JP2004286001A - Water storage type power generation equipment by waterwheel output using low water head - Google Patents
Water storage type power generation equipment by waterwheel output using low water head Download PDFInfo
- Publication number
- JP2004286001A JP2004286001A JP2003117608A JP2003117608A JP2004286001A JP 2004286001 A JP2004286001 A JP 2004286001A JP 2003117608 A JP2003117608 A JP 2003117608A JP 2003117608 A JP2003117608 A JP 2003117608A JP 2004286001 A JP2004286001 A JP 2004286001A
- Authority
- JP
- Japan
- Prior art keywords
- water
- turbine
- rack
- water storage
- gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は潮流又は河川の低水頭のエネルギーを利用し水車を回転し、伝達機構を介してポンプを作動し逆止弁を介して連結する揚水管により貯水タンクへ貯水し、水力発電用として利用し得る外、製塩、消防、養魚場、灌漑、消雪、遊園池、プール等の利用に供されるものであります。
【0002】
【従来の技術】
【0003】
潮位差発電は外国ではフランスで潮の干満を利用し満潮時に貯水し水門を閉じ、干潮時に貯水面と海水面との落差を利用する水力発電は存在しますが、本発明による間断無く発生する潮流、河川の低水頭(凡そ10m未満)を利用し水車を回転しポンプにより高所へ貯水する方式とは全く異り,揚水装置を用いず干満潮の1〜2サイクルの水頭の利用に止まるため干満潮の潮位差の少ない日本では使用されていないのが現状であります。
【0004】
現在の大容量揚水装置の汎用品としては、電動式揚水ポンプを用いて高所へ貯水する方式であり、貯水により位置水頭を利用し発電する場合、揚水ポンプの消費電力が貯水による発生電力を超えるため、実質的にはマイナス電力を発生する方式であります。
【0005】
本発明の図1に対し従耒の技術で水車を利用する発電装置に対して低水頭を利用し水車を回転する方式では有りますが、水車軸に発電機を直結する発電方法であり、揚水、貯水機能を持たない発電方式であります。従って構造上水車回転数が低いため低電圧小容量の装置での利用に止まり、高圧又は特別高圧大電力発電用としては利用されていないのが現状であります(特許文献1参照)
【0006】
【特許文献1】
公開特許公報(A)昭59−41678号(1頁及び4頁)
【0007】
【発明が解決しようとする課題】
【0008】
本発明による潮流、河川等の大量の未利用低水頭を利用し水車を回転し、伝達機構を介してシリンダと一対とするピストンを用いたポンプにより、逆止弁を介してシリンダと同一断面積で連結する揚水管を通じて高所へ大量の貯水を可能とする貯水装置は、他に見聞しておりません。
【0009】
従来技術の文献では低水頭を利用し直接水車を回転する発電装置は、高所揚水機能を持たない方式のため高圧又は特別高圧発電に適さないため、利用されていないのが現状であります。
【0010】
【発明が解決するための手段】
【0011】
潮流、河川の未利用低水頭を利用して、本発明の内容を用いた貯水発電装置を利用されれば、高所への貯水を可能となし得る事で高落差を利用する高速回転の水車発電が可能となり、以て特別高圧発電が可能となり且未利用水頭の豊富に存在する箇所においては大量貯水を行い得る条件を総合すれば特別高圧大電力発電を可能となし得るもので有ります。文献によれば日本近海の黒潮の流れは最大2〜2.5ms−1にも達すると言われております。
【数1】
直径100mを超える流水の速度V:2ms−1,直径d:50m(断面積S:1963m2),長さL:150m,の流水のエネルギーは次公式によります。
流水のエネルギーW=gQρHで表され、H=v2(2g)−1に変換できます。
流水のエネルギー(W)=[g{S(m2)L(m)ρ(103Kgm−3)s−1}(Vms−1)2(2g)−1]
W=[9.8ms−2{(1963m2×150m)103kgm−3s−1}(2ms−1)2(2×9.8ms−2)−1]
∴流水のエネルギー=588,900kW
但し、流速の断面積S=πd24−1,S=π(50m)24−1 ∴S=1963m2, 但し、g;重力加速度9.8ms−2,V:流水の速度2ms−1,S:流水の断面積m2,L:流水の長さm,ρ:水の密度103 Kgm−3
この流水のエネルギーを水車に利用し本発明の原理を利用すれば水のエネルギーに対し概算値50%の貯水量が得られるものと考えられます。
【0012】
既設水力発電所下流において低圧力水頭の堰堤を築き、汎用水車及び本発明の原理を利用すれば、従来の汎用電動式ポンプによるマイナス発電方式によらない、水車出力をポンプにより既設の貯水槽へ貯水し得る事で、既設発電機容量に余裕があれば純粋なプラス発電出力の増加が可能となります。
【0013】
【発明の実施の形態】
図1〜図4を用いて本発明の実施の形態を説明致します。
註「別に設置する」とは図1〜図4に記載された以外の汎用品を表し、機器類の操作は遠隔自動制御をなし得るものとして本明細書に記載しております。
【0014】用語の説明
揚 水:揚水管内満水以下の水位の状態
貯 水:揚水管内満水を超え貯水タンク内の水位の状態
貯水タンク水位検出器:貯水タンク内の水位を計測し必要水位を検出する装置
上 限 水 位:予め設定する貯水タンク内の満水未満の高水位
下 限 水 位:予め設定する貯水タンク内の低水位
水 位 調 整 器:貯水タンク内の水位を標準値(下限以上上限以下の水位)に保つ構成とし且揚水管、水圧管内を断水し得る構成
スリップリング :分電盤制御装置より回転盤に設置する送受信装置との送受信々号及び電源供給するための回転摺動接触する数対の導電体による回線接続装置
回 転 盤:第1水車、伝達装置、ポンプ、送受信装置、方向舵作動装置、方向舵等を設置し左右回転自在とする円形盤
方 向 舵:制御装置を用いて回転盤の方向を変化し第1水車に対して流速を変化し速度制御をなし得るため揚水・貯水量の増減及びポンプの運転、停止をなし得る装置
スクリュー連結開放装置:第1軸第1ギヤと第2軸第2ギヤとを連結又は開放しポンプを運転又は停止し得る装置
第3ギヤ回転数検出器:第3ギヤの回転数を計測し上下限回転数、上限未満回転数、を検出する装置
上 限 回 転 数:過速によりラックが落下し得ない第3ギヤの最低回転数
上限未満 回転数:ラックがスムーズに昇降し得る第3ギヤの最高回転数
定 格 回 転 数 :貯水タンクの上限水位以下、下限水位以上における第1水車の回転数(概ね1/2第1水車無負荷回転数)
下 限 回 転 数:ラックがスムーズに昇降し得る第3ギヤの最低回転数
第1水車回転数検出器:第1水車の回転数を計測し上限下限回転数を検出しポンプの起動、停止の際利用されます
制 御 装 置:第1水車制御用電源供給、第1水車制御用信号送信及び監視用信号受信の機能を有する構成
送 受 信 装 置:方向舵制御用電源受電、方向舵制御用信号受信及び監視用信号送信の機能を有する構成
【0015】
図1の据付台(18)は水平に設置し裏面は必要数の脚(21)脚固定支柱(43)支柱固定材(44)で構成し脚の下端は基礎(48)に固定します。据付台上には揚水管(8)水圧管(7)発電室(17)を設置し発電室内には第2水車(12)発電機(13)分電盤(15)及び別に設置する制御装置、グリスポンプ等をセットします。
【0016】
回転盤(41)上の上流側へ設置する第1水車(35)の第1軸(34)には、上流側よりスクリュー及び第1ギヤ(33)を取付け軸は第1水車軸受(36)へ固定します。第1ギヤと噛み合う第2軸(31)へ取付ける上流側の第2ギヤ(32)は変速用又は単に伝達用に介在し、下流側の第3ギヤ(30)(ピニオン)と共に軸受により第1軸延長線の下流側へ直線的に固定し、各軸受にはグリスポンプにより給油をし得る構成とします。第2軸(31)下流側の回転盤裏面に方向舵(39)を設置します。別に設置するスクリュー連結開放装置の構成は第1軸下流端直近下流側へ水平形動力式ジャッキを支柱へ固定し上流側へ動力により押圧する時ギヤの噛み合わせが外れポンプは停止し、下流側へ引けば第1水車へ加わる水圧により自然にギヤは噛み合いポンプは始動し得る構成とします。第1軸には別に設置する回転計により第1水車の回転数を計測し制御装置へ送信し得る構成とします。
【0017】
第3ギヤ(30)の周囲は有歯帯と無歯帯とで形成し、第1水車(35)作動時有歯帯とラック(26)が対向し噛み合う時ラックは上昇し、無歯帯とラックが対向する時ラックはスムーズに落下し得る構成とし、上限回転数以上となる時ラックは上昇限で下降し得ずし第3ギヤはラック下端でスムーズに空転し得る構成とします。この時上限回転数を検出し自動制御により方向舵の角度を変化し第1水車を減速する事により上限未満回転数となりラックは自然落下し更に減速し下限回転数を検出し再び自動制御により方向舵の角度を変え第1水車の回転を加速し上限未満回転数となり繰り返しながら揚水管を満水とする構成とします。第3ギヤと対向するラックはラックケースで包囲し、ラックケースの上面は開口し、下面のラックケース据付板は回転盤上へ固定し、ラックケース据付板上には緩衝材を介在するラック受板を固定します。ラック上端の中心へ取付けた連結環と連結するピストンロッドは上方に位置する逆止弁付ピストン(24)へ連結し、下端が水面下へ開口するシリンダ(25)内へ下方よりピストンを装填し左右回転及び昇降自在に摺動する構成とします。シリンダ内ピストン作動時最上限の直上で且外部水面下へ位置し逆流防止の逆止弁を設置します。
【0018】
シリンダ(25)と同軸に据付台(18)上へ垂直に設置する水圧管底面にはフランジと同一断面積の密閉する揚水管据付板(19)を介在しフランジで固定します。水圧管(7)の上端は貯水タンク(5)底面中心へ開口し固定されます。シリンダの上端フランジは揚水管据付板(19)裏面中心に密着し、シリンダの下端はラック作動時の最上限においてラックと接触しない直上に位置し下方に向け開口し、シリンダ(25)の外周下方はシリンダ固定材(40)を以て据付台(18)裏面へ固定します。揚水管下端フランジは水圧管内底面中心の揚水管据付板(19)上にパッキンを介在し下方の同一断面積とするシリンダのフランジと共にボルトで固定し中心はシリンダー内と同一断面積で開口します。揚水管の上方は揚水管固定材(9)で水圧管(7)へ固定し上方端は貯水タンク底面へ水圧管と同軸に貫通開口され相互間に循環水が流通可能とし且貯水タンク底面は揚水管(8)と水圧管(7)との間隙は密閉されます。貯水タンク内には別に設置する水位検出器により常時水位を計測し上下限水位を検出し得る構成といたします。
