JP2006226357A - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP2006226357A
JP2006226357A JP2005039258A JP2005039258A JP2006226357A JP 2006226357 A JP2006226357 A JP 2006226357A JP 2005039258 A JP2005039258 A JP 2005039258A JP 2005039258 A JP2005039258 A JP 2005039258A JP 2006226357 A JP2006226357 A JP 2006226357A
Authority
JP
Japan
Prior art keywords
roller
hollow
life
bearing
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039258A
Other languages
Japanese (ja)
Inventor
Takashi Yagi
隆司 八木
Yukihisa Tsumori
幸久 津森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005039258A priority Critical patent/JP2006226357A/en
Publication of JP2006226357A publication Critical patent/JP2006226357A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/12Rolling apparatus, e.g. rolling stands, rolls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller bearing for a reserve roller of a multistage roller mill and a roller leveler of which the life is defined by a fatigue exfoliation life on a raceway surface and a replacement standard can be easily set while using hollow rollers. <P>SOLUTION: In the roller bearing for the reserve roller of the multistage roller mill or the roller leveler using the hollow rollers 3 as rolling elements, 0.20≤dw/Da≤0.27 is satisfied when an average roller diameter is defined as Da and a roller inner diameter is defined as dw. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、転動体に中空のころを用いた多段圧延機やローラレベラ等の控えロール用ころ軸受に関する。   The present invention relates to a roller bearing for a reserved roll such as a multi-stage rolling mill or a roller leveler using a hollow roller as a rolling element.

従来、例えば製鉄所の圧延機ロールネック用軸受等のように高負荷容量が求められ、保持器が必要な回転速度で運転されることが望まれる軸受では、高負荷容量化のために転動体を中空とし、保持器に設けられたピン状の柱を転動体の中空孔内に通し、転動体を保持する形式のものが用いられる。また、他の各種の目的で中空ころを用いる場合がある。   Conventionally, for bearings where a high load capacity is required, such as a rolling mill roll neck bearing in a steel mill, and the cage is desired to be operated at a necessary rotational speed, a rolling element is used to increase the load capacity. Is used, and a pin-shaped column provided in the cage is passed through the hollow hole of the rolling element to hold the rolling element. In addition, hollow rollers may be used for various other purposes.

中空ころに関する提案は種々なされている。例えば、ころに作用する遠心力や慣性力を低減することができる中空ころ形状の提案(特許文献1)や、形状精度が厳密に均一でなくても円滑に回転し、騒音、振動、摩耗等が少なく、長寿命のころがり軸受の提案(特許文献2)などがある。また、軸受等において、各部の寸法関係を適正化する設計の工夫は種々なされている。
特開2002−250244号公報 特開平5−60141号公報
Various proposals regarding hollow rollers have been made. For example, a hollow roller shape that can reduce centrifugal force and inertial force acting on the roller (Patent Document 1), and even if the shape accuracy is not strictly uniform, it rotates smoothly, noise, vibration, wear, etc. There is a proposal of a long-life rolling bearing (Patent Document 2). Further, various designs have been devised in order to optimize the dimensional relationship between the parts in bearings and the like.
JP 2002-250244 A JP-A-5-60141

しかし、軸受寿命の観点から、中空ころの必要強度が論じられては来なかった。
中空ころに大きな転動体荷重が使用するときに、その必要強度が足りなければ、中空ころは損傷する。損傷が転動面上の疲労剥離であれば、通常の転がり軸受が想定している寿命であるが、中空ころでは、その中空孔の内径が大き過ぎると、転動面上の疲労剥離寿命以前に中空ころ内径面を起点とした割れが生じることがある。
However, the required strength of hollow rollers has not been discussed from the viewpoint of bearing life.
When a large rolling element load is used for the hollow roller, if the required strength is insufficient, the hollow roller is damaged. If the damage is fatigue delamination on the rolling surface, it is the expected life of a normal rolling bearing. However, with hollow rollers, if the inner diameter of the hollow hole is too large, the fatigue delamination life on the rolling surface In some cases, cracks starting from the inner surface of the hollow roller may occur.

