Co. KG Cage for a rolling bearing and associated rolling bearing

Similar Documents

Publication Publication Date Title
JPH10272903A (en) Wheel supporting hub unit
US6851768B2 (en) Structure for standardizing parts of a roller assembly for a construction vehicle
JP2004286066A (en) Roller bearing
US20040108640A1 (en) Elastomeric bearing assembly and associated pin structure
US7891224B2 (en) Multiple piece roll
US6360574B1 (en) Fillet rolling work roller cage
US6443625B1 (en) Roller bearing cage
KR102412348B1 (en) working arm of working machine
JP2006226357A (en) Roller bearing
US20070058894A1 (en) Rolling bearing apparatus
EP1098099B2 (en) Cage for double row roller bearing
CN102227319A (en) Rolling bearing device for wheel
US6474874B1 (en) Cage for double row roller bearing
JP2003090334A (en) Manufacturing method of hub unit for supporting wheel
JPH0720423U (en) Roller bearing
US20150247525A1 (en) Weight optimized crank-shaft
JP3102296B2 (en) Structure of an in-line four-cylinder internal combustion engine
JP3596467B2 (en) Double row roller bearing cage
JP3674746B2 (en) Roll for rolling mill
WO2017089977A1 (en) A forged crankshaft and a process of making it
JP3490409B2 (en) Stud with large diameter head
JP2005054937A (en) Rolling component
JP2004263877A (en) Retainer for roller bearing
JP2001012479A (en) Roller bearing with stud type cage
JPH1182491A (en) Composite roll bearing