【0019】
貯水タンク(5)底面より上方へ突出する揚水管(8)上端付近へ上方に設置する緩衝用カバー(3)を支柱で固定し、貯水タンクの頂上中心に吸気口(2)を穿ち防塵ネット(1)で塞ぎ固定します。水圧管(7)外周下方にはフランジ付取水管を結合し管内へ開口し、他端は発電室(17)内の第2水車(12)ケーシング内へ水車入口弁(10)を介して開口し、取水管中間下方には弁付取水排水管(11)のフランジで結合開口し他端は下方水中へ開口されます。第2水車ケーシング出口は水車吐出管(16)と結合開口し他端は下方水中へ開口されます。
【0020】
発電室(17)内の分電盤(15)には別に設置する制御装置の入力側は遠隔操作室及び分電盤の電源へ接続され出力側はシリンダ(25)の上方水面上に位置するスリップリング収容凾(23)内のシリンダ外周は電気的に絶縁し、この外周へ必要数のスリップリング(22)を夫々隔離し固定する入力端子へ接続し、各スリップリング表面を摺動するカーボンブラシは負荷電流に耐え得る導電性としホルダーへ装填しスプリングを以て後方よりブラシの圧迫を可変し得る構成とします。ホルダーは絶縁しブラシホルダー支柱(50)上方へ固定します。支柱(50)下方は回転盤(41)へ固定しブラシはスリップリング表面へ密着しスムーズに回転又は逆転し得る構成とされます。ブラシの出力端子へ接続する配線の他端は回転盤(41)へ設置する防水を施す送受信装置(37)入力端子へ接続され、送受信装置出力端子へ接続する配線の他端は方向舵作動装置(38)の防水用回転方向自在とするモータ入力端子へ接続されモータ軸と方向舵軸は減速ギヤで連結する構成とされます。
【0021】
回転盤(41)裏面へ回転軸上方端を回転盤上方のシリンダーと同軸位置へフランジで固定し、回転軸上方にはスラストベヤリング(42)ロータを固定し、下方外周には2分割とするガイドベヤリング(46)を回転軸に密着し固定し、回転軸の外側は2分割とする固定軸(45)で包囲密閉し得る形成とし内側にガイドベヤリングの外側を固定し、推力を受けるスラストベヤリング外側は固定軸(45)で支えます。固定軸(45)の上方は回転盤裏面より僅か下方に位置し回転軸間との浸水防止を施す摺動部と密着固定し、固定軸(45)の底面は板で密閉しフランジで基礎(48)に固定する構成とします。夫々のベヤリングの上端及び下端は漏油阻止を施し別に設置する固定軸の夫々の給油口へパイプを接続し別に設置するグリスポンプにより給油し回転軸は回転盤と共に水平に左右回転自在とし得る構成とします。
【0022】
(実施例1)
図1〜図4に示す内容の具体的説明を致します。
註「別に設置する」とは図1〜図4に記載された以外の汎用品を表し、機器類の操作は遠隔自動制御をなし得るものとして本明細書に記載しております。
【0023】
図1に示す諸設備は簡易化されておりますが、遠隔自動制御し得るものと致します。発電室(17)は風雨や地震に耐え得る構造とし室内には取水管、水車入口弁(10)水車吐出管(16)第2水車(12)発電機(13)分電盤(15)別に設置する制御装置、グリスポンプ、計器類を設置いたします。大電力発電装置の場合送電線の系統並列を必要とする場合には、汎用自動遠隔制御水力発電所に準ずる各種の制御装置、計測装置が必要となります。海上において発生する電力を陸地へ送電する場合には水中用高圧又は特別高圧ケーブルを水底に敷設し目的地へ送電する構成とされます。据付台(18)上には発電室(17)揚水管(8)水圧管(7)等が設置され、貯水重量を含めた諸設備の合計重量及び地震に充分耐え得る強度の材質を有する据付台が必要となります。据付台(18)の裏面には耐震を考慮した必要数の脚(21)を脚固定支柱(43)支柱固定材(44)により組立て脚の下端は基礎(48)に固定し、脚(21)に対して回転盤(41)及び方向舵(39)が360度の回転範囲において接触する事のない外周のスペースが必要となります。方向舵の断面積は広大な程回転トルクは増しますが方向舵に加わる水圧と回転盤の慣性モーメントとの関連で決定されます。
【0024】
第1水車のスクリュー断面積に対し4倍を超える広い断面積の流水箇所に設置すれば、スクリューの上流側に加わる流速に比較しスクリューの傾斜角にもよりますが下流側の減速が少ないため、一般に水力発電に使用する汎用プロペラ水車と異り水車をケーシングレスとして設置し得る一大特徴が有ります。上流側より見た水車軸線から90度の角度を基線とし、水車軸を起点に下流側へ傾斜角度を夫々約25度とする1巻スクリューに対し2倍の長さの2巻スクリューの水車出力を比較しますと、上記の広い断面積を有する流水箇所に設置する実験では2巻では1巻水車の凡そ1.9倍の出力を得ております。スクリューの傾斜角度を鋭角にする程スクリュー後方の流速が衰え出力の減少する事は実験でも得ております。スクリューの見掛上断面積の約2倍のケーシング内に傾斜角25度2巻スクリューを装填する場合ケーシングレスと比較し50%程度に出力の減少が見られます。実験のスクリューはオリジナルのものであり且流速も一定不変の箇所ではない事から参考程度に止め更に正確な資料を基に実施される必要があります。
【0025】
断面積の狭いケーシングを使用する場合で損失水頭を低減するためには1枚羽根を数枚組合わせた汎用プロペラ水車等を利用する事が妥当と考えられます。
【0026】
第1水車(35)の第1軸(34)にはスクリューを上流側へ第1ギヤ(33)を下流側へ位置し固定し回転盤(41)上で方向舵(39)の最上流側へ軸受(36)で固定しますが、ポンプの運転、停止は第1ギヤと第2ギヤとの噛合せ及び開放により行う構成とするため、下流側第1軸端下流側の回転盤上へ別に設置し固定する支柱へスクリュー連結開放装置とする水平形ジャッキを設置し第1軸の下流側端へ連接し動力を用いてジャッキを下流側へ引く時第1軸はスクリューに受ける水圧により下流側へ移動し第1ギヤと第2ギヤは噛み合わされ第3ギヤが回転し、スクリュー連結開放装置により第1軸を上流側へ押圧すればギヤは開放され停止する構成とされます。尚第1軸の移動を制限しギヤを噛み合せた時定位置とすると同時に軸受よりはみ出す事のない鍔を軸受内側両端付近へ夫々取付けます。第2軸(31)には上流側より第2ギア(32)第3ギヤ(30)を夫々固定し第1ギヤと第2ギヤ(32)が噛み合う位置において第1軸延長線の下流側へ直線的に軸受を以て回転盤上へ固定します。各ギヤは強度を考えた上で慣性モーメントの少ない重量とし流水の妨害も軽減し得る形成とし、第1水車の回転を妨げない配慮が必要で有ります。大規模の水車では特に軸と軸受間の摩擦損失の軽減のため給油装置を設ける事が望まれます。
【0027】
第3ギヤ(30)の周囲の一部を無歯帯とし作動時ラック(26)と有歯帯が対向する時ラックは上昇し揚水を行い、無歯帯とラック(26)が対向する時ギヤの噛み合わせが外れピストン(24)は自重により落下する構成とします。
第3ギヤの回転数を計測し上限下限回転数及び上限未満回転数を検出する構成とします。無歯帯の長さ及び落下時間を短縮する程揚水効率は改善されます。落下時間を短縮するには使用材料の高密度のものが必要となります。反面ピストン系水中重量が増加すれば貯水量が減少し貯水効率低下の原因とります。ピストンのストロークを短縮する程ラックの落下時間は短縮できますがピストンの断面積を広くする必要が生じます。但し、ピストン系:ラック・ピストン・ピストンロッドの夫々を総称します。
【0028】
方向舵の機能
【0029】
本貯水式発電装置は回転盤へ方向舵を設置し、運転中は方向舵の角度を±0の位置とし減速ギヤの使用により逆回転し難い構成とするため、減速比の少ない場合はウォームギヤを使用すれば効果的となり、流水方向の変化に対応し第1水車を流水方向とほぼ平行に保ち得るため流水のエネルギーを有効に活用し得る構成であります。
【0030】
ポンプの起動及び停止は第1ギヤと第2ギヤの噛み合せ又は開放により行い得る構成であり、従って流速の速い箇所においてポンプを停止時より運転する場合ギヤの噛み合わせをスムーズに行うため方向舵によりスクリューの回転を減速し得る構成であります。
【0031】
流速が定格速度を超えた時スクリューが定格回転数を超え上限回転数となった場合ラックは上昇し落下不能となるため、この時制御により方向舵の角度を変え上限未満回転数以下に減速すればラックは自然落下しポンプは運転を再開する構成であります。
【0032】
スクリューの回転を方向舵により制御し得るため揚水量を加減し、貯水量の加減も水位調整器のバックアップとなし得る構成であります。
【0033】
流水にごみが混在する箇所においては、第1水車(35)の上流側回転盤(41)の周囲に沿って流水に耐え得る適宜なサイズの別に設置する防塵ネットを固定し、検出器を介してごみの排除を行います。検出方法はネットの上流側と下流側との水位差、圧力差、流速差又は監視カメラ等を利用します。除塵方法は方向舵(39)を制御し角度を±0位置より交互に90°以上回転盤(41)を回転しネットに付着したごみを流水を利用し排除する構成とされます。
【0034】
流水方向及び流速が年間を通じてほぼ一定とする箇所においては方向舵(39)を設置する必要性は無くなりますが過大流速が発生する場合を考慮すれば第3ギヤが上限回転数に過速しないための減速機能をもつ構成が必要となります。従って回転盤、回転軸、固定軸、給油装置、方向舵、制御装置、送受信装置、モータ、スリップリング、スリップリング収容凾等の設備は総て不要となり回転盤に代えて固定盤を設置されますが、設備が簡易化されるため極めて経済的な方式となります。(図4参照)
【0035】
揚水管内断水状態時にポンプの起動及び停止方法
【0036】
ポンプの起動方法
流速のほぼ一定とする箇所でポンプ停止中は第1水車は無負荷運転で回転数が高いため、先ず遠隔手動制御に切替えポンプ起動スイッチをオンにすれば第1水車上限回転数を検出し方向舵を±0の位置より角度を変化し第1水車の回転数を減速し第1水車下限回転数付近において、回転盤上のスクリュー下流側へ別に設置するスクリュー連結開放装置により下流側へ引く事により、スクリュー軸は水圧により下流側へ移動し自然に第1ギヤと第2ギヤは噛み合い、以てポンプは運転を開始されます。以降遠隔自動制御に切替えれば方向舵を自動制御し下限回転数を検出し回転速度を上昇した後上限未満回転数を検出し回転は減速され以降揚水管内が満水となるまでは下限回転数以上、上限未満回転数以下の定格回転数付近に自動制御される構成とします。揚水管満水後は貯水タンクの下限水位を超えた時自動制御により別に設置する水位調整機と連動し貯水を行いタンクの上限水位に達する時水位調整機により排水を行い、下限水位を検出する時水位調整機により排水弁を緩やかに閉じる構成とし、尚下限水位の検出が継続する時は第2水車の入口弁を緩やかに閉じる構成とします。貯水開始後は下限水位検出により自動的に方向舵の角度を±0の位置とし、方向舵は減速ギヤ又はウォームギヤにより自動ロックされる構成とします。以降方向舵による貯水タンクの水位調整はバックアップとして作動する構成と致します。
【0037】
ポンプを停止する方法