軸受は消耗部品であるため、交換の目安が設定し易いことが必要である。よって寿命計算方法が確立されている転動面上の疲労剥離寿命で、その中空ころの寿命に至るものとすることが望ましい。転動面上の疲労剥離寿命による転がり軸受の定格寿命の計算方法は、JIS規格のB1518で規定されている。   Since the bearing is a consumable part, it is necessary to easily set a guide for replacement. Therefore, it is desirable that the fatigue peeling life on the rolling contact surface for which the life calculation method has been established is reached and the life of the hollow roller is reached. The method for calculating the rated life of the rolling bearing by the fatigue peel life on the rolling surface is defined in JIS standard B1518.

この発明の目的は、中空ころを用いながら、軸受の寿命が内径面からの割れ寿命ではなく、転動面上の疲労剥離寿命となり、交換の目安が設定し易いころ軸受を提供することである。   An object of the present invention is to provide a roller bearing in which a hollow roller is used, the life of the bearing is not a crack life from the inner diameter surface, but a fatigue peeling life on the rolling surface, and an easy guideline for replacement is set. .

この発明のころ軸受は、転動体に中空のころを用いた鉄鋼設備控えロール用ころ軸受において、ころ平均径をDa、ころ内径をdwとした場合に、
0.20≦dw/Da≦0.27
であることを特徴とする。
前記鉄鋼設備は、例えば多段圧延機またはローラレベラである。
上式によるころ平均径Daところ内径dwの関係とすると、軸受の寿命が、中空ころの内径面からの割れの寿命ではなく、転動面上の疲労剥離寿命となる。そのため、JIS規格等の規格で確立された寿命計算方法が採用できて、寿命予測がつけ易く、メンテナンスの段取りが容易となる。
また、上式の寸法関係とすると、中空ころの内径dwをできるだけ大きくできる範囲が判明する。そのため、ピンタイプの保持器を用いるものでは、中空ころに挿通させる保持器のピンの強度をできるだけ大きくすることが可能になる。
The roller bearing according to the present invention is a roller bearing for a steel equipment retaining roll using a hollow roller as a rolling element. When the roller average diameter is Da and the roller inner diameter is dw,
0.20 ≦ dw / Da ≦ 0.27
It is characterized by being.
The steel equipment is, for example, a multi-stage rolling mill or a roller leveler.
Assuming the relationship between the roller average diameter Da and the inner diameter dw according to the above formula, the life of the bearing is not the life of cracks from the inner diameter surface of the hollow roller, but the fatigue peeling life on the rolling surface. Therefore, the life calculation method established by standards such as the JIS standard can be adopted, the life can be easily predicted, and the maintenance can be easily set up.
Further, when the dimensional relationship of the above formula is used, a range in which the inner diameter dw of the hollow roller can be made as large as possible is found. Therefore, in the case of using a pin type cage, it is possible to increase the strength of the pin of the cage inserted through the hollow roller as much as possible.

この発明のころ軸受は、転動体に中空のころを用いた多段圧延機控えロール用ころ軸受において、ころ平均径をDa、ころ内径をdwとした場合に、0.20≦dw/Da≦0.27であるため、軸受の寿命が、中空ころの内径面からの割れの寿命ではなく、転動面上の疲労剥離寿命となる。そのため確立された寿命計算方法が採用できて、寿命予測が行い易く、メンテナンスの段取りが容易となる。   The roller bearing according to the present invention is a roller bearing for a multi-stage rolling mill holding roll using a hollow roller as a rolling element. When the average roller diameter is Da and the roller inner diameter is dw, 0.20 ≦ dw / Da ≦ 0. Therefore, the life of the bearing is not the life of cracks from the inner diameter surface of the hollow roller, but the fatigue peeling life on the rolling surface. Therefore, an established life calculation method can be employed, life prediction is easy to perform, and maintenance setup is facilitated.