停止方法は遠隔自動制御より手動制御に切替え、ポンプ停止スイッチをオンにすれば、方向舵の角度を制御し第1水車の回転数を減速し下限回転数とする構成とし、下限回転数検出により回転盤上のスクリュー軸の下流側へ別に設置するスクリュー連結開放装置により上流側へ押圧する事により、スクリュー軸は上流側へ移動し第1ギヤと第2ギヤは噛み合せが外れスクリューは単独回転となり、ポンプは運転を停止します。ポンプ停止スイッチをオフとし遠隔自動制御に切替えれば方向舵は第3ギヤの回転数を検出し回転を加速し方向舵の角度±0で停止する構成とするためアンサーバック信号を送受信装置より送信し別に設置する制御装置により受信され遠隔監視室へ表示されます。以て方向舵は減速ギヤにより自然ロックされる構成とします。方向舵の角度を±0度の位置に固定すれば、第1水車は無負荷運転のまま流水も自然の流れに近付き自然環境維持及び方向舵の劣化防止にも役立つものと考えます。
【0038】
ラック(26)はラックケースで包囲され回転盤(41)と共にスムーズに回転するためには回転盤の水平及びシリンダ(25)の垂直を正確に設定する事により、ピストン(24)の上下左右の摺動による摩擦抵抗を極力少くし且ピストンの漏水防止に配慮する事が重要となります。同時にローラー溝内の両側面と溝内に装填するローラーの両側面とのギャップを極力狭くし特にラック落下中接触する各部摩擦抵抗を最小限に止める配慮が必要となります。ピストンの左右回転摺動による摩擦抵抗がラックを介して各ローラーに加わるためローラー軸も堅固な形成とし大出力用では給油装置も考慮する必要があります。ラックは図2の正面図、図3の平面図より正面左右両端の上方より下方及び裏面においても正面と対称箇所にはラック(26)が垂直且スムーズに昇降し得るローラー溝を設け外周のラックケースにローラー軸受を固定し、溝幅より僅かに幅の狭いローラーがこの溝内のラック正面及び裏面を軽く摺動する構成とします。ラックを包囲するラックケースは上端面は開口し第3ギヤ(30)と対向するラック(26)部分を除き覆い、ラックケース据付板(29)上にはラック受板を設置しラック落下時点の上下振動を急速に静止し且衝撃音を吸収するためラック受板の裏面には緩衝材を介在し、第3ギヤとの噛み合せをスムーズに行うためラック下端の長さを調整すると共に第1水車の過速時にラックが上昇限で落下不能となる時スムーズに第3ギヤがラック下端で空転し得る構成としますが長時間継続する場合はギヤが磨耗するためラックが事前に設定する最上限に達し且ラックと対向する無歯帯の直前に位置する第3ギヤの最後列の歯がラックと噛み合った後外れる直前においてロッド連結環下方の別に設置するロッド円周へ溝を設けこの溝へ電磁プランジャ等を利用するストッパを噛み合わす事によりラック下端と第3ギヤとの摩擦を和らげ得るものとなります。ラックケースはシリンダーと同軸位置としピストン(24)の左右回転昇降自在となし得る構成とし回転盤(41)上へ固定し、ラックケース内の沈殿物は自然流出可能とする形成とされます。上段ローラー下段ローラーの取付位置はラック作動時最上限へ到達した際ラックの下端がローラーより外れる事のない正面、裏面の左右両端各1か所及び第3ギヤ(30)上端付近のラック正面、裏面の両端各1か所の少くても合計8か所へ設置しラックがスムーズに昇降し得る構成とします。
【0039】
据付台(18)上へ設置する揚水管(8)の外側に水圧管(7)を同軸に設置する理由は、揚水管のみの単管とする場合はピストン(24)上昇時のストロークが長く作動時間が短い程高水圧が揚水管内へ加わり圧力水頭が変動するため第2水車の回転及び発電出力に変動を来す恐れがあるため未然防止を計るものであります。二重管を避け単管とするためには、
ピストンのストロークを短くすると共にピストン上昇時間を長くする構成に変更すれば貯水時の水圧変動を減少できるため二重管とする重要性は薄くなります。発電以外に利用するもので若干の水圧変動による障害を及ぼさない用途の場合は単管とされます。二重管とする場合は水圧管断面積を広くする程第2水車の負荷急変時の水圧変動を減少し得る反面、資材の使用量が増加するので第2水車の使用水量との兼合いが必要となります。上下面を同一断面積とする揚水管と異なり水圧管の水平断面積は必ずしも上端面と底面とを等しくする必要は無く、地震、風圧加重を考慮すれば上方断面積を狭くする事が得策と考えます。水圧管内断面積は上端で揚水管の2倍以上下端で3倍以上あれば良いと考えます。揚水管及び水圧管に使用する材質は膨脹係数の等しいものが好ましく、異なる場合には特に揚水管底面において弾力性のパッキンを介在する事により貯水タンク底面に加わる温度変化に伴う夫々の管の伸縮性アンバランスを緩和し、貯水タンク(5)の破損を未然に防止する配慮が必要となります。揚水管は下方より上方まで適宜な間隔で外周より内面へ貫通する小孔を穿ち、揚水管が揚水開始前の断水状態より満水となる期間において水圧管内も満水付近とする形成とし、貯水タンク内下限水位を超えた時直ちに第2水車の起動をし得る構成とします。又弁付取水排水管(11)又は水位調整器により水圧管(7)内より排水する場合においても小時間差で揚水管(8)内も排水し得る条件を備える構成とされます。
【0040】
貯水タンク(5)内に開口し突出する揚水管上端上方の緩衝用カバーは支柱で揚水管上端付近へ固定し貯水時に噴出する揚水を下方へスムーズに方向転換し貯水タンクの水位変動を緩和する構成とします。貯水タンクの頂上には吸気口(2)を穿ちこの上に防塵用ネットを固定します。このため貯水タンク内は外気と同一気圧となり、揚水管(8)水圧管(7)貯水タンク(5)を気圧差による破損から回避され得る構成とします。貯水タンクの容量は用途、利用方法に基づき決定されますが、小容量に止め得るならば経済的に非常に有利になります。別に設置する自動開閉し得る弁付水位調整機と弁を全開とする弁付取水排水管を連結し貯水タンクの上下限水位を検出し以て自動制御により上限水位検出により第2水車入口弁(10)開放又は排水をし得る構成とし、下限水位検出により排水を停止し、検出が継続すれば水車入口弁(10)を閉止し得る構成とし、バックアップとして方向舵を自動制御する事で貯水タンクの水位を標準値とし得る方式とする事により貯水タンクは小容量となし得るため建設コストは飛躍的な節減となります。又環境により地震や台風の強い箇所その他の理由で現地では高所貯水が困難な場合で且付近へ陸地を有する場合は、貯水タンク、発電室を陸地へ設置すると共に揚水管を陸地へ延長する方式も考えられます。
【0041】
海上へ設置する場合で貯水タンクの設置が困難な場合、図1の貯水タンクに代えて据付台(18))付近へ別に設置する圧縮空気タンクを設置し、この下方へ揚水管(8)に代えて貯水タンクを設置し、ポンプにより下方より貯水タンクを満水とする事で貯水タンク内空気を圧縮し上方の圧縮空気タンクへ逆止弁を介して貯蔵した後、満水とした貯水タンク内底面より別に設置する弁付排水管により海中へ排水すると同時に貯水タンク上方外周より内部へ開口する弁付吸気管により外気を吸入した後、再び揚水を開始し満水とする作動を繰り返し、設定する貯水高さに従って高圧空気を貯蔵し以てタービンを作動し発電する傍ら、貯水タンク満水付近の高水圧時において別に設置する圧縮空気タンク底面内へ開口する給水管の他端は給水ポンプ出口に接続され入口管は貯水タンク上方の外周より内部へ開口する構成とし貯水タンク内満水付近の水圧に対し圧縮空気タンク内空気圧は圧力差が低いためポンプの出口弁を開き数気圧のポンプで給水ができ得る構成とします。海水を給水した後弁を閉じ、タービンにより発生する蒸気を消費する事により圧縮空気タンク内底面へ製造される塩を圧縮空気を利用し別に設置する吐出管の弁を開き圧縮空気タンク外のネット付収容器へ放出し得る構成とする製塩方法も考えられます。
【0042】
除湿剤により防錆措置を施すスリップリング収容凾(23)内の水面上のシリンダ(25)外側へ絶縁物を介して必要数の導電性のスリップリング(22)を夫々隔離固定し、この周囲にはブラシホルダに装填された導電性カーボンブラシをホルダー後方よりスプリングの圧迫によりスリップリング面へ圧着し摺動可能とし作動時の電流に耐え得る構成とし、ブラシホルダは絶縁物を介在しブラシホルダ支柱(50)へ固定し支柱(50)下端は回転盤(41)へ固定されます。ブラシはスリップリング面と摺動し回転盤(41)と共に回転及び逆転自在とする構成とします。スリップリングの入力端子には発電室分電盤より配線によりモータ電源及び別に設置する制御装置の入出力信号線が夫々接続され、ブラシホルダ支柱(50)が回転する際スリップリングの入力配線が摺動を妨げないため,スリップリングに小孔を穿ち絶縁する配線をここへ貫通し各スリップリングの端子へ固定します。摺動するブラシの出力端子へ接続される配線の他端はブラシホルダ支柱(50)へ沿って回転盤(41)裏面へ設置する防水形とする送受信装置(37)入力端子へ接続され、送受信装置(37)出力端子へ接続される配線の他端は防水形とする方向舵作動装置のモータ電源入力端子へ接続され、送受信装置の信号受信によりオンオフ接点を介して、防水形とするモータへ電圧を加え方向舵の左右角度を変化し得る構成とし同時に角度の数値を別に設置する分電盤の制御装置を介して遠隔監視室へ送信し得る構成とします。駆動用モータ軸と方向舵(39)軸との結合にウォームギヤを使用すれば特にブレーキを使用すること無く逆回転防止機能が可能となります。送受信装置(37)及び方向舵(39)を回転盤(41)裏面へ設置する理由は第1水車(35)に加わる流水を妨げないためであり、回転盤上面へ設置することも可能であります。尚図1では方向舵の制御用電源線をシリンダよりブラシホルダ支柱へ沿って下方へ配線する形成としていますが回転盤固定軸下端の基礎付近より別に回転軸中心へ穿つ孔へケーブル配線する事も不可能ではありませんが回転部と固定部との摺動部の浸水防止及び点検方法の対策が必要となります。
【0043】
前記段落[0011][数1]より直径100m以上の円形潮流の中心の、流速2ms−1,直径d:50m,長さ150mの場合の
水のもつエネルギー(W)={g(2ms−1)2(2g)−1}×{(1.963m2×150m×103 kgm−3)s−1}
∴水のもつエネルギー=588,900(KW)となります。
【0044】
【数2】上記と同一条件の流水中へ、同一断面積S=1,963m2,同一長さL=150mの2巻スクリュー形水車を設置する時の概算値は次式によります。
水車出力(KW)=水のもつエネルギー(KW)cosθη1
水車出力=588,900(KW)Cos25°×0.9
∴水車出力=480,352(KW)
但し、θ:25°とする時, η1:水車の効率0.9(1巻に比較し2巻の出力減衰を考慮)
θを鋭角とすればトルクは増す一方スクリューの下流側において流水が減速するためθを過度に鋭角としても水車出力は低下するため、スクリューの長さの長いもの程傾斜角の設定に留意が必要となります。又スクリュー周囲の流水断面積の大小にもより出力は影響されます。軸受損失を考慮し特に大出力用水車の場合軸受に自動給油可能な構成とされる事が最も貯水効率の高い設備形成となるものと考えます。
【0045】
【数3】2ms−1の流速におけるギヤレシオの概算値は次によります。2巻スクリューの傾斜角25°の模型水車の無負荷実験では0.5ms−1の流速において約2回転/秒(2Rs−1)を得ております。
水車の回転数(Rs−1)は流速に比例する事から、2ms−1の流速においては(2/0.5)ms−1×2Rs−1=8Rs−1,全負荷時の回転数は無負荷時の回転数の1/2で高効率とする事から
全負荷時の定格回転数を1/2とすれば8Rs−1×1/2=4Rs−1
ラックの落下時間を2秒に設定し上昇時間を6秒にすれば、全負荷時の第3ギヤの作動は約8秒間に1回転となり無歯帯の長さは1周の1/4となり、ラックの作動効率η2は3/4=0.75となります。第3ギヤの回転数を0.125Rs−1に設定するための減速ギヤレシオ=4Rs−1/0.125Rs−1=32従って1:32のギヤレシオとすれば全負荷時に定格回転数付近となります。
【0046】
【数4】ラック出力(KW)=水車出力(KW)η2
=480,352(KW)×0.75
ラック出力=360,264(KW)
但し、η2:ラックの効率3/4(0.75)
【0047】
ピストン系の重量を水に換算した体積を含む仮定貯水量はラック出力より算出されます。
【数5】ラック出力360,264(KW)=g(ms−2)H(m)Q(m3s−1)
仮定貯水量(Qm3s−1)=[360,264(KW){9.8(ms−2)100(m)}−1]
∴仮定貯水量Q=367.6m3s−1, 段落[0045]
より、第3ギヤの定格回転数は0.125Rs−1=1R(8s)−1に設定されるため、1ストロークの仮定貯水量Q=8(367.6m3s−1)
1ストロークの仮定貯水量Q=2.941m3(8s)−1
(註)貯水高さ:100m(実質的な高さは外部水面より貯水タンクの上限水位までの高さとします。従って揚水管の高さと多少異なります)
但しg:重力の加速度9.8ms−2,ρ0:水の密度(103kgm−3),第3ギアの定格回転数:0.125Rs−1=1R(8s)−1
【0048】
【数6】ピストン系の平均密度の計算方法は次によります。
ピストン系重量(kg)=[(ラック+ロッド+ピストン){夫々の体積V(m3)×夫々の密度ρ(103kgm−3)}]仮に次の数値を代入すれば
ピストン系重量(kg)=[{ラックV(60m3)ρ(5×103kgm−3))}+{ロッドV(2.5m3)ρ(7×103kgm−3)}+{(ピストンV(76m3)ρ(6×103kgm−3)}]
∴ピストン系重量=773.5×103(kg)
ピストン系体積V=(60+2.5+76)m3=138.5m3
ピストン系の平均密度ρa=(ピストン系重量kg)(ピストン系体積m3)−1
ピストン系の平均密度ρa=(773.5×103kg)(138.5m3)−1
∴ピストン系平均密度ρa=5.58×103kgm−3
【数7】次にピストンのストローク長さを算出します。
ストローク長さを求めるため段落[0045]記載により流速2ms−1で第1水車の全負荷時における定格回転数の時第3ギアが無歯帯の通過時間を2秒に設定しているためピストンの落下時間(s)も2秒以内とする必要が有ります。図1よりピストン系は水中で落下する構成であり、従ってストローク長さ(h)は次公式により算出されます。
(2ρa)−1,
h=(2s)2{(5.58−1)103kgm−3}9.8ms−2{(2×5.58)103kgm−3}−1,
∴ストローク長さ=16.1m
実験によれば第3ギヤが1個の場合無歯帯を通過する際第1水車は無負荷となり回転速度が若干上昇するため、確実に作動するためにはラックの無歯帯を長めに設定するか又はストロークを短めに設定する必要があります。ここではストローク長さ(h)=12mとします。但し、ρa:ピストン系平均密度(103kgm−3),ρ0:水の密度(103kgm−3),g:重力加速度(9.8ms−2)
【0049】
【数8】{1ストローク(8s)−1当りの実貯水量Q(m3)}
=(1ストロークの仮定貯水量)−(ピストン系の水中重量に等しい水の体積)
Q=[{1ストロークの仮定貯水量m3(8S)−1}−{ピストン系体積Vm3(8S)−1(ρa−ρ0)103kgm−3}{(ρ0)103kgm−3}−1]
Q={2.941m3(8s)−1}−{138.5m3(8s)−1(5.58−1) 103kgm−3(103kgm−3)−1}
∴1ストローク当りの実貯水量Q=2.307(m3)(8s)−1
【数9】1秒当りの実貯水量Q=2,307(m3)(8s)−1
∴1秒当りの実貯水量Q=288.4m3s−1
【数10】ポンプの効率η3=実貯水量m3(s)−1/ピストン系の水中重量を換算した水の体積を含む貯水量m3(s)−1
ポンプの効率η3=288.4(m3)(s)−1/367.6(m3)(s)=−1
ポンプの効率η3=0.785
【0050】
【数11】ポンプの出力(KW)=ラック出力×η3
ポンプの出力(KW)=360,264(KW)×0.785,
ポンプの出力=282,807(KW)
従って総合出力η0=ポンプの出力/水のエネルギー
η0=282,807(KW)/588,900(KW)
∴総合出力η0=0.48となります。
尚この数値は仮定の数値を使用し算出方法を例として記載したものであり、各部の摩擦抵抗の大小及びスクリューの傾斜角と第1水車の周囲の流水の断面積の大小が相互に影響されるため大出力の水車の実施に当っては流水速度の一定とする箇所において事前に詳細な測定資料を作成する必要が有ります。
【0051】
【数12】シリンダの断面積を算出します。
シリンダの断面積(S)m2={定格出力の1ストローク当たりの実貯水量(m3)(8s)−1}{1ストロークの長さ(m)}−1
シリンダの断面積(S)=2,307m3(8s)−1(12m)−1
∴シリンダの断面積(S)=192.25m2(8s)−1,
∴内径d=15.645m,但し1ストロークの長さ12mは前記[数7]で設定する数値といたします。
【0052】
ピストンのストロークを長くする程落下所要時間も長くなり、ラックの無歯帯との対向時間がロスの原因となります。このロスを防ぐ方法として、図4参照により第2軸へ2個の第3ギヤを並べ180°異なる角度の歯並びに軸へ固定しラックも2連式とし2本のシリンダの上方端は同一断面積とする1本のシリンダに変換し逆止弁を設置し、このシリンダ上方は揚水管内で漏水防止を施し左右摺動回転し得る形成とすれば、2本のラックは間断なく交互に有歯帯と噛み合い第1水車の回転もムラ無く安定し昇降する構成となりポンプの効率もアップし得る事となります。
【0053】
【発明の効果】
【0054】
本発明に対し、従耒の技術では電動式ポンプを使用し高所へ貯水し、利用する特別高圧大電力発電方式が使用されておりますが、この方式は直接流水を利用し水車を回転する揚水方式と全く異り、電動式ポンプを使用するためポンプの消費電力に対し貯水される発生電力が少いため実質的にはマイナスの貯水発電方式であります。
【0055】
本発明に対し、従耒の技術では流水より直接水車を利用する発電装置は考案されていますが、水車回転数が低いため低電圧小電力発電に止まり、高所貯水による特別高圧大電力発電方式には利用されていないのが現状であります。以上の結果より本発明を提供することにより潮流、河川の至る所に存在する未利用低水頭の有効活用が可能となり、特に流速の遅い河川で堰堤を築きうる箇所においては低水頭を比較的高水頭に変換できるため、汎用水車を利用し得る事で本発明の原理を利用すれば高所へプラスの揚水エネルギーとして貯水し得る事で広範な使途に利用される事ができます。以て「地球環境汚染の進行を遅らせ」「化石燃料消費の節減」に役立ち「絶え間なく永遠に存在する安価な自然の恵みを享受する事」が可能となります。
【図面の簡単な説明】
【図1】本発明の斜視図
【図2】図1のラック及びラックケースの拡大正面図
【図3】図1のラック及びラックケースの拡大平面図
【図4】本発明の2連式ピストンの斜視図
【符号の説明】
1.防塵ネット 6.揚水管上端
2.吸気口 7.水圧管
3.緩衝用カバー 8.揚水管
4.カバー支柱 9.揚水管固定材
5.貯水タンク 10.水車入口弁
11.弁付取水排水管 32.第2ギヤ
12.第2水車 33.第1ギヤ
13.発電機 34.第1軸
14.発電機軸受 35.第1水車
15.分電盤 36.第1水車軸受
16.水車吐出管 37.送受信装置
17.発電室 38.方向舵作動装置
18.据付台 39.方向舵
19.揚水管据付板 40.シリンダ固定材
20.据付台固定材 41.回転盤
21.脚 42.スラストベヤリング
22.スリップリング 43.脚固定支柱
23.スリップリング収容凾 44.支柱固定材
24.逆止弁付ピストン 45.固定軸
25.シリンダ 46.ガイドベヤリング
26.ラック 47.固定軸台
27.上部ローラ 48.基礎
28.下部ローラ 49.逆止弁
29.ラックケース据付板 50.ブラシホルダ支柱
30.第3ギヤ 51.ロッド連結環
31.第2軸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses the energy of the tidal current or the low head of a river to rotate a water turbine, activates a pump via a transmission mechanism, stores the water in a storage tank by a pumping pipe connected via a check valve, and uses it for hydroelectric power generation. It can be used for salt making, fire fighting, fish farms, irrigation, snow removal, amusement ponds, pools, etc.
[0002]
[Prior art]
[0003]
Tide difference power generation in foreign countries uses hydropower in France to store water at high tide and close the sluice gate at the time of high tide, and there is hydroelectric power using the head between the storage surface and the sea surface at low tide, but it occurs without interruption according to the present invention It is completely different from the method of using a tidal current and a low water head of a river (less than about 10 m) to rotate a water wheel and store water at a high place by using a pump. Therefore, it is currently not used in Japan where the tide level of the ebb and tide is small.