この発明の第1の実施形態を図1および図2と共に説明する。この実施形態は総ころ形式の円筒ころ軸受に適用した例である。このころ軸受は、多段圧延機控えロール用ころ軸受であって、内輪1と外輪2の軌道面1a,2a間に、転動体となる複数の中空ころ3を介在させてある。中空ころ3は、軸方向に貫通した中空孔4を中心部に有するころである。内輪1は鍔無しであり、外輪2は両側に鍔2bを有するものとされている。中空ころ3の材質は、軸受用焼入れ鋼等の鋼製であり、内外輪1,2も同じく鋼製である。   A first embodiment of the present invention will be described with reference to FIGS. This embodiment is an example applied to a full complement cylindrical roller bearing. This roller bearing is a roller bearing for a multi-stage rolling mill stand roll, and a plurality of hollow rollers 3 serving as rolling elements are interposed between raceway surfaces 1 a and 2 a of an inner ring 1 and an outer ring 2. The hollow roller 3 is a roller having a hollow hole 4 penetrating in the axial direction at the center. The inner ring 1 has no hooks, and the outer ring 2 has hooks 2b on both sides. The material of the hollow roller 3 is made of steel such as hardened steel for bearings, and the inner and outer rings 1 and 2 are also made of steel.

中空ころ3は、図2に示すころ平均径をDa、ころ内径をdwとした場合に、次式(1) を充足する寸法関係に設定してある。
0.20≦dw/Da≦0.27
The hollow roller 3 is set to have a dimensional relationship satisfying the following expression (1) when the average roller diameter shown in FIG. 2 is Da and the roller inner diameter is dw.
0.20 ≦ dw / Da ≦ 0.27

図3は、この発明の他の実施形態を示す。この実施形態は、保持器付きの円筒ころ軸受に適用した例である。この実施形態は、図1,図2に示す第1の実施形態において、中空ころ3を保持する保持器5が設けてある。保持器5は、2個のリング状の保持器分割体5A,5Bからなり、一方の保持器分割体5Aに、隣合う中空ころ3の間に介在する柱部6が設けられている。両保持器分割体5A,5Bは、柱部6を貫通した連結ピン7によって相互に固定されている。その他の構成は図1,図2に示す第1の実施形態と同様である。   FIG. 3 shows another embodiment of the present invention. This embodiment is an example applied to a cylindrical roller bearing with a cage. This embodiment is provided with a cage 5 for holding the hollow rollers 3 in the first embodiment shown in FIGS. The cage 5 is composed of two ring-shaped cage segments 5A and 5B, and one cage segment 5A is provided with a column portion 6 interposed between adjacent hollow rollers 3. Both the cage divided bodies 5 </ b> A and 5 </ b> B are fixed to each other by a connecting pin 7 penetrating the column part 6. Other configurations are the same as those of the first embodiment shown in FIGS.

図4は、この発明のさらに他の実施形態を示す。この実施形態は、ピンタイプの保持器8を有するころ軸受であり、各中空ころ3の中空孔4を貫通するピン9が、保持器8に設けられている。保持器8は、一対のリング部材8a,8aと、このリング部材8a,8a間に固定された周方向複数箇所のピン9とでなる。中空ころ3の寸法関係は、第1の実施形態で述べた「0.20≦dw/Da≦0.27」を充足する関係とされる。この実施形態は、独立した軌道輪となる内輪および外輪を有しないものであり、この軸受を設置する機器の軸またはハウジング等に直接に中空ころ3の軌道面が形成される。なお、第1の実施形態において、図4に示すピンタイプの保持器8を用いても良い。   FIG. 4 shows still another embodiment of the present invention. This embodiment is a roller bearing having a pin type cage 8, and a pin 9 penetrating the hollow hole 4 of each hollow roller 3 is provided in the cage 8. The cage 8 includes a pair of ring members 8a and 8a and a plurality of pins 9 in the circumferential direction fixed between the ring members 8a and 8a. The dimensional relationship of the hollow rollers 3 is a relationship satisfying “0.20 ≦ dw / Da ≦ 0.27” described in the first embodiment. This embodiment does not have an inner ring and an outer ring that are independent race rings, and the raceway surface of the hollow roller 3 is formed directly on the shaft or housing of the device on which this bearing is installed. In the first embodiment, a pin type cage 8 shown in FIG. 4 may be used.