[0004]
As a general-purpose product of the current large-capacity pumping system, water is stored at a high place using an electric pump.In the case of generating power using the head position by storing water, the power consumed by the pump is reduced by the power generated by the water storage. Therefore, it is a method that generates negative power.
[0005]
In contrast to Fig. 1 of the present invention, there is a method in which the turbine is rotated by using a low head with respect to the generator using a turbine with the technology of the present invention, but this is a power generation method in which the generator is directly connected to the water axle. This is a power generation system without a water storage function. Therefore, because of its low rotational speed, its use is limited to low-voltage and small-capacity devices, and it is not used for high-voltage or extra-high-voltage high-power generation (see Patent Document 1).
[0006]
[Patent Document 1]
Published Patent Application (A) No. 59-41678 (
[0007]
[Problems to be solved by the invention]
[0008]
Using a large amount of unused low head such as rivers, rivers, etc. according to the present invention to rotate a water turbine, and a pump using a piston and a pair of cylinders via a transmission mechanism, the same cross-sectional area as the cylinder via a check valve There is no other storage device that can store a large amount of water at high altitudes through the pumping pipes connected by.
[0009]
In the prior art literature, power generators that directly rotate a turbine using a low head are not used because they are not suitable for high-pressure or extra-high-voltage power generation because they do not have a high-level pumping function.
[0010]
Means for Solving the Invention
[0011]
Utilization of tidal currents and unused low head of rivers, if a water storage power generation device using the contents of the present invention is used, water can be stored at high altitudes, and high-speed rotating water turbines that use high heads Power generation becomes possible, and extra-high-voltage power generation becomes possible, and in places where there is abundant unused water head, extra-high-voltage, high-power generation can be made possible by integrating the conditions for large-scale water storage. According to the literature, the current of the Kuroshio near Japan is up to 2-2.5 ms-1It is said to reach even.
(Equation 1)
Speed V of flowing water exceeding 100 m in diameter: 2 ms-1, Diameter d: 50 m (cross-sectional area S: 1963 m2), The energy of the flowing water of length L: 150m is according to the following formula.
The energy of flowing water is represented by W = gQρH, and H = v2(2g)-1Can be converted to
Energy of flowing water (W) = [g {S (m2) L (m) ρ (103Kgm-3) S-1} (Vms-1)2(2g)-1]
W = [9.8 ms-2{(1963m2× 150m) 103kgm-3s-1} (2ms-1)2(2 × 9.8ms-2)-1]
エ ネ ル ギ ー Energy of running water = 588,900kW
However, the cross-sectional area of the flow velocity S =
If the energy of the flowing water is used for a water turbine and the principle of the present invention is used, it is considered that a water storage amount of approximately 50% of the energy of water can be obtained.
[0012]
If a low pressure head dike is constructed downstream of the existing hydroelectric power plant and the general-purpose turbine and the principle of the present invention are used, the output of the turbine will be pumped to the existing water storage tank without using the negative power generation method using the conventional general-purpose electric pump. By being able to store water, it is possible to increase pure power generation output if the existing generator has enough capacity.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
Note "Installation separately" refers to general-purpose products other than those described in Figs. 1 to 4, and the operation of the equipment is described in this specification as being capable of remote automatic control.
Explanation of terms
Pumping: water level below full in pumping pipe
Reservoir: The state of the water level in the storage tank exceeding the full water in the pumping pipe
Storage tank water level detector: A device that measures the water level in the water storage tank and detects the required water level
Upper limit Water level: High water level below the full water level in the storage tank set in advance
Lower limit water level: Low water level in the storage tank set in advance
Water level adjuster: A structure that keeps the water level in the water storage tank at a standard value (water level from the lower limit to the upper limit) and can cut off the water in the pumping pipe and the hydraulic pipe.
Slip ring: Transmission / reception signals with a transmission / reception device installed on a rotating plate from the distribution board control device, and a line connection device with several pairs of rotating and sliding conductors for supplying power
Rotating board: A circular board that is equipped with the first turbine, transmission device, pump, transmission / reception device, rudder operation device, rudder, etc., and can be rotated left and right
Direction rudder: A device that can change the direction of the turntable using a control device and change the flow velocity with respect to the first turbine to control the speed.
Screw connection opening device: A device capable of connecting or releasing the first shaft first gear and the second shaft second gear to operate or stop the pump.
Third gear rotational speed detector: a device that measures the rotational speed of the third gear and detects upper / lower limit rotational speeds and lower limit rotational speeds.
Upper limit rotation speed: Minimum rotation speed of the third gear at which the rack cannot fall due to overspeed
Rotation speed below the upper limit: Maximum rotation speed of the third gear at which the rack can move up and down smoothly
Rated rotation speed: The rotation speed of the first turbine at or below the upper water level and above the lower water level of the water storage tank (approximately 1/2 no-load rotation speed of the first turbine)
Lower rotation speed: Minimum rotation speed of the third gear at which the rack can move up and down smoothly.
1st turbine rotation speed detector: Measures the rotation speed of the 1st turbine, detects upper and lower rotation speeds, and is used when starting and stopping the pump
Control device: Configuration having the function of supplying power for the first turbine control, transmitting the first turbine control signal, and receiving the monitoring signal
Transmission / reception device: Configuration with functions of receiving power for rudder control, receiving signals for rudder control, and transmitting signals for monitoring
[0015]
The installation base (18) in Fig. 1 is installed horizontally, the back side is composed of the required number of legs (21), leg fixing posts (43), column fixing materials (44), and the lower ends of the legs are fixed to the foundation (48). A pumping pipe (8), a hydraulic pipe (7), a power generation room (17) is installed on the installation stand, and a second water turbine (12), a generator (13), a distribution board (15) and a control device are separately installed in the power generation room. , Grease pump, etc.
[0016]
A screw and a first gear (33) are mounted on the first shaft (34) of the first water wheel (35) installed on the upstream side of the turntable (41) from the upstream side, and the shaft is a first water wheel bearing (36). Fix to. An upstream second gear (32) attached to a second shaft (31) that meshes with the first gear is interposed for speed change or simply transmission, and is provided with a third gear (30) (pinion) on the downstream side by a bearing. It is fixed linearly to the downstream side of the shaft extension line, and each bearing is configured to be lubricated by a grease pump. Install the rudder (39) on the back of the turntable downstream of the second shaft (31). The configuration of the screw connection opening device separately installed is such that when the horizontal power type jack is fixed to the column and the power is pressed to the downstream side immediately downstream of the first shaft downstream end, the gear is disengaged, the pump stops, and the downstream side is stopped. If the gear is pulled down, the gear will naturally engage with the water pressure applied to the first turbine and the pump will start. The first shaft is configured to measure the number of revolutions of the first turbine with a tachometer separately installed and transmit it to the control device.
[0017]
The periphery of the third gear (30) is formed by a toothed band and a toothless band. When the first waterwheel (35) is operated and the toothed band and the rack (26) are opposed and mesh with each other, the rack is raised, and the toothless band is raised. When the rack and the rack face each other, the rack can be dropped smoothly. When the rotation speed exceeds the upper limit, the rack cannot be lowered at the ascending limit, and the third gear can smoothly idle at the lower end of the rack. At this time, by detecting the upper limit rotation speed, changing the rudder angle by automatic control and decelerating the first turbine, the rotation speed becomes less than the upper limit, the rack naturally falls, further decelerates, the lower limit rotation speed is detected, and the rudder is automatically controlled again. By changing the angle, the rotation of the first turbine is accelerated and the number of rotations becomes less than the upper limit. The rack facing the third gear is surrounded by a rack case, the upper surface of the rack case is open, the rack case mounting plate on the lower surface is fixed on the turntable, and the rack case with cushioning material interposed on the rack case mounting plate. Fix the board. A piston rod connected to a connecting ring attached to the center of the upper end of the rack is connected to a piston with a check valve (24) located above, and the piston is loaded from below into a cylinder (25) having a lower end opening below the water surface. It is configured to slide left and right and up and down freely. When the piston in the cylinder is activated, a check valve is installed just above the upper limit and below the external water surface to prevent backflow.
[0018]
At the bottom of the hydraulic pipe installed vertically on the mounting base (18) coaxially with the cylinder (25), a pumping pipe installation plate (19) with the same cross-sectional area as the flange is interposed and fixed with the flange. The upper end of the hydraulic pipe (7) opens to the center of the bottom of the water storage tank (5) and is fixed. The upper end flange of the cylinder is in close contact with the center of the back surface of the pumping pipe installation plate (19), and the lower end of the cylinder is located directly above the rack at the uppermost limit when the rack is in operation and does not contact the rack, and opens downward. Is fixed to the back of the mounting base (18) with the cylinder fixing material (40). The lower end of the pumping pipe is fixed on the pumping pipe mounting plate (19) at the center of the hydraulic pipe bottom with bolts together with the lower flange of the cylinder with the same cross-sectional area via packing, and the center opens with the same cross-sectional area as the inside of the cylinder. . The upper part of the water pipe is fixed to the water pressure pipe (7) with a water pipe fixing material (9), and the upper end is coaxially opened with the water pressure pipe to the bottom of the water storage tank so that circulating water can flow between them and the bottom of the water storage tank is The gap between the pumping pipe (8) and the hydraulic pipe (7) is sealed. In the water storage tank, a water level detector installed separately is used to constantly measure the water level and detect the upper and lower water levels.
[0019]
Water storage tank (5) Pumping pipe (8) protruding upward from the bottom surface A buffer cover (3) installed above near the upper end is fixed with a support, and an intake port (2) is pierced at the center of the top of the water storage tank to prevent dust. (1) Close and fix. A water intake pipe with a flange is connected to the lower part of the outer periphery of the hydraulic pressure pipe (7) and is opened into the pipe, and the other end is opened through a water turbine inlet valve (10) into a second water turbine (12) casing in the power generation chamber (17). The lower part of the intake pipe is connected to the flange of the intake drainage pipe with valve (11), and the other end is opened downward. The outlet of the second turbine casing is connected and opened with the turbine discharge pipe (16), and the other end is opened downward into the water.
[0020]
The input side of the control device separately installed on the distribution board (15) in the power generation room (17) is connected to the power supply of the remote control room and the distribution board, and the output side is located above the water surface above the cylinder (25). The outer circumference of the cylinder in the slip ring storage box (23) is electrically insulated, and the required number of slip rings (22) are connected to input terminals for isolating and fixing the required number of slip rings to the outer circumference, and carbon sliding on the surface of each slip ring is connected. The brush is made conductive so that it can withstand the load current, and it can be loaded into the holder and the pressure of the brush can be changed from the rear with a spring. Holder is insulated and fixed above brush holder support (50). The lower part of the support (50) is fixed to the turntable (41), and the brush is in close contact with the surface of the slip ring so that it can rotate or reverse smoothly. The other end of the wiring connected to the output terminal of the brush is connected to the input terminal of the transmitting and receiving device (37) for waterproofing which is installed on the turntable (41), and the other end of the wiring connected to the transmitting and receiving device output terminal is the rudder operating device ( 38) The motor shaft and the rudder shaft are connected to the motor input terminal that allows free rotation direction for waterproofing and are connected by a reduction gear.
[0021]
A guide in which the upper end of the rotating shaft is fixed to the rear surface of the rotating disk (41) by a flange at the same position as the cylinder above the rotating disk, the thrust bearing (42) rotor is fixed above the rotating shaft, and the lower outer periphery is divided into two parts. The bearing is fixed to the rotating shaft in close contact with the rotating shaft, and the outside of the rotating shaft can be enclosed and sealed by a fixed shaft (45) divided into two parts. The outer side of the guide bearing is fixed inside and the thrust bearing outside receiving thrust. Is supported by a fixed shaft (45). The upper part of the fixed shaft (45) is located slightly below the back surface of the turntable and is tightly fixed to a sliding part for preventing water from entering between the rotary shafts. 48). The upper end and the lower end of each bearing are connected to a pipe to each oil supply port of a fixed shaft separately installed to prevent oil leakage and lubricated by a grease pump separately installed, and the rotating shaft can be horizontally and horizontally rotatable with the turntable. will do.
[0022]
(Example 1)
I will give a concrete explanation of the contents shown in Figs.
Note "Installation separately" refers to general-purpose products other than those described in Figs. 1 to 4, and the operation of the equipment is described in this specification as being capable of remote automatic control.
[0023]
The equipment shown in Fig. 1 is simplified, but can be remotely controlled automatically. The power generation room (17) has a structure capable of withstanding wind and rain and earthquake and has a water intake pipe, a water turbine inlet valve (10) a water turbine discharge pipe (16), a second water turbine (12), a generator (13) and a distribution board (15). We will install the control unit, grease pump and instruments to be installed. In the case of high-power generators When various parallel transmission lines are required, various control devices and measuring devices equivalent to general-purpose automatic remote control hydroelectric power plants are required. When transmitting power generated at sea to land, a high-voltage or special high-voltage cable for underwater is laid at the bottom of the water and transmitted to the destination. On the mounting table (18), a power generation room (17), a pumping pipe (8), a hydraulic pipe (7), etc. are installed, and the total weight of the facilities including the water storage weight and a material that is strong enough to withstand earthquakes A stand is required. The required number of legs (21) considering the earthquake resistance are assembled on the back surface of the installation stand (18) by leg fixing struts (43) and strut fixing members (44), and the lower ends of the legs are fixed to the foundation (48). ) Requires a space on the outer circumference where the turntable (41) and rudder (39) do not come into contact in a 360-degree rotation range. The larger the cross-sectional area of the rudder, the greater the rotational torque, but it is determined by the relationship between the water pressure applied to the rudder and the moment of inertia of the turntable.
[0024]
If installed in a flowing water area with a cross section more than 4 times larger than the screw cross section of the first turbine, there is less deceleration on the downstream side, depending on the inclination angle of the screw compared to the flow velocity applied to the upstream side of the screw Unlike the general-purpose propeller turbine generally used for hydroelectric power generation, there is a major feature that the turbine can be installed without casing. The turbine output of a two-turn screw twice as long as a one-turn screw with a 90-degree angle as a baseline from the water turbine axis viewed from the upstream side and an inclination angle of about 25 degrees to each downstream from the water wheel axis. Comparing with the above, in the experiment installed in the flowing water area with the wide cross-sectional area described above, the output of two rolls is about 1.9 times that of the one-turn turbine. Experiments have shown that the sharper the angle of inclination of the screw, the lower the flow velocity behind the screw and the lower the output. When a two-turn screw with an inclination angle of 25 degrees is loaded in a casing approximately twice the apparent cross-sectional area of the screw, the output is reduced by about 50% compared to the case without a casing. Since the experimental screw is an original screw and the flow velocity is not a constant part, it is necessary to stop it for reference only and conduct it based on accurate data.
[0025]
In order to reduce the head loss when using a casing with a narrow cross-sectional area, it is considered appropriate to use a general-purpose propeller turbine with several blades combined.
[0026]
A screw is located on the first shaft (34) of the first water turbine (35) on the upstream side and the first gear (33) is fixed on the downstream side, and is fixed on the turntable (41) to the most upstream side of the rudder (39). The pump is fixed by the bearing (36), but the operation and stop of the pump is performed by engaging and releasing the first gear and the second gear. A horizontal jack as a screw connection and release device is installed on the pillar to be installed and fixed, and it is connected to the downstream end of the first shaft and when the jack is pulled downstream using power, the first shaft is downstream due to the hydraulic pressure received by the screw When the first gear and the second gear mesh with each other and the third gear rotates, and the first shaft is pressed upstream by the screw connection and release device, the gear is released and stopped. At the same time, limit the movement of the first shaft and set it to the fixed position when the gears are meshed. At the same time, install flanges that do not protrude from the bearing near both ends inside the bearing. A second gear (32) and a third gear (30) are fixed to the second shaft (31) from the upstream side, respectively, and at a position where the first gear and the second gear (32) mesh with each other, downstream of the extension line of the first shaft. It is fixed on the turntable with a bearing in a straight line. Considering the strength, each gear is designed to have a weight with a small moment of inertia and to be able to reduce the disturbance of running water, and it is necessary to take care not to hinder the rotation of the first turbine. For large-scale water turbines, it is desirable to install a lubrication system to reduce the friction loss between the shaft and bearing.
[0027]
When a part around the third gear (30) is toothless and the rack (26) faces the toothed band during operation, the rack rises and pumps water, and when the toothless band and the rack (26) face each other. The gear is disengaged and the piston (24) drops by its own weight.
It measures the rotation speed of the 3rd gear and detects the upper and lower limit rotation speed and the lower limit rotation speed. Pumping efficiency improves as the length of the toothless zone and the fall time are reduced. To reduce the drop time, a high-density material must be used. On the other hand, if the weight of the piston system in water increases, the amount of water stored will decrease and the water storage efficiency will decrease. The shorter the piston stroke, the shorter the rack drop time, but the larger the cross-sectional area of the piston. However, piston system: collectively refers to each of rack, piston, and piston rod.
[0028]
Rudder function
[0029]
In this water storage type power generator, a rudder is installed on the turntable, the rudder angle is set to ± 0 during operation, and it is difficult to reverse rotation by using a reduction gear, so if the reduction ratio is small, use a worm gear. If the water flow direction changes, the first turbine can be kept almost parallel to the water flow direction, and the energy of the water flow can be used effectively.
[0030]
The pump can be started and stopped by engaging or releasing the first gear and the second gear. Therefore, when the pump is operated from a stop at a location where the flow velocity is high, the screw is driven by a rudder to smoothly engage the gears. It is a configuration that can reduce the rotation of.
[0031]
If the screw exceeds the rated speed and reaches the upper limit speed when the flow rate exceeds the rated speed, the rack will rise and it will not be possible to drop, so at this time if the rudder angle is changed by control and the speed is reduced below the upper limit speed, The rack is naturally dropped and the pump resumes operation.
[0032]
Since the rotation of the screw can be controlled by the rudder, the amount of pumped water can be adjusted, and the amount of stored water can be adjusted as a backup of the water level adjuster.
[0033]
In a place where dirt is mixed in the running water, a dustproof net of a suitable size that can withstand the running water is fixed along the periphery of the upstream rotating disk (41) of the first turbine (35), and the dust net is fixed through the detector. We eliminate garbage. The detection method uses the water level difference, pressure difference, flow velocity difference or monitoring camera between the upstream and downstream sides of the net. The dust removal method is configured to control the rudder (39) and rotate the turntable (41) alternately at an angle of more than 90 ° from the ± 0 position to remove the dust attached to the net using running water.
[0034]
There is no need to install a rudder (39) in places where the flowing water direction and flow velocity are almost constant throughout the year, but in consideration of the case where an excessive flow velocity occurs, the third gear is not overspeeded to the upper limit rotation speed. A configuration with a deceleration function is required. Therefore, all equipment such as a rotating disk, a rotating shaft, a fixed shaft, a lubrication device, a rudder, a control device, a transmitting and receiving device, a motor, a slip ring, and a slip ring storage box are unnecessary, and a fixed disk is installed instead of the rotating disk. In addition, the equipment is simplified, making it extremely economical. (See Fig. 4)
[0035]
How to start and stop the pump when the water supply pipe is disconnected
[0036]
How to start the pump
While the pump is stopped at the point where the flow velocity is almost constant, the first turbine is in no-load operation and the rotation speed is high. Therefore, if the first turbine is switched to remote manual control and the pump start switch is turned on, the first turbine upper rotation speed is detected and the steering is performed. By changing the angle from the position of ± 0, decelerating the rotation speed of the first turbine, and pulling it to the downstream side by a screw connection opening device separately installed downstream of the screw on the turntable near the lower limit rotation speed of the first turbine. Then, the screw shaft moves to the downstream side due to the water pressure, and the first gear and the second gear naturally mesh with each other, and the pump starts operating. After that, if switching to remote automatic control, the rudder is automatically controlled, the lower limit rotation speed is detected, the rotation speed is increased, the rotation speed below the upper limit is detected, the rotation is reduced, and the rotation speed is reduced after that, and the rotation speed is equal to or higher than the lower limit rotation speed until the inside of the pumping pipe is full, It is configured to be automatically controlled near the rated speed below the upper limit and below the speed. After filling the pumping pipe, when the water level exceeds the lower limit of the water storage tank, automatic control is performed in conjunction with a separately installed water level adjuster to store the water and when the upper limit water level of the tank is reached. The drain valve is closed gently by the water level adjuster, and the inlet valve of the second turbine is closed gently when the detection of the lower water level continues. After water storage starts, the rudder angle is automatically set to ± 0 by detecting the lower limit water level, and the rudder is automatically locked by the reduction gear or worm gear. After that, the water level adjustment of the water storage tank by the rudder will be operated as a backup.
[0037]
How to stop the pump
The stop method is switched from remote automatic control to manual control, and if the pump stop switch is turned on, the rudder angle is controlled, the rotation speed of the first turbine is reduced to the lower rotation speed, and the rotation is detected by the lower rotation speed detection. By pressing to the upstream side by a screw connection opening device separately installed on the downstream side of the screw shaft on the board, the screw shaft moves to the upstream side, the first gear and the second gear disengage, and the screw becomes a single rotation, The pump stops running. If the pump stop switch is turned off and the mode is switched to remote automatic control, the rudder detects the number of rotations of the third gear, accelerates the rotation, and stops at the rudder angle ± 0. It is received by the installed controller and displayed on the remote monitoring room. The rudder is naturally locked by the reduction gear. If the rudder angle is fixed at a position of ± 0 degrees, it is considered that the first turbine will be able to maintain the natural environment and prevent the rudder from deteriorating as the running water approaches the natural flow with no load operation.