つぎに、これらの各実施形態において、ころ平均径Da(図2)ところ内径dwの関係を上記のように規定した理由を説明する。
中空ころ3の内径面に発生する応力は、式(1) で定まる。
σ=P/A×(1−2e/dw/K)/〔π(1+K)〕 …(1)
A=L×h
K=1+r/h×log e((r+h)/(r−h))
e=h/2
g=(Da−dw)/2
r=(Da+dw)/2
よって、σ=P/L×f(Da,dw) …(2)
Next, in each of these embodiments, the reason why the relationship between the roller average diameter Da (FIG. 2) and the inner diameter dw is defined as described above will be described.
The stress generated on the inner diameter surface of the hollow roller 3 is determined by equation (1).
σ = P / A × (1-2e / dw / K) / [π (1 + K)] (1)
A = L × h
K = 1 + r / h × log e ((r + h) / (r−h))
e = h / 2
g = (Da-dw) / 2
r = (Da + dw) / 2
Therefore, σ = P / L × f (Da, dw) (2)

ただし、
σ:内径面の最大引張り応力(kgf/mm2
P:負荷荷重(kgf)
A:断面積(mm2
K:断面係数(mm4
dw:ころ内径(mm)
Da:ころ外径(mm)
L:ころ長さ(mm)
R:内輪軌道半径(mm)
However,
σ: Maximum tensile stress on the inner surface (kgf / mm 2 )
P: Load load (kgf)
A: Cross-sectional area (mm 2 )
K: Section modulus (mm 4 )
dw: Roller inner diameter (mm)
Da: Roller outer diameter (mm)
L: Roller length (mm)
R: Inner ring raceway radius (mm)

また、ころ転動面上の軌道輪との接触面圧は式(3) で求まる。
Pmax =62.4×(P×Σρ/L)1/2 …(3)
P=(Pmax /62.4)2 ×L/Σρ
よって、式(2) は、式(4) で表すことができる。
ρ=P/L×f(Da,dw)=(Pmax /62.4)2 /Σρ×f(Da,dw) …(4)
Also, the contact surface pressure with the raceway on the roller rolling surface can be obtained by equation (3).
Pmax = 62.4 × (P × Σρ / L) 1/2 (3)
P = (Pmax / 62.4) 2 × L / Σρ
Therefore, equation (2) can be expressed by equation (4).
ρ = P / L × f (Da, dw) = (Pmax / 62.4) 2 / Σρ × f (Da, dw) (4)

ここで、内輪ところ間側のPmax の方が、外輪ところ間側よりも大きくなるので、
Σρ=1/R+2/Da …(5)
Here, Pmax on the side between the inner rings is larger than that on the side between the outer rings.
Σρ = 1 / R + 2 / Da (5)

また多段圧延機において、中空ころを用いる軸受は、一般的に次のものとなっている。 ころ径Daは、φ30〜φ60程度であり、ころPCD(ピッチ円直径)の1/10以上で1/4以下が通常であり、ころPCDはφ300〜φ500が通常である(単位はいずれもmm)。
ころ径がφ30では、PCDをφ300〜φ500と考えると、その面圧のバラツキは5%程度、ころ径φ60ではPCDをφ300〜φ500と考えると、その面圧のバラツキは10%程度となる。
よって、式(5) をΣρ=2/Daとし、安全率で10%を考慮すれば良いこととなる。
In multi-stage rolling mills, bearings using hollow rollers are generally as follows. The roller diameter Da is about φ30 to φ60, usually 1/10 or more and 1/4 or less of the roller PCD (pitch circle diameter), and the roller PCD is usually φ300 to φ500 (the unit is mm). ).
When the roller diameter is φ30, assuming that the PCD is φ300 to φ500, the surface pressure variation is about 5%. When the roller diameter φ60 is PCD being φ300 to φ500, the surface pressure variation is about 10%.
Therefore, Equation (5) should be set to Σρ = 2 / Da, and 10% should be considered as a safety factor.

すると、(4) 式は、
ρ=Pmax ×g(Da,dw)となり、Pmax ,およびρの基準値が決まれば、Daとdwの関係式が求まることがわかる。
つまり、Pmax がJIS規格の計算寿命式を用いることができる範囲で、ρが中空ころの疲労限以下となるDaとdwの関係式の範囲が最適であると考えられる。
Then, equation (4) becomes
ρ = Pmax × g (Da, dw), and it can be seen that if the reference values of Pmax and ρ are determined, a relational expression between Da and dw can be obtained.
In other words, it is considered that the range of the relational expression of Da and dw in which ρ is equal to or less than the fatigue limit of the hollow roller is optimum in the range where Pmax can use the JIS standard calculation life formula.

荷重係数および安全係数について一般的に採用される値を、表1,表2に示す。   Tables 1 and 2 show values generally adopted for the load factor and the safety factor.

一般的に汎用箇所では、荷重係数を1.2〜1.5加味したPo(静等価荷重(N(kgf))に対して、安全係数Soは、So≧1.5(Pmax =3270MPa)が基準とされている。
よって、荷重係数を考慮しない条件では、So≧1.8(=1.2×1.5)〜2.25(=1.5×1.5)となり、下限値So≒1.8のときのPmax =3000MPaを基準とすれば良い(So=1のとき、Pmax =4000MPa、So=1.8ではPmax =3000MPa)。
複雑な計算となるため、dw/Daを横軸に、Pmax =3000MPaのときの発生応力を縦軸に、何点か計算してプロットする(図5)。
Generally, in a general-purpose location, a safety factor So is So ≧ 1.5 (Pmax = 3270 MPa) with respect to Po (static equivalent load (N (kgf))) with a load factor of 1.2 to 1.5. It is a standard.
Therefore, under the condition that does not consider the load coefficient, So ≧ 1.8 (= 1.2 × 1.5) to 2.25 (= 1.5 × 1.5), and when the lower limit value So≈1.8 Pmax = 3000 MPa as a reference (when So = 1, Pmax = 4000 MPa, and So = 1.8, Pmax = 3000 MPa).
Since this is a complicated calculation, several points are calculated and plotted with dw / Da on the horizontal axis and the generated stress when Pmax = 3000 MPa on the vertical axis (FIG. 5).

回転曲げ試験結果では、
ρ=633MPaで、2.5×108 回で、供試体全個数(個数n=4)割れ無し、
ρ=759MPaで、L10(寿命)=107 回、
であった。
In the rotating bending test result,
ρ = 633 MPa, 2.5 × 10 8 times, the total number of specimens (number n = 4), no cracking,
ρ = 759 MPa, L 10 (lifetime) = 10 7 times,
Met.

これより、疲労限はρ=750MPa程度と考えられるが、一般的な基準を考えるために、先の10%程度の安全率を考慮し、ρ=680MPaと考えるのが妥当である。
図5上で、ρ≦680MPaとすると、dw/Da≦0.27が得られる。
From this, the fatigue limit is considered to be about ρ = 750 MPa, but in order to consider a general standard, it is appropriate to consider ρ = 680 MPa considering the safety factor of about 10%.
In FIG. 5, when ρ ≦ 680 MPa, dw / Da ≦ 0.27 is obtained.

また、多段圧延機控えロール用ころ軸受に用いられる中空ころのころ径(外径)Dwところ長さLの比は、一般的に、1.1≦L/Dw≦2.5であり、この中空ころの保持に用いられるピンには曲げ疲労強度が120MPa程度のものが用いられることが多い。
ピンに発生する曲げ応力は、その長さと径に影響を受け、それらは、中空ころの内径dwと長さLにより決まる。しかしながら、ピンに作用する力Fは、その軸受の急加減速などの運転条件により決まる。
多段圧延機控えロール用ころ軸受においては、経験的に0.20≦dw/Dwとしている。
In addition, the ratio of the roller diameter (outer diameter) Dw of the hollow roller used for the multi-stage rolling mill stand roll roller bearing is generally 1.1 ≦ L / Dw ≦ 2.5. A pin having a bending fatigue strength of about 120 MPa is often used for a pin used for holding the hollow roller.
The bending stress generated in the pin is affected by its length and diameter, which are determined by the inner diameter dw and the length L of the hollow roller. However, the force F acting on the pin is determined by operating conditions such as rapid acceleration / deceleration of the bearing.
In the roller bearing for a multi-stage rolling mill stand roll, it is empirically set to 0.20 ≦ dw / Dw.

よって、0.20≦dw/Da≦0.27の関係とすることにより、軸受の寿命が、中空ころの内径面からの割れの寿命ではなく、転動面上の疲労剥離寿命となる。そのため確率された寿命計算方法が採用できて、寿命予測がつけ易く、メンテナンスの段取りが容易となる。
また、0.20≦dw/Da≦0.27の関係とすることにより、中空ころ3の内径dwをできるだけ大きくできる範囲が判明する。そのため、例えば図4に示す実施形態等のようなピンタイプの保持器8を用いるものでは、保持器8の中空ころ3に挿通させるピン9の強度をできるだけ大きくすることが可能になる。
Therefore, by setting the relationship of 0.20 ≦ dw / Da ≦ 0.27, the life of the bearing is not the life of cracks from the inner diameter surface of the hollow roller but the fatigue peeling life on the rolling surface. Therefore, a probable life calculation method can be adopted, life prediction can be easily performed, and maintenance setup is facilitated.
Moreover, the range in which the inner diameter dw of the hollow roller 3 can be made as large as possible is found by setting the relationship of 0.20 ≦ dw / Da ≦ 0.27. Therefore, for example, in the case of using the pin type cage 8 as in the embodiment shown in FIG. 4, it is possible to increase the strength of the pin 9 inserted through the hollow roller 3 of the cage 8 as much as possible.

なお、JISのB1518では、ラジアルころ軸受の基本定格寿命(L10)は、次の式から求めるものとされており、寿命計算式として、この式を用いることができる。 In JIS B1518, the basic rated life (L 10 ) of a radial roller bearing is obtained from the following formula, and this formula can be used as a formula for calculating the life.

ここで、Cr は基本動ラジアル定格荷重、Pr は動等価ラジアル荷重である。これらのCr ,Pr を求める計算式は、同じくJISのB1518で定められており、同規定中の式を用いることができるが、ここでは、Cr ,Pr を求める式の説明は省略する。 Here, Cr is a basic dynamic radial load rating, and Pr is a dynamic equivalent radial load. These C r, the calculation formula for obtaining the P r, also have stipulated in B1518 of JIS, it is possible to use the expression in the specified, where, C r, omitted expression description of obtaining the P r To do.

図6は、このころ軸受を用いる鉄鋼設備の一例を示す。この鉄鋼設備はクラスタミルまたはゼンジミアミルと呼ばれる多段圧延機であり、板材Wを圧延する上下の加圧用のワークロール11の背後に複数の中間ロール12を配置し、これら中間ロール12を介して、軸方向に分割した複数の控えロール131 ,132 によりワークロール11を支持する構造とされている。なお、クラスタミルには4段以上、例えば20段式のものもあるが、その場合も最外部に控えロールが配される。これら控えロールは、バックアップロールと呼ばれるものである。
図6に示す控えロール131 ,132 等の多段圧延機の最外部等の控えロールに、図1ないし図4の各図の実施形態のころ軸受が用いられる。
FIG. 6 shows an example of a steel facility using this roller bearing. This steel equipment is a multi-stage rolling mill called a cluster mill or a Sendzimir mill. A plurality of intermediate rolls 12 are arranged behind the upper and lower pressurizing work rolls 11 for rolling the plate material W, and the shafts are arranged via the intermediate rolls 12. The work roll 11 is supported by a plurality of backup rolls 13 1 and 13 2 divided in the direction. Some cluster mills have four or more stages, for example, a 20-stage type. These backup rolls are called backup rolls.
The roller bearings according to the embodiments shown in FIGS. 1 to 4 are used for the outermost rolls of the multi-high rolling mill such as the lower rolls 13 1 and 13 2 shown in FIG.

図6は、このころ軸受を用いる鉄鋼設備の他の例を示す。この鉄鋼設備は、ローラレベラーであり、板材Wを、上下2列に配した多数のレベリングロール15の間に通して繰り返し曲げることにより、板材Wの前工程までの加工で残ったひずみを除去するものである。各レベリングロール15は、軸方向に分割した複数(例えば4個)の控えロール16、つまりバックアップロールで支持されて、板材Wの通過中の撓みを抑えられている。上記控えロール16に、図1ないし図4の各実施形態のころ軸受が用いられる。   FIG. 6 shows another example of steel equipment using this roller bearing. This steel facility is a roller leveler, and the plate material W is repeatedly passed through a number of leveling rolls 15 arranged in two upper and lower rows, thereby repeatedly bending the plate material W in the previous process. Is. Each leveling roll 15 is supported by a plurality of (for example, four) backup rolls 16 that are divided in the axial direction, that is, a backup roll, so that bending during the passage of the plate material W is suppressed. The roller rolls of the embodiments shown in FIGS. 1 to 4 are used for the holding roll 16.

なお、前記各実施形態は、円筒ころ軸受に適用した場合につき説明したが、この発明は転動体が中空ころであれば良く、円すいころであっても、また球面ころであっても適用することができる。   In addition, although each said embodiment demonstrated as the case where it applied to a cylindrical roller bearing, this invention should just be a hollow roller as a rolling element, and it is applicable even if it is a tapered roller or a spherical roller. Can do.

この発明の第1の実施形態にかかるころ軸受の断面図である。It is sectional drawing of the roller bearing concerning 1st Embodiment of this invention. その中空ころの側面図および正面図である。It is the side view and front view of the hollow roller. この発明の他の実施形態にかかるころ軸受の断面図である。It is sectional drawing of the roller bearing concerning other embodiment of this invention. この発明のさらに他の実施形態にかかるころ軸受の部分断面図である。It is a fragmentary sectional view of the roller bearing concerning other embodiment of this invention. 中空ころの内外径の割合と発生応力の関係を示すグラフである。It is a graph which shows the relationship between the ratio of the inner and outer diameter of a hollow roller, and generated stress. この発明のころ軸受を適用する多段圧延機の側面図である。It is a side view of the multi-high rolling mill to which the roller bearing of this invention is applied. この発明のころ軸受を適用するローラレベラの側面図である。It is a side view of the roller leveler which applies the roller bearing of this invention.

符号の説明Explanation of symbols

1…内輪
2…外輪
3…中空ころ
4…中空孔
5,8…保持器
9…ピン
11…ワークロール
131 ,132 …控えロール
15…レベリングロール
16…控えロール
Da…ころ平均径
dw…ころ内径
1 ... inner ring 2 ... outer ring 3 ... hollow rollers 4 ... hollow hole 5,8 ... retainer 9 ... pin 11 ... work roll 13 1, 13 2 ... Average refrain rolls 15 ... leveling rolls 16 ... refrain roll Da ... roller diameter dw ... Roller inner diameter

Claims (3)

転動体に中空のころを用いた鉄鋼設備控えロール用ころ軸受において、ころ平均径をDa、ころ内径をdwとした場合に、0.20≦dw/Da≦0.27、であることを特徴とするころ軸受。   In a roller bearing for a steel equipment holding roll using a hollow roller as a rolling element, when the roller average diameter is Da and the roller inner diameter is dw, 0.20 ≦ dw / Da ≦ 0.27. Roller bearing. 請求項1において、前記鉄鋼設備が多段圧延機であるころ軸受。   The roller bearing according to claim 1, wherein the steel facility is a multi-stage rolling mill. 請求項1において、前記鉄鋼設備がローラレベラであるころ軸受。
The roller bearing according to claim 1, wherein the steel facility is a roller leveler.
JP2005039258A 2005-02-16 2005-02-16 Roller bearing Pending JP2006226357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039258A JP2006226357A (en) 2005-02-16 2005-02-16 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039258A JP2006226357A (en) 2005-02-16 2005-02-16 Roller bearing

Publications (1)

Publication Number Publication Date
JP2006226357A true JP2006226357A (en) 2006-08-31

Family

ID=36987905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039258A Pending JP2006226357A (en) 2005-02-16 2005-02-16 Roller bearing

Country Status (1)

Country Link
JP (1) JP2006226357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157452B2 (en) * 2006-11-22 2012-04-17 Schaeffler Kg Radial roller bearing for storing shafts in wind turbine transmissions
JP2014052069A (en) * 2012-08-06 2014-03-20 Nsk Ltd Cylindrical roller bearing
JP2014231902A (en) * 2013-01-31 2014-12-11 日本精工株式会社 Cylindrical roller bearing
KR20190006559A (en) 2016-07-30 2019-01-18 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator and wave gear device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547539U (en) * 1991-11-29 1993-06-25 エヌティエヌ株式会社 Roller bearing
JP2002106555A (en) * 2000-09-29 2002-04-10 Ntn Corp Bearing for backup
JP2004028217A (en) * 2002-06-26 2004-01-29 Ntn Corp Back-up bearing for cluster mill
JP2004286066A (en) * 2003-03-19 2004-10-14 Nsk Ltd Roller bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547539U (en) * 1991-11-29 1993-06-25 エヌティエヌ株式会社 Roller bearing
JP2002106555A (en) * 2000-09-29 2002-04-10 Ntn Corp Bearing for backup
JP2004028217A (en) * 2002-06-26 2004-01-29 Ntn Corp Back-up bearing for cluster mill
JP2004286066A (en) * 2003-03-19 2004-10-14 Nsk Ltd Roller bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157452B2 (en) * 2006-11-22 2012-04-17 Schaeffler Kg Radial roller bearing for storing shafts in wind turbine transmissions
JP2014052069A (en) * 2012-08-06 2014-03-20 Nsk Ltd Cylindrical roller bearing
JP2014231902A (en) * 2013-01-31 2014-12-11 日本精工株式会社 Cylindrical roller bearing
JP2018021678A (en) * 2013-01-31 2018-02-08 日本精工株式会社 Cylinder roller bearing
KR20190006559A (en) 2016-07-30 2019-01-18 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator and wave gear device
US11035452B2 (en) 2016-07-30 2021-06-15 Harmonic Drive Systems Inc. Wave generator and strain wave gearing

Similar Documents

Publication Publication Date Title
US10619668B2 (en) Tapered roller bearing
JP5202978B2 (en) Thrust roller bearing
US7963702B2 (en) Roller bearing
EP3020987B1 (en) Angular contact self-aligning toroidal rolling element bearing
JP2018021678A (en) Cylinder roller bearing
JP2006226357A (en) Roller bearing
JP4810866B2 (en) Mold for heat treatment of bearing race and method of manufacturing bearing race
US11319994B2 (en) Thrust roller bearing
JPH0650344A (en) Rolling bearing
JP2006328464A (en) Rolling bearing, and method for producing rolling component thereof
JP6472671B2 (en) Tapered roller bearing
JP2006214456A (en) Roller bearing
JP2006214456A5 (en)
JP2007155021A (en) Roller bearing
JPH09329139A (en) Automatically aligning rolling bearing
JP2012045577A (en) Method for manufacturing outer ring of conical roller bearing
WO2019203265A1 (en) Double-row self-aligning roller bearing
WO2019103039A1 (en) Rolling part, bearing, and production method therefor
EP3434920B1 (en) Rolling bearing, and abrasion resistance treatment method for bearing raceway surface
JP2006200724A (en) Thrust bearing for automatic transmission
JP2019190658A (en) Double-row self-aligning roller bearing
EP3851688B1 (en) Spindle device
JP4271963B2 (en) Method of manufacturing cage for conical roller bearing
US12110926B2 (en) Method for increasing the load-bearing capacity, and rolling device for hard rolling a surface-hardened rolling-bearing raceway
WO2015045798A1 (en) Tapered roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608