[0038]
The rack (26) is surrounded by a rack case, and in order to rotate smoothly with the turntable (41), the horizontal of the turntable and the vertical of the cylinder (25) are accurately set so that the upper, lower, left and right of the piston (24) can be moved. It is important to minimize frictional resistance due to sliding and to prevent piston leakage. At the same time, it is necessary to minimize the gap between both sides in the roller groove and both sides of the roller loaded in the groove as much as possible, especially to minimize the frictional resistance of each part that comes in contact when the rack falls. Since the frictional resistance due to the left and right sliding of the piston is applied to each roller via the rack, the roller shaft must be formed firmly and a lubrication device must be considered for large output. The rack is provided with a roller groove in which the rack (26) can be vertically and smoothly moved up and down vertically and symmetrically with respect to the front and left and right ends of the rack as compared with the front view of FIG. 2 and the plan view of FIG. A roller bearing is fixed to the case, and a roller slightly narrower than the groove width slides lightly on the front and back of the rack in this groove. The rack case surrounding the rack is open at the upper end surface and covers except for the part of the rack (26) facing the third gear (30). A buffer material is interposed on the back surface of the rack receiving plate to quickly stop the vertical vibration and absorb the impact sound, and adjust the length of the lower end of the rack to smoothly engage with the third gear. When the rack cannot be dropped at the upper limit at the time of overspeed, the third gear can smoothly run idle at the lower end of the rack, but if it continues for a long time, the gear will be worn, so the rack will be set to the maximum upper limit set in advance Immediately before the teeth of the last row of the third gear located just before the toothless band facing the rack are disengaged from the rack after being engaged with the rack, a groove is provided on a rod circumference separately provided below the rod connecting ring, and a groove is formed in the groove. Plunge As the will, which may ease the friction between the rack and the lower end of the third gear By Kamiawasu the stopper to be used and the like. The rack case is positioned coaxially with the cylinder so that the piston (24) can be rotated left and right and up and down. The rack case is fixed on the turntable (41), and the sediment in the rack case can flow out naturally. The mounting position of the upper roller and the lower roller is such that the lower end of the rack does not come off from the roller when the rack reaches the upper limit at the time of operating the rack, one position on each of the left and right ends on the back surface, and the front of the rack near the upper end of the third gear (30). At least eight places, one on each side of the back, so that the rack can move up and down smoothly.
[0039]
The reason why the hydraulic pipe (7) is installed coaxially outside the pumping pipe (8) installed on the mounting table (18) is that when the pump is a single pipe only, the stroke when the piston (24) rises is long. The shorter the operation time, the higher the water pressure will be applied to the pumping pipe and the pressure head will fluctuate, which may fluctuate the rotation of the second turbine and the power generation output. To avoid double pipes and make them single pipes,
Changing the configuration to shorten the piston stroke and lengthen the piston rise time can reduce fluctuations in water pressure during storage, so the importance of a double pipe becomes less significant. For applications other than power generation and applications that do not cause an obstacle due to slight fluctuations in water pressure, a single tube is used. In the case of a double pipe, the larger the cross-section of the hydraulic pipe, the smaller the hydraulic pressure fluctuation at the time of sudden load change of the second turbine. On the other hand, the amount of material used increases, so the balance with the water usage of the second turbine is reduced. Required. Unlike pumping pipes that have the same cross-sectional area on the upper and lower surfaces, the horizontal cross-sectional area of the penstock does not necessarily have to be the same at the top and bottom, and it is advisable to reduce the upper cross-sectional area in consideration of earthquake and wind pressure loads. think. I think that the cross-sectional area inside the penstock should be at least twice as high as the pumping pipe at the upper end and at least three times at the lower end. It is preferable that the material used for the pumping pipe and the hydraulic pipe has the same expansion coefficient.If different, the expansion and contraction of each pipe due to the temperature change applied to the bottom of the water storage tank by interposing an elastic packing especially at the bottom of the pumping pipe. Care must be taken to alleviate the imbalance and prevent damage to the water storage tank (5). The pumping pipe is formed with small holes penetrating from the outer periphery to the inner surface at appropriate intervals from below to above, so that the pumping pipe is filled near the full level during the period when the pumping pipe is full from the water cut off state before the start of pumping, and the inside of the water storage tank When the water level exceeds the lower limit, the second turbine can be started immediately. Also, when draining from the hydraulic pipe (7) with the intake drainage pipe with valve (11) or the water level adjuster, it is configured to be able to drain the pumping pipe (8) with a small time difference.
[0040]
The buffer cover above the upper end of the water pipe that protrudes and protrudes into the water storage tank (5) is fixed to the vicinity of the upper end of the water pipe by using a column, and the direction of the water spouting at the time of water storage is smoothly changed downward to mitigate the water level fluctuation of the water storage tank. Configuration. At the top of the water storage tank, pierce the intake port (2) and fix the dustproof net on it. For this reason, the inside of the water storage tank will be at the same pressure as the outside air, and the pumping pipe (8), the hydraulic pipe (7), and the water storage tank (5) will be configured to avoid damage due to the pressure difference. The capacity of the water storage tank is determined based on the application and usage, but if it can be reduced to a small capacity, it will be very economically advantageous. A water level adjuster with a valve that can be automatically opened and closed and a water intake drain pipe with a valve fully opened are connected to detect the upper and lower water levels of the water storage tank, and automatically control the upper water level to detect the second water turbine inlet valve ( 10) A structure capable of opening or draining water, stopping the drainage by detecting the lower limit water level, and closing the water turbine inlet valve (10) if the detection is continued, and automatically controlling the rudder as a backup for the water storage tank. By setting the water level to a standard value, the water storage tank can be made small and the construction cost can be greatly reduced. Also, if it is difficult to store water at a high place on site due to an environment such as an earthquake or a typhoon, or if there is land on the ground, install a water storage tank and power generation room on the land and extend the pumping pipe to the land. A method is also conceivable.
[0041]
If it is difficult to install a water storage tank at sea, install a separate compressed air tank near the installation table (18) instead of the water storage tank in FIG. Instead, install a water storage tank, fill the water storage tank from below with a pump to compress the air in the water storage tank, store it in the upper compressed air tank via a check valve, and then fill the water storage tank bottom with water The drainage pipe with valve installed separately drains into the sea, and at the same time, the outside air is sucked in through the intake pipe with valve that opens inside from the outer periphery of the water storage tank. In addition to storing high-pressure air and operating the turbine to generate electricity, the other end of the water supply pipe that opens into the bottom of the compressed air tank that is installed separately at high water pressure near the fullness of the water storage tank is a water supply pump. The inlet pipe is connected to the outlet, and the inlet pipe is opened from the outer periphery above the water storage tank to the inside.The air pressure in the compressed air tank is lower than the water pressure near full water in the water storage tank. It is configured to be able to supply water. After supplying seawater, close the valve and use the steam generated by the turbine to consume the steam produced on the bottom of the compressed air tank. It is also conceivable to use a salt-making method that can be discharged to the attached container.
[0042]
A required number of conductive slip rings (22) are separately fixed via an insulator to the outside of the cylinder (25) above the water surface in the slip ring storage box (23) to be subjected to rust prevention measures by a dehumidifying agent, and the periphery thereof is fixed. The conductive carbon brush loaded in the brush holder is pressed from the back of the holder by a spring and pressed against the slip ring surface to be slidable and able to withstand the current during operation. It is fixed to the support (50) and the lower end of the support (50) is fixed to the turntable (41). The brush slides on the slip ring surface and can rotate and reverse with the turntable (41). The input terminals of the slip ring are connected to the motor power supply and input / output signal lines of a separately installed control device by wiring from a power distribution panel from the power generation room, and the input wiring of the slip ring slides when the brush holder support (50) rotates. In order not to hinder the movement, make a small hole in the slip ring and penetrate the wiring to insulate it here and fix it to the terminal of each slip ring. The other end of the wiring connected to the output terminal of the sliding brush is connected to the waterproof transmission / reception device (37) input terminal installed on the back of the turntable (41) along the brush holder support (50), and the transmission / reception is performed. The other end of the wiring connected to the output terminal of the device (37) is connected to the motor power input terminal of the rudder operating device to be waterproof, and the voltage is applied to the waterproof motor through the on / off contact by signal reception of the transmitting and receiving device. In addition, the configuration can change the left and right angles of the rudder, and at the same time, can transmit the numerical values of the angles to the remote monitoring room via the control unit of the distribution board which is installed separately. If a worm gear is used to connect the drive motor shaft and the rudder (39) shaft, a reverse rotation prevention function is possible without using a brake. The reason for installing the transmission / reception device (37) and the rudder (39) on the back of the turntable (41) is to prevent the flowing water added to the first turbine (35), and it is also possible to install the transmitter and receiver on the top of the turntable. In Fig. 1, the rudder control power supply line is formed so as to be laid down from the cylinder along the brush holder column, but it is also possible to wire the cable to the hole drilled around the center of the rotating shaft separately from near the base at the lower end of the fixed base of the rotating disk. Although not impossible, it is necessary to take measures to prevent water from entering the sliding part between the rotating part and the fixed part and to check it.
[0043]
According to the paragraph [0011] [Equation 1], the flow velocity is 2 ms at the center of the circular tidal current having a diameter of 100 m or more.-1, Diameter d: 50m, length 150m
Energy of water (W) = {g (2ms-1)2(2g)-1} × {(1.963m2× 150m × 103 kgm-3) S-1}
エ ネ ル ギ ー The energy of water = 588,900 (KW).
[0044]
## EQU2 ## Into running water under the same conditions as above, the same sectional area S = 1,963 m2Approximate values for installing a two-turn screw turbine with the same length L = 150m are as follows.
Water turbine output (KW) = energy of water (KW) cosθη1
Water turbine output = 588,900 (KW)
∴Water turbine output = 480,352 (KW)
Where θ: 25 °, η1: Efficiency of water turbine 0.9 (considering output attenuation of 2 turns compared to 1 turn)
If θ is made an acute angle, the torque increases, but the flowing water decelerates on the downstream side of the screw, so even if θ is made too acute, the turbine output will decrease.Therefore, it is necessary to pay attention to the setting of the inclination angle as the screw length increases It becomes. The output is also affected by the size of the cross section of the running water around the screw. In consideration of bearing loss, especially in the case of high-output water turbines, it is considered that the construction that can automatically lubricate the bearings will form equipment with the highest water storage efficiency.
[0045]
[Equation 3] 2 ms-1The approximate value of the gear ratio at the given flow rate is as follows. 0.5ms in a no-load experiment of a model water turbine with a two-turn screw tilt angle of 25 °-1About 2 revolutions / sec (2Rs-1).
Rotational speed of water turbine (Rs-1) Is proportional to the flow velocity, so 2ms-1(2 / 0.5) ms at a flow rate of-1× 2Rs-1= 8Rs-1, Because the speed at full load is 1/2 of the speed at no load and high efficiency
8Rs if the rated speed at full load is halved-1× 1/2 = 4Rs-1
If the drop time of the rack is set to 2 seconds and the rise time is set to 6 seconds, the operation of the third gear at full load will be one rotation in about 8 seconds, and the length of the toothless band will be 1/4 of one round. , Rack operating efficiency η2Becomes 3/4 = 0.75. The rotation speed of the third gear is 0.125Rs-1Reduction gear ratio for setting to = 4Rs-1/0.125Rs-1= 32 Therefore, if the gear ratio is 1:32, it will be around the rated speed at full load.
[0046]
## EQU4 ## Rack output (KW) = water turbine output (KW) η2
= 480,352 (KW) × 0.75
Rack output = 360,264 (KW)
Where η2:
[0047]
The assumed storage capacity, including the volume of the piston system converted to water, is calculated from the rack output.
## EQU5 ## Rack output 360, 264 (KW) = g (ms)-2) H (m) Q (m3s-1)
Assumed water storage (Qm3s-1) = [360,264 (KW) {9.8 (ms)-2) 100 (m)}-1]
∴Assumed water storage Q = 367.6m3s-1, Paragraph [0045]
Therefore, the rated rotation speed of the third gear is 0.125 Rs-1= 1R (8s)-1, The assumed amount of water stored in one stroke Q = 8 (367.6 m3s-1)
Assumed water storage quantity Q for one stroke = 2.941 m3(8s)-1
(Note) Water storage height: 100m (The actual height is the height from the external water surface to the upper limit water level of the water storage tank. Therefore, it is slightly different from the height of the pumping pipe.)
G: gravity acceleration of 9.8 ms-2, Ρ0: Density of water (103kgm-3), Rated speed of the third gear: 0.125Rs-1= 1R (8s)-1
[0048]
[Equation 6] The calculation method of the average density of the piston system is as follows.
Piston weight (kg) = [(rack + rod + piston) {each volume V (m3) × density ρ of each (103kgm-3)}] If we substitute the following values
Piston weight (kg) = [{Rack V (60m3) Ρ (5 × 103kgm-3))} + {Rod V (2.5m3) Ρ (7 × 103kgm-3)} + {(Piston V (76m3) Ρ (6 × 103kgm-3)}]
∴Piston weight = 773.5 × 103(Kg)
Piston system volume V = (60 + 2.5 + 76) m3= 138.5m3
Average density ρ of piston systema= (Piston system weight kg) (Piston system volume m3)-1
Average density ρ of piston systema= (773.5 × 103kg) (138.5m3)-1
∴Piston system average density ρa= 5.58 × 103kgm-3
[Equation 7] Next, calculate the stroke length of the piston.
(2ρa)-1,
h = (2s)2{(5.5-1) 103kgm-3} 9.8ms-2{(2 × 5.58) 103kgm-3}-1,
∴Stroke length = 16.1m
According to the experiment, when one third gear passes through the toothless band, the first turbine has no load and the rotation speed increases slightly, so the toothless band of the rack should be set longer to ensure operation. Or set a shorter stroke. Here, it is assumed that the stroke length (h) = 12 m. Where ρa: Average density of piston system (103kgm-3), Ρ0: Density of water (103kgm-3), G: gravity acceleration (9.8 ms)-2)
[0049]
8881 stroke (8s)-1Actual water storage amount Q (m3)}
= (Assumed water storage amount per stroke)-(water volume equal to the weight of water in the piston system)
Q = [{Assumed water storage amount m for one stroke3(8S)-1}-{Piston system volume Vm3(8S)-1(Ρa−ρ0) 103kgm-3} {(Ρ0) 103kgm-3}-1]
Q = $ 2.941m3(8s)-1}-{138.5m3(8s)-1(5.58-1) 103kgm-3(103kgm-3)-1}
実 Actual water storage amount per stroke Q = 2.307 (m3) (8s)-1
## EQU9 ## Actual water storage amount per second Q = 2,307 (m3) (8s)-1
実 Actual water storage Q per second = 288.4m3s-1
## EQU10 ## Pump efficiency η3= Actual water volume m3(S)-1/ Water storage volume m including the volume of water converted to the weight of water in the piston system3(S)-1
Pump efficiency η3= 288.4 (m3) (S)-1/367.6 (m3) (S) =-1
Pump efficiency η3= 0.785
[0050]
## EQU11 ## Pump output (KW) = Rack output × η3
Pump output (KW) = 360,264 (KW) × 0.785,
Pump output = 282,807 (KW)
Therefore, the total output η0= Pump power / water energy
η0= 282,807 (KW) / 588,900 (KW)
∴ Total output η0= 0.48.
This numerical value is an example of a calculation method using assumed numerical values, and the magnitude of the frictional resistance of each part, the inclination angle of the screw and the cross sectional area of the flowing water around the first turbine are mutually affected. Therefore, when implementing a high-output turbine, it is necessary to create detailed measurement data in advance at locations where the water flow speed is constant.
[0051]
[Equation 12] Calculate the cross-sectional area of the cylinder.
Cylinder cross section (S) m2= {Actual water storage per stroke of rated output (m3) (8s)-1{Length of one stroke (m)}-1
Cylinder cross-sectional area (S) = 2,307m3(8s)-1(12m)-1
断面 Cylinder cross section (S) = 192.25m2(8s)-1,
∴ Inner diameter d = 15.645m, but the length of one stroke 12m is the value set in [Equation 7] above.
[0052]
The longer the piston stroke, the longer the time required to drop and the time facing the toothless band on the rack may cause a loss. As a method for preventing this loss, referring to FIG. 4, two third gears are arranged on the second shaft and fixed to the teeth and shafts at different angles of 180 °, and the rack is made a two-unit type, and the upper ends of the two cylinders are cut in the same manner. Converting to a single cylinder with an area and installing a check valve, if the upper part of this cylinder is made to be able to prevent water leakage in the pumping pipe and to be able to slide left and right, the two racks are alternately toothed without interruption The rotation of the 1st turbine is meshed with the belt and it can be moved up and down stably without unevenness, so that the efficiency of the pump can be improved.
[0053]
【The invention's effect】
[0054]
In contrast to the present invention, according to the technology of the present invention, a special high-voltage, high-power generation system is used, which uses an electric pump to store water at a high place and uses it. It is completely different from the pumping method, because it uses an electric pump and the generated power stored is small compared to the power consumption of the pump.
[0055]
In contrast to the present invention, a power generation device that uses a water turbine directly from running water has been devised in accordance with the technology of the present invention. It is currently not used for. From the above results, by providing the present invention, the tidal current and the unused low head existing throughout the river can be effectively utilized, and especially in a place where a dam can be built in a river having a low flow velocity, the low head is relatively high. Since it can be converted to a water head, a general-purpose water turbine can be used, and if the principle of the present invention is used, it can be stored at a high place as positive pumping energy and can be used for a wide range of uses. This will help "delay the progress of global environmental pollution" and "reduce fossil fuel consumption" and "enjoy the inexpensive nature's blessings that are forever and everlasting."
[Brief description of the drawings]
FIG. 1 is a perspective view of the present invention.
FIG. 2 is an enlarged front view of the rack and the rack case of FIG. 1;
FIG. 3 is an enlarged plan view of the rack and the rack case of FIG. 1;
FIG. 4 is a perspective view of a double piston according to the present invention.
[Explanation of symbols]
1. 5. dustproof net Pumping pipe upper end
2.
3. 7. buffer cover Pumping pipe
4. Cover strut 9. Pumping tube fixing material
5.
11. Intake drainage pipe with valve 32. 2nd gear
12.
13.
14.
15.
16. Water
17.
18.
19. Pumping
20. Mounting base fixing material 41. Turntable
21.
22.
23. Slip ring storage box 44. Prop fixing material
24. Piston with check valve 45. Fixed axis
25. Cylinder 46. Guide bearing
26.
27.
28.
29. Rack case installation plate 50. Brush holder support
30. Third gear 51. Rod connecting ring
31. 2nd axis
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003117608A JP3991337B2 (en) | 2003-03-19 | 2003-03-19 | Water storage type power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003117608A JP3991337B2 (en) | 2003-03-19 | 2003-03-19 | Water storage type power generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004286001A true JP2004286001A (en) | 2004-10-14 |
JP3991337B2 JP3991337B2 (en) | 2007-10-17 |
Family
ID=33296304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003117608A Expired - Fee Related JP3991337B2 (en) | 2003-03-19 | 2003-03-19 | Water storage type power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3991337B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013170547A (en) * | 2012-02-22 | 2013-09-02 | Toshiba Corp | Floating wreckage removal device, and underwater device |
JP5559412B1 (en) * | 2013-11-05 | 2014-07-23 | 長松院 泰久 | Buoyancy type connected turbine type power generator |
JP2019126233A (en) * | 2018-01-19 | 2019-07-25 | ダイキン工業株式会社 | Fluid system |
-
2003
- 2003-03-19 JP JP2003117608A patent/JP3991337B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013170547A (en) * | 2012-02-22 | 2013-09-02 | Toshiba Corp | Floating wreckage removal device, and underwater device |
JP5559412B1 (en) * | 2013-11-05 | 2014-07-23 | 長松院 泰久 | Buoyancy type connected turbine type power generator |
JP2015090077A (en) * | 2013-11-05 | 2015-05-11 | 長松院 泰久 | Buoyance type connection water turbine power generation device |
JP2019126233A (en) * | 2018-01-19 | 2019-07-25 | ダイキン工業株式会社 | Fluid system |
Also Published As
Publication number | Publication date |
---|---|
JP3991337B2 (en) | 2007-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331982B2 (en) | Wave power plant | |
US8080894B2 (en) | Wave powered electrical generator | |
CN102016294B (en) | Wave power plant and transmission | |
US4447740A (en) | Wave responsive generator | |
US7872365B2 (en) | Wave powered electrical generator | |
CA2779599C (en) | Tapered helical auger turbine to convert hydrokinetic energy into electrical energy | |
US20100301609A1 (en) | River-Flow Electricity Generation | |
CN102132034A (en) | An oceanic wave energy utilization system | |
AU2681900A (en) | Water current turbine sleeve mounting | |
CN104329205A (en) | Water flow power generating device | |
CN204226095U (en) | A kind of stream generating device | |
GB2348250A (en) | Pile mounted vertically displacable water turbine. | |
US20110221209A1 (en) | Buoyancy Energy Cell | |
JP2016517923A (en) | Submersible hydroelectric generator device and method for draining water from such device | |
US20200395818A1 (en) | The electric power generation system and Potential energy storage device for a power generation system | |
KR20060060011A (en) | Energy generator powered by tidal currents | |
GB2223063A (en) | Water powered floating electric generator | |
KR101874213B1 (en) | Run-of-the-river or ocean current turbine | |
CN102628419B (en) | Wave jumping impeller type wave energy power generating device automatically lifting along with tide level | |
CN109469578A (en) | A kind of wind-powered electricity generation/ocean energy complementarity power generation wave absorber | |
CN117404253A (en) | Vertical shaft floating type offshore wind power generation equipment and working control method thereof | |
EP2302202A1 (en) | Hydraulic propulsion for increases of hydroelektric power station capacity | |
JP2004286001A (en) | Water storage type power generation equipment by waterwheel output using low water head | |
CN104981398B (en) | Floating wind turbine structure | |
EP2501933A1 (en) | Plant for production of energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20060131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060626 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20060912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070307 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070423 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070713 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |