JP2004284405A - Vehicle body front part structure - Google Patents

Vehicle body front part structure Download PDF

Info

Publication number
JP2004284405A
JP2004284405A JP2003075979A JP2003075979A JP2004284405A JP 2004284405 A JP2004284405 A JP 2004284405A JP 2003075979 A JP2003075979 A JP 2003075979A JP 2003075979 A JP2003075979 A JP 2003075979A JP 2004284405 A JP2004284405 A JP 2004284405A
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
arc portion
horizontal member
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003075979A
Other languages
Japanese (ja)
Inventor
Sanemare Sano
真希 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003075979A priority Critical patent/JP2004284405A/en
Publication of JP2004284405A publication Critical patent/JP2004284405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle body front part structure capable of efficiently dispersing a load inputted to a vehicle body front part at offset collision, oblique front collision or front part side surface collision and efficiently absorbing energy. <P>SOLUTION: A front circular part 14 expanded to the outside the vehicle body is provided on a front oblique part of the vehicle laid from a vertical member 11 of a sub-frame 10 to a front lateral member 12 and the front lateral member 12 is formed to a recessed shape part 15 smoothly curved to a rear side of the vehicle at a central part in a car width direction. Thereby, the lateral load F11 of the vehicle body front part is dispersed by the front circular part 14 to promote the dispersion of the load to a non-collision side. The front lateral member 12 provided with the recessed shape part is bent/deformed at the latter stage of the collision to stably absorb the energy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車体前部構造に関する。
【0002】
【従来の技術】
車体前部構造の中には、車幅方向両側のサイドメンバにマウントブラケットを介してパワーユニットを搭載支持するサブフレームを連結したものがあり、所定の第1の軸荷重が前方から加わった場合、サイドメンバの前方部分が圧縮変形する一方、サイドメンバの後方部分は変形しないようにするとともに、その後方部分は第1の軸荷重よりも大きな所定の第2の軸荷重が前方から加わることにより曲げ変形して、2段階のエネルギー吸収を可能としたものが知られている(例えば、特許文献1参照。)。
【0003】
また、この車体前部構造では、前記サブフレームは車幅方向に対向した縦部材と、縦部材の車両前方部分間および車両後方部分間をそれぞれ繋ぐ前方横部材および後方横部材と、によって全体が矩形状に構成され、前記マウントブラケットは各縦部材の車両前方端部および車両後方端部に配置するようになっている。
【0004】
【特許文献1】
特開2000−16327号公報(第3頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、かかる従来の車体前部構造にあっては、正面衝突等のように前方から衝突荷重が入力する場合には、サブフレームの縦部材が圧縮変形してエネルギー吸収が可能であるが、オフセット衝突や斜め前方衝突あるいは前部側面衝突時には、サブフレームの前端部が非衝突側に荷重伝達する以前に、前方横部材が直状であるため途中で折れ曲がってしまったり、変形できずに突っ張り状態となってしまったりして、車体前部での衝突エネルギーの吸収効果が十分に発揮できない可能性がある。
【0006】
そこで、本発明は車体前部にオフセット衝突や斜め前方衝突あるいは前部側面衝突時に入力される荷重を効率良く分散し、かつ、エネルギーを効率良く吸収することができる車体前部構造を提供するものである。
【0007】
【課題を解決するための手段】
本発明の車体前部構造にあっては、サブフレームの縦部材から前方横部材に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分を設けるとともに、前記前方横部材にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部を設けたことを特徴としている。
【0008】
【発明の効果】
本発明によれば、車体前部にオフセット前方や斜め前方や横方向から荷重が入力した場合に、サブフレームの前方斜め方向部分に設けた前方円弧部分によって常に荷重を分散させることができ、このことはサブフレームの前方横部材に効率良く荷重を伝達し、ひいては、サブフレームの非衝突側への荷重分散を促進することができる。
【0009】
また、衝突後半には凹設形状部を設けた前方横部材が効果的に変形し、また、前記前方円弧部分も変形するため、これら前方横部材および前方円弧部分の変形により、衝突形態のバラツキによっても安定してエネルギーを吸収することができる。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0011】
図1〜図4は本発明にかかる車体前部構造の第1実施形態を示し、図1は本発明の対象とする車体の全体斜視図、図2は車体前部右側の骨格構造を示す斜視図、図3は車体前部の側方衝突時の作用を順を追って示す車体前部骨格の平面図、図4はオフセット衝突時の作用を順を追って示す車体前部骨格の平面図である。
【0012】
この第1実施形態の車体前部構造は、図1に示す車体1のフロントコンパートメント2に適用され、このフロントコンパートメント2は、図2に示すように車幅方向両側に対向して1対のサイドメンバ3が車体前後方向に延在しており、これらサイドメンバ3の前端に跨ってバンパーレインフォース4が連結されている。
【0013】
また、サイドメンバ3の車両後方は、ダッシュパネル5に沿って下方に傾斜してフロアパネル6の下面に配置したエクステンションサイドメンバ7へと連続している。また、フロアパネル6の車幅方向外側縁には、エクステンションサイドメンバ7と略平行にサイドシル8が延在し、このサイドシル8の前端部にはフロントピラー9が立ち上がっている。
【0014】
前記サイドメンバ3の下方にはサブフレーム10を配置し、このサブフレーム10に図外のパワーユニットを搭載支持するようになっており、このサブフレーム10は図3にも示すように、車幅方向に対向した縦部材11と、これら縦部材11の前方部分間および後方部分間をそれぞれ繋ぐ前方横部材12および後方横部材13と、によって平面視して全体が閉じた構造となっている。
【0015】
そして、この実施形態ではサブフレーム10の形状を、縦部材11から前方横部材12に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分14を設けるとともに、前方横部材12にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部15を設けてある。
【0016】
また、前方円弧部分14に連なる縦部材11の車両後方部分に、この前方円弧部分14との間に、前方横部材12と後方横部材14とが略等長となる位置に設定した変曲点K1を境に、この前方円弧部分14から同一方向に湾曲する後方円弧部分16を設けてある。尚、この第1実施形態の後方横部材13は車幅方向に直線的に延びている。
【0017】
更に、前方円弧部分14とこれに連続する縦部材11との変曲点K1近傍に結合部C1を設けるとともに、前方横部材12および後方横部材13のそれぞれの車幅方向略中央部に結合部C2,C3を設け、結合部C1をサイドメンバ3の取付部P1に連結するとともに、結合部C2をバンパーレインフォース4の取付部P2に連結し、かつ、結合部C3をダッシュクロスメンバ5aの取付部P3に連結することにより、サブフレーム10の車体1への結合箇所を、左右一対の結合部C1,C1と前,後の結合部C2,C3の4箇所としてある。
【0018】
また、この第1実施形態では図外のパワーユニットを支持するエンジンマウント部E1,E2は、左右一対の結合部C1の近傍および結合部C3の近傍の3箇所に設けている。
【0019】
以上の構成によりこの第1実施形態の車体前部構造にあっては、図3(b)に示すように前部側面衝突によって衝突荷重F11が縦部材11の側方から入力した場合、この衝突荷重F11は、前方円弧部分14から荷重f31,f41とバランス良く分散して前方横部材12および後方横部材13に伝達される。
【0020】
一方、前方横部材12の中央部近傍が結合部C2を介して車体側に拘束してあるため、変形が進むに伴ってその拘束部位も変形することによって、非衝突側、つまり、サブフレーム10の図3(b)中右側略半分への荷重伝達が行われる。
【0021】
その後、更に変形が進むことにより、図3(c)に示すように前方円弧部分14が結合部C1近傍の変曲点K1から曲げ変形をし、曲げモーメントM11の伝達により前方横部材12の変曲点K2近傍で曲げ変形が発生するため、非衝突側部材への荷重伝達を実現し、反力を発生しつつ部材の曲げ変形によりエネルギー吸収が行われる。
【0022】
また、図4(a)に示すようにオフセット衝突の場合、前方円弧部分14の前端から入力が縦部材11と前方横部材12にバランス良く荷重f32,f42として分散され、次に前方円弧部分14が正面から押し込まれ、前方横部材12が中央の結合部C2を基点に曲げられることにより、図4(b)に示すように、軸力f32と曲げモーメントM12がサブフレーム10の図中右方の非衝突側にも伝達される。
【0023】
そして、前方横部材12の変曲点K2と縦部材11の結合部C1を基点に曲げ変形を行い、また、縦部材11の後部の変曲点K3によっても曲げ変形を行うことにより、エネルギーの吸収効率を高めることができる。
【0024】
即ち、この第1実施形態では、車体前部にオフセット前方あるいは斜め前方や横方向から荷重が入力した場合に、サブフレーム10の前方斜め方向部分に設けた前方円弧部分14によって常に荷重を分散させることができ、このことはサブフレーム10の前方横部材12に効率良く荷重を伝達し、ひいては、サブフレーム10の非衝突側への荷重分散を促進することができる。
【0025】
また、衝突後半には凹設形状部15を設けた前方横部材12が変形し、また、前記前方円弧部分14も変形するため、これら前方横部材12および前方円弧部分14の変形により、衝突形態のバラツキによっても安定してエネルギーを吸収することができる。
【0026】
従って、オフセット衝突や斜め前方衝突あるいは前部側方衝突の場合に、衝突側と反対の方向への荷重分散および変形によるエネルギー吸収を効率良く行うことができるため、キャビンへの入力を低減してキャビン変形を小さく抑制することができる。尚、正面衝突時にはサブフレーム10は縦部材11が曲げ変形するとともに、前方横部材12は図外のパワーユニットとの干渉により圧潰することになる。
【0027】
また、この第1実施形態では前述した作用効果に加えて、サブフレーム10の車体への結合箇所を、前方円弧部分14とこれに連続する縦部材11との変曲点K1近傍と、前方横部材12および後方横部材13それぞれの車幅方向略中央部との4箇所としたことにより、斜め前方および横方向から荷重が入力する場合、前方横部材12は変曲点近傍が拘束されていることで、衝突初期には荷重を非衝突側に伝達し易くなる。そして、入力の増加に伴って曲げ変形を行い、その動きに追従して反対側の縦部材と横部材12,13の変曲点周辺の変形を誘発する。
【0028】
更に、縦部材11と前方横部材12の変曲点近傍が拘束されていることにより衝突初期に前方円弧状部分14で荷重を受け、その後、結合部C1よりも後方への荷重伝達が行われて曲げ変形等によりエネルギーの吸収効率を高めることができる。
【0029】
尚、正面から荷重が作用する場合、後方横部材13の結合によりサブフレーム10前部の変形後、結合部C1を支点にサブフレーム10の曲げ変形によりエネルギーを吸収することができる。
【0030】
つまり、衝突初期に前方横部材12から非衝突側に荷重伝達を行い、前方横部材12の変曲点の拘束部分よりも前方部分で曲げ変形して、後方部分の変形によりエネルギー吸収を行う。また、縦部材11は変曲点近傍よりも前方部分で圧潰や曲げ変形してエネルギー吸収し、衝突後半は後方部分の変形により確実にエネルギーを吸収できる。
【0031】
図5,図6は本発明の第2実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図5は車体前部右側の骨格構造を示す斜視図、図6は車体前部の斜め前方衝突時の作用を順を追って示す車体前部骨格の平面図である。
【0032】
この第2実施形態の車体前部構造は、図5,図6(a)に示すように、第1実施形態と同様にサブフレーム10の形状を、縦部材11から前方横部材12に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分14を設けるとともに、前方横部材12にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部15を設けてある。
【0033】
そして、第1実施形態と主に異なる点は、前方円弧部分14に連なる縦部材11の車両後方部分に、この前方円弧部分14との間に、前方横部材12が後方横部材13よりも長くなる位置に変曲点K1を備えて、この前方円弧部分14から直線状に連なる後方直線部分17を設けてある。
【0034】
尚、この第2実施形態の後方横部材13は、第1実施形態と同様に車幅方向に直線的に延びている。
【0035】
また、前方横部材12の凹設形状部15近傍に結合部C4を設けるとともに、縦部材11と後方横部材13との変曲点K3近傍に結合部C5を設け、結合部C4をバンパーレインフォース4の車幅方向略中央部に設けた取付部P4に連結し、結合部C5をサイドメンバ3の取付部P5に連結することにより、サブフレーム10の車体1への取付箇所を3箇所としてある。
【0036】
更に、この第2実施形態では、パワーユニットを支持するエンジンマウント部E3,E4は前記結合部C4,C5の近傍に配置してある。
【0037】
従って、この第2実施形態の車体前部構造にあっては、図6(b)に示すように斜め前方衝突により斜め前方から衝突荷重F2が入力すると、前方円弧部分14によって縦部材11と前方横部材12に荷重f5,f6としてバランス良く分散される。また、衝突初期では前方円弧部分14は前側の結合部C4を基点に曲げ変形を行い、その後、その変形部が押し込まれるとともに、非衝突側への荷重伝達を増加させる。
【0038】
更に変形が進み、図6(c)に示すように縦部材11は車両後方部分が後方直線部分17によって斜め方向に直線的に形成されているため、その軸力で荷重を受け、かつ、その後方直線部分17は結合部C5によって車体に連結されているため、一定以上の荷重による変形が行われる。このため、前方円弧部分14の曲げ変形後に後方直線部分17の前端部が圧潰することにより、エネルギーの吸収効率を高めることができる。
【0039】
即ち、この第2実施形態では斜め前方衝突に限ることなく、オフセット衝突の場合に衝突荷重が前方の片側に作用する場合、前方円弧部分14で受けた荷重の横方向成分を前方横部材12に効率良く伝達するとともに、前後方向の荷重を車体前方外側から後方内側に向かって直線状に延びる後方直線部分17によって効率良く軸力として伝達でき、その際に前方円弧部分14と前方横部材12は変曲点K2周辺の曲げ変形によってエネルギーの吸収効率を高めることができる。
【0040】
また、後方横部材13を前方横部材12よりも短くすることにより、斜め方向の入力に対して軸力の伝達効率を高めて変形荷重を増加させることができる。
【0041】
図7,図8は本発明の第3実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図7は車体前部右側の骨格構造を示す斜視図、図8は車体前部の斜め前方衝突時の作用を順を追って示す車体前部骨格の平面図である。
【0042】
この第3実施形態の車体前部構造は、図7,図8(a)に示すように、第1実施形態と同様にサブフレーム10の形状を、縦部材11から前方横部材12に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分14を設けるとともに、前方横部材12にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部15を設けてある。
【0043】
そして、第1実施形態と主に異なる点は、前方円弧部分14に連なる縦部材11の車両後方部分に、この前方円弧部分14よりも大きな曲率半径をもって車体内方に膨らむ内方円弧部分18を設けてある。
【0044】
尚、この第2実施形態の後方横部材13は、第1実施形態と同様に車幅方向に直線的に延びている。
【0045】
また、前方円弧部分14とこれに連続する前方横部材12との変曲点K2近傍に結合部C6を設けるとともに、縦部材11と後方横部材13との変曲点K3近傍に結合部C7を設け、結合部C6をサイドメンバ3の取付部P6に連結し、結合部C7をサイドメンバ3の取付部P7に連結することにより、サブフレーム4の車体1への結合箇所を4箇所としてある。
【0046】
更に、この第3実施形態では、図外のパワーユニットを支持するエンジンマウント部E5,E6は前記結合部C6,C7の近傍に配置してある。
【0047】
従って、この第3実施形態の車体前部構造にあっては、図8(b)に示すように斜め前方衝突により斜め前方から衝突荷重F3が入力すると、前方円弧部分14からの入力によって縦部材11と前方横部材12の変曲点K2近傍に設けた結合部C6を基点として曲げ変形を行い、図8(c)に示すようにその動きにより発生した曲げモーメントM5が非衝突側に伝達される。
【0048】
そして、図8(b)に示すように前方横部材12の曲げ変形によりエネルギー吸収を行い、前後方向の荷重f8は車体前方外側から後方内側に向かって配置した内方円弧部分18に軸力f8とモーメントM4によって伝達する。そのとき、前方円弧部分14よりも後方に配置した内方円弧部分18の曲率半径が大きくなっており、その後端部は結合部C7によって車体1に連結されることで、前方円弧部分14が変形した後に縦部材11が内方円弧部分18から曲げ変形することにより、高いエネルギー吸収を確保することができる。
【0049】
即ち、この第3実施形態では斜め前方衝突に限ることなく、オフセット衝突の場合に衝突荷重が前方の片側に作用する場合、前方円弧部分14で受けた荷重の横方向成分を前方横部材12に効率良く伝達するとともに、前方横部材12の曲げ変形によりエネルギー吸収する一方、前後方向荷重を車体前方外側から後方内側に向かって配置される内方円弧部分18に軸力とモーメントとによって伝達する。
【0050】
そのとき、前方円弧部分14よりも後方の内方円弧部分18の曲率半径が大きいので、前方円弧部分14が変形した後に内方円弧部分18が変形するため、この内方円弧部分18の変形によりエネルギーの吸収効率を高めることができる。
【0051】
また、この第3実施形態では前述した作用効果に加えて、サブフレーム10の車体への結合箇所を、前方円弧部分14とこれに連続する前方横部材12との変曲点K2近傍と、縦部材11と後方横部材13との変曲点K3近傍との4箇所としたことにより、斜め前方および横方向から荷重が入力する場合、横方向荷重を前方円弧部分14と前方横部材12とが一体として動くことにより、非衝突側に荷重伝達することができる。そして、衝突後半には前方横部材12および縦部材11が変曲点をきっかけに曲げ変形を行ってエネルギー吸収する。
【0052】
更に、後方の変曲点K3近傍が拘束されることにより、正面から荷重が入力する場合、前後方向の荷重によりサブフレーム10が圧潰および曲げ変形によりエネルギー吸収を行うことができる。
【0053】
つまり、前方横部材12からの非衝突側への荷重伝達後に曲げ変形によるエネルギー吸収ができるため、縦部材11は後端部の支持により前端部が確実に圧潰し、また曲げ変形してエネルギー吸収することができる。
【0054】
図9,図10は本発明の第4実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図9は車体前部右側の骨格構造を示す斜視図、図10は車体前部の側方衝突時の作用を順を追って示す車体前部骨格の平面図である。
【0055】
この第4実施形態の車体前部構造は、図9,図10(a)に示すように、第1実施形態と同様にサブフレーム10の形状を、縦部材11から前方横部材12に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分14を設けるとともに、前方横部材12にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部15を設けてある。
【0056】
そして、第1実施形態と主に異なる点は、前方円弧部分14に縦部材11の車両後方部分を滑らかに連続させるとともに、後方横部材13を車体後方に膨らむ平面半円弧状に湾曲して、この後方横部材13を前記縦部材11に滑らかに連続させてある。
【0057】
また、第1実施形態と同様に前方円弧部分14とこれに連続する縦部材11との変曲点K1近傍に結合部C1を設けるとともに、前方横部材12および後方横部材13それぞれの車幅方向略中央部に結合部C2,C3を設け、結合部C1をサイドメンバ3の取付部P1に連結するとともに、結合部C2をバンパーレインフォース4の取付部P2に連結し、かつ、結合部C3をダッシュクロスメンバ5aの取付部P3に連結することにより、サブフレーム10の車体1への結合箇所を、左右一対の結合部C1,C1と前,後の結合部C2,C3の4箇所としてある。
【0058】
更に、この第4実施形態ではパワーユニットを支持するエンジンマウント部E8,E9,E10は、左右一対の結合部C1の近傍および結合部C2,C3の近傍の4箇所に設けている。
【0059】
従って、この第4実施形態の車体前部構造にあっては、図10(b)に示すように前部側方衝突によって横方向から衝突荷重F4が入力した場合、後方横部材13を半円弧状に形成したことにより、前方円弧部分14で分散した軸力f9,f10の反力を増加させるとともに、前方横部材12および後方横部材13がそれぞれの中央部に設けた結合部C2,C3を基点として曲げ変形するため、よりバランスの良い荷重分散と変形分散を行うことができる。
【0060】
即ち、この第4実施形態では斜め前方衝突に限ることなく前部側方衝突の場合に、衝突荷重が斜め前方および横方向から作用する場合、前方円弧部分14でバランス良く均等に荷重を分散し、横方向成分は衝突部位が前方であれば主に前方横部材12が荷重を受け、後方であれば主に後方横部材13が荷重を受けて、幅広い衝突範囲にも対応できる。
【0061】
また、横方向の荷重は非衝突側へ伝達することができるとともに、前,後方横部材12,13それぞれの中央部に変曲点K4,K5が形成されていることにより、変形の進行に伴って前,後方横部材12,13が曲げ変形してエネルギー吸収できるため、サブフレーム10の耐力を向上させるとともに変形によるエネルギー吸収量も増加することができる。
【0062】
図11,図12は本発明の第5実施形態を示し、前記第1実施形態と同一構成部分に同一符号を付して重複する説明を省略して述べるものとし、図11は車体前部右側の骨格構造を示す斜視図、図12は車体前部の斜め前方衝突時の作用を順を追って示す車体前部骨格の平面図である。
【0063】
この第5実施形態の車体前部構造は、図11,図12(a)に示すように、第1実施形態と同様にサブフレーム10の形状を、縦部材11から前方横部材12に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分14を設けるとともに、前方横部材12にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部15を設けてある。
【0064】
そして、第1実施形態と主に異なる点は、前方円弧部分14とこれに連続する縦部材11との変曲点K1近傍と、前方円弧部分14とこれに連続する前方横部材12との変曲点K2近傍と、を連結する取付ブラケット20を設け、この取付ブラケット20に車体への結合部C8を設けてある。
【0065】
従って、この実施形態では取付ブラケット20に結合部C8を設けたことにより、取付ブラケット20が結合した前記変曲点K2近傍を支持することになり、この場合のサブフレーム10の車体への結合箇所は、前方円弧部分14とこれに連続する前方横部材12との変曲点K2近傍であり、後方横部材13の車幅方向略中央部に結合部C3を設け、結合部C8をサイドメンバ3の取付部P8に連結するとともに、結合部C3をダッシュクロスメンバ5aの取付部P3に連結することにより、サブフレーム4の車体1への結合箇所を3箇所としてある。
【0066】
更に、この第5実施形態では、パワーユニットを支持するエンジンマウント部E11,E12は前記取付ブラケット20および結合部C3の近傍に配置してある。
【0067】
ところで、この第5実施形態のサブフレーム10は、第4実施形態と同様に前方円弧部分14に縦部材11の車両後方部分を滑らかに連続させるとともに、後方横部材13を車体後方に膨らむ平面半円弧状に湾曲して、この後方横部材13を前記縦部材11に滑らかに連続させてあるが、これに限ることなく第1〜第3実施形態のサブフレーム10の構造、若しくはそれ以外の構造を採ることができる。
【0068】
従って、この第5実施形態の車体前部構造にあっては、図12(b)に示すように斜め前方衝突等によって斜め前方から荷重F5が入力すると、前方円弧部分14と取付ブラケット20とによって閉じた構造となり、この閉じた構造部分の変形およびその変形によって前方横部材12の中央部を基点にする曲げ変形が誘発される。また、縦部材11の後方部分も後方横部材13の中央部の結合部C3を基点に曲げ変形することによりエネルギーの吸収効果をより高めることができる。
【0069】
即ち、この実施形態では斜め前方衝突に限ることなく、前部側方衝突やオフセット衝突によって衝突荷重が前方の片側に作用する場合、前方円弧部分14と取付ブラケット20とにより形成された閉じ構造部分の変形により、正面衝突と同様のエネルギー吸収を行うことができる。
【0070】
また、サブフレーム10の車体への結合箇所を、前方円弧部分14とこれに連続する前方横部材12との変曲点K2近傍と、後方横部材13の車幅方向略中央部の3箇所としたので、斜め前方や前部横方向から荷重が入力する場合、前部円弧部14から続く縦部材11の部分で湾曲した部分が伸びるような変形を行う。
【0071】
その際に、前方部の連結箇所は近接しているので拘束が十分に行われており、前方円弧部分14の断面変形を積極的に促進することができる。また、その後、縦部材11の曲げ変形によりエネルギー吸収を行う。
【0072】
オフセット衝突の場合、衝突初期は前端の圧潰による変形、後半部分は締結部分までの湾曲若しくは変曲点を有するメンバの曲げ変形により、エネルギーの吸収効率を高めることができる。
【0073】
ところで、本発明の車体前部構造は前記第1〜第5実施形態に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採ることができる。
【図面の簡単な説明】
【図1】本発明の対象とする車体の斜視図。
【図2】本発明の第1実施形態における車体前部右側の骨格構造を示す斜視図。
【図3】本発明の第1実施形態における車体前部の側方衝突時の作用を順を追って示す車体前部骨格の平面図。
【図4】本発明の第1実施形態におけるオフセット衝突時の作用を順を追って示す車体前部骨格の平面図。
【図5】本発明の第2実施形態における車体前部右側の骨格構造を示す斜視図。
【図6】本発明の第2実施形態における車体前部の斜め前方衝突時の作用を順を追って示す車体前部骨格の平面図。
【図7】本発明の第3実施形態における車体前部右側の骨格構造を示す斜視図。
【図8】本発明の第3実施形態における車体前部の斜め前方衝突時の作用を順を追って示す車体前部骨格の平面図。
【図9】本発明の第4実施形態における車体前部右側の骨格構造を示す斜視図。
【図10】本発明の第4実施形態における車体前部の側方衝突時の作用を順を追って示す車体前部骨格の平面図。
【図11】本発明の第5実施形態における車体前部右側の骨格構造を示す斜視図。
【図12】本発明の第5実施形態における車体前部の斜め前方衝突時の作用を順を追って示す車体前部骨格の平面図。
【符号の説明】
1 車体
3 サイドメンバ
10 サブフレーム
11 縦部材
12 前方横部材
13 後方横部材
14 前方円弧部分
15 凹設形状部
16 後方円弧部分
17 後方直線部分
18 内方円弧部分
20 取付ブラケット
K1〜K5 変曲点
C1〜C8 結合部
P1〜P8 取付部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle body front structure.
[0002]
[Prior art]
In the vehicle body front structure, there is a structure in which a subframe for mounting and supporting the power unit is connected to side members on both sides in the vehicle width direction via a mount bracket, and when a predetermined first axial load is applied from the front, While the front portion of the side member is compressed and deformed, the rear portion of the side member is not deformed, and the rear portion is bent by applying a predetermined second axial load larger than the first axial load from the front. It is known that it is deformed to enable two-stage energy absorption (for example, see Patent Document 1).
[0003]
Further, in the vehicle body front structure, the subframe is entirely formed by a vertical member facing the vehicle width direction, and a front horizontal member and a rear horizontal member connecting the vertical member between the vehicle front part and the vehicle rear part, respectively. The mount brackets are formed in a rectangular shape, and the mount brackets are arranged at a vehicle front end and a vehicle rear end of each vertical member.
[0004]
[Patent Document 1]
JP-A-2000-16327 (page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, in such a conventional vehicle body front structure, when a collision load is input from the front such as a head-on collision, the vertical members of the sub-frame can be compressed and deformed to absorb energy. In the event of a collision, oblique forward collision, or front side collision, before the front end of the subframe transmits the load to the non-collision side, the front transverse member is straight, so it is bent in the middle and it is in a stretched state without being deformed And the effect of absorbing the collision energy at the front of the vehicle body may not be sufficiently exhibited.
[0006]
Therefore, the present invention provides a vehicle body front structure capable of efficiently dispersing a load input at the time of an offset collision, an oblique forward collision, or a front side collision at the vehicle body front and absorbing energy efficiently. It is.
[0007]
[Means for Solving the Problems]
In the vehicle body front structure of the present invention, a front arc portion swelling outward from the vehicle body is provided in a diagonally forward portion of the vehicle from the vertical member of the subframe to the front horizontal member, and the front horizontal member is provided in the vehicle width direction. It is characterized in that a recessed portion that smoothly curves in the rear of the vehicle is provided at the center.
[0008]
【The invention's effect】
According to the present invention, when a load is input to the front of the vehicle body from an offset front, diagonally forward, or lateral direction, the load can always be dispersed by the front arc portion provided in the front diagonal portion of the subframe. This effectively transmits the load to the front lateral member of the sub-frame, and thus can promote load distribution to the non-collision side of the sub-frame.
[0009]
Further, in the latter half of the collision, the front transverse member provided with the concave shape portion is effectively deformed, and the front arc portion is also deformed. Therefore, the deformation of the front transverse member and the front arc portion causes variations in the collision form. Energy can be stably absorbed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
1 to 4 show a first embodiment of a vehicle body front structure according to the present invention, FIG. 1 is an overall perspective view of a vehicle body to which the present invention is applied, and FIG. FIG. 3 is a plan view of the vehicle body front skeleton showing the action at the time of a side collision of the vehicle body front part in order, and FIG. 4 is a plan view of the vehicle body front skeleton showing the action at the time of the offset collision in order. .
[0012]
The vehicle body front structure of the first embodiment is applied to a front compartment 2 of a vehicle body 1 shown in FIG. 1, and the front compartment 2 has a pair of side The members 3 extend in the front-rear direction of the vehicle body, and a bumper reinforce 4 is connected across the front ends of the side members 3.
[0013]
Further, the rear of the side member 3 in the vehicle is inclined downward along the dash panel 5 and continues to an extension side member 7 arranged on the lower surface of the floor panel 6. A side sill 8 extends substantially parallel to the extension side member 7 on the outer edge of the floor panel 6 in the vehicle width direction, and a front pillar 9 stands at a front end of the side sill 8.
[0014]
A sub-frame 10 is arranged below the side member 3, and a power unit (not shown) is mounted and supported on the sub-frame 10. As shown in FIG. , And a front horizontal member 12 and a rear horizontal member 13 connecting the front portion and the rear portion of the vertical member 11, respectively.
[0015]
In this embodiment, the shape of the sub-frame 10 is such that a front arc portion 14 swelling outward from the vehicle body is provided in a diagonally forward portion of the vehicle from the vertical member 11 to the front horizontal member 12, and the vehicle width is provided on the front horizontal member 12. At the center in the direction, there is provided a recessed portion 15 that smoothly curves toward the rear of the vehicle.
[0016]
Also, an inflection point set at a position where the front horizontal member 12 and the rear horizontal member 14 are substantially equal in length between the front circular arc 14 and the rear side of the vertical member 11 connected to the front circular arc 14. A rear arc portion 16 that curves in the same direction from the front arc portion 14 is provided with K1 as a boundary. The rear lateral member 13 of the first embodiment extends linearly in the vehicle width direction.
[0017]
Further, a connecting portion C1 is provided near the inflection point K1 between the front circular arc portion 14 and the longitudinal member 11 continuing thereto, and a connecting portion is provided at a substantially central portion of each of the front lateral member 12 and the rear lateral member 13 in the vehicle width direction. C2 and C3 are provided to connect the connecting portion C1 to the mounting portion P1 of the side member 3, connect the connecting portion C2 to the mounting portion P2 of the bumper reinforcement 4, and connect the connecting portion C3 to the dash cross member 5a. By connecting to the portion P3, the connecting portions of the subframe 10 to the vehicle body 1 are four places of a pair of right and left connecting portions C1, C1 and front and rear connecting portions C2, C3.
[0018]
In the first embodiment, engine mounts E1 and E2 for supporting a power unit (not shown) are provided at three locations near a pair of left and right connecting portions C1 and near the connecting portion C3.
[0019]
With the above structure, in the vehicle body front structure of the first embodiment, when the collision load F11 is input from the side of the vertical member 11 due to the front side collision as shown in FIG. The load F11 is distributed to the front lateral member 12 and the rear lateral member 13 from the front arc portion 14 in a well-balanced manner with the loads f31 and f41.
[0020]
On the other hand, since the vicinity of the center of the front lateral member 12 is restrained toward the vehicle body via the coupling portion C2, the restrained portion is also deformed as the deformation proceeds, so that the non-collision side, that is, the sub-frame 10 3 (b), the load is transmitted to substantially the right half.
[0021]
Thereafter, as the deformation further proceeds, the front arc portion 14 bends and deforms from the inflection point K1 near the joint C1 as shown in FIG. 3C, and the front transverse member 12 is deformed by transmitting the bending moment M11. Since bending deformation occurs near the bending point K2, load transmission to the non-collision-side member is realized, and energy absorption is performed by bending deformation of the member while generating a reaction force.
[0022]
As shown in FIG. 4A, in the case of an offset collision, the input is distributed from the front end of the front circular arc portion 14 to the vertical member 11 and the front horizontal member 12 as loads f32 and f42 in a well-balanced manner. Is pushed in from the front, and the front horizontal member 12 is bent around the center joint portion C2, so that the axial force f32 and the bending moment M12 are shifted rightward in the drawing of the sub-frame 10 as shown in FIG. Is transmitted to the non-collision side of the vehicle.
[0023]
The bending deformation is performed based on the inflection point K2 of the front horizontal member 12 and the coupling portion C1 of the vertical member 11, and the bending deformation is also performed at the rear inflection point K3 of the vertical member 11, thereby achieving energy saving. Absorption efficiency can be increased.
[0024]
That is, in the first embodiment, when a load is input to the front portion of the vehicle body from an offset front, diagonally forward, or lateral direction, the load is always dispersed by the front arc portion 14 provided in the front diagonal portion of the subframe 10. As a result, the load can be efficiently transmitted to the front cross member 12 of the sub-frame 10, and thus, the load distribution to the non-collision side of the sub-frame 10 can be promoted.
[0025]
Further, in the latter half of the collision, the front transverse member 12 provided with the concave-shaped portion 15 is deformed, and the front arc portion 14 is also deformed. The energy can be stably absorbed even by the variation of.
[0026]
Therefore, in the case of an offset collision, an oblique forward collision, or a front side collision, energy can be efficiently absorbed by dispersing a load in the direction opposite to the collision side and deforming, thereby reducing input to the cabin. Cabin deformation can be suppressed small. At the time of a frontal collision, the vertical member 11 of the sub-frame 10 is bent and deformed, and the front horizontal member 12 is crushed by interference with a power unit (not shown).
[0027]
In addition, in the first embodiment, in addition to the above-described functions and effects, the connecting portion of the sub-frame 10 to the vehicle body is located near the inflection point K1 between the front circular arc portion 14 and the vertical member 11 connected thereto, and When the load is input from obliquely forward and lateral directions, the front lateral member 12 is restrained in the vicinity of the inflection point by having four portions, that is, the substantially central portion in the vehicle width direction of the member 12 and the rear lateral member 13. This makes it easier to transmit the load to the non-collision side at the beginning of the collision. Then, bending deformation is performed with an increase in the input, and the deformation is induced around the inflection point of the opposite vertical members and horizontal members 12 and 13 following the movement.
[0028]
Further, since the vicinity of the inflection point between the vertical member 11 and the front horizontal member 12 is restrained, a load is received at the front arc-shaped portion 14 at the initial stage of the collision, and thereafter, the load is transmitted to the rear of the joint C1. Thus, the energy absorption efficiency can be increased by bending deformation or the like.
[0029]
When a load is applied from the front, energy can be absorbed by bending deformation of the sub-frame 10 with the joint C1 serving as a fulcrum after deformation of the front portion of the sub-frame 10 by the connection of the rear transverse member 13.
[0030]
That is, a load is transmitted from the front lateral member 12 to the non-collision side at the initial stage of the collision, and the front lateral member 12 bends and deforms at a portion in front of the restrained portion at the inflection point, and absorbs energy by deforming the rear portion. Further, the vertical member 11 absorbs energy by crushing or bending deformation in a portion ahead of the vicinity of the inflection point, and can surely absorb energy in the latter half of the collision by deformation of the rear portion.
[0031]
5 and 6 show a second embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof will not be repeated. FIG. 6 is a plan view of the vehicle body front skeleton, showing the action of the vehicle body front at the time of an oblique forward collision in order.
[0032]
As shown in FIGS. 5 and 6 (a), the vehicle body front structure according to the second embodiment changes the shape of the subframe 10 from the vertical member 11 to the front horizontal member 12 as in the first embodiment. A front arc portion 14 bulging outward from the vehicle body is provided in the front diagonal portion, and a concave shape portion 15 is provided in the front transverse member 12 so as to smoothly curve toward the rear of the vehicle at the center in the vehicle width direction.
[0033]
The main difference from the first embodiment is that the front horizontal member 12 is longer than the rear horizontal member 13 between the front arc portion 14 and the vehicle rear portion of the vertical member 11 connected to the front arc portion 14. An inflection point K1 is provided at a certain position, and a rear straight line portion 17 that is linearly continued from the front circular arc portion 14 is provided.
[0034]
The rear lateral member 13 of the second embodiment extends linearly in the vehicle width direction as in the first embodiment.
[0035]
In addition, a connecting portion C4 is provided near the concave shape portion 15 of the front horizontal member 12, and a connecting portion C5 is provided near the inflection point K3 between the vertical member 11 and the rear horizontal member 13, so that the connecting portion C4 is connected to the bumper reinforcement. 4, the sub-frame 10 is attached to the vehicle body 1 by connecting the sub-frame 10 to the vehicle body 1 by connecting the sub-frame 10 to the mounting portion P4 provided substantially at the center in the vehicle width direction and connecting the connecting portion C5 to the mounting portion P5 of the side member 3. .
[0036]
Further, in the second embodiment, the engine mounts E3 and E4 supporting the power unit are arranged near the coupling portions C4 and C5.
[0037]
Therefore, in the vehicle body front structure according to the second embodiment, when the collision load F2 is input from an oblique front due to an oblique front collision as shown in FIG. Loads f5 and f6 are distributed to the horizontal member 12 in a well-balanced manner. Further, in the initial stage of the collision, the front arc portion 14 bends and deforms with the front joint portion C4 as a base point. Thereafter, the deformed portion is pushed in and the load transmission to the non-collision side is increased.
[0038]
As the deformation progresses further, as shown in FIG. 6 (c), the vertical member 11 receives the load by its axial force because the rear portion of the vehicle is linearly formed in the oblique direction by the rear straight portion 17. Since the straight line portion 17 is connected to the vehicle body by the connecting portion C5, the deformation is performed by a load equal to or more than a certain value. Therefore, the front end of the rear straight portion 17 is crushed after the front arc portion 14 is bent and deformed, so that the energy absorption efficiency can be increased.
[0039]
That is, in the second embodiment, the horizontal component of the load received by the front arc portion 14 is applied to the front cross member 12 when the collision load acts on one side in the front in the case of the offset collision, without being limited to the oblique front collision. In addition to efficiently transmitting the load, the load in the front-rear direction can be efficiently transmitted as axial force by the rear straight portion 17 extending linearly from the front outer side to the rear inner side. At this time, the front arc portion 14 and the front cross member 12 Energy absorption efficiency can be increased by bending deformation around the inflection point K2.
[0040]
Further, by making the rear horizontal member 13 shorter than the front horizontal member 12, it is possible to increase the transmission efficiency of the axial force with respect to the input in the oblique direction and increase the deformation load.
[0041]
7 and 8 show a third embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. FIG. 8 is a plan view of the vehicle body front skeleton showing the operation of the vehicle body front part at the time of an oblique forward collision in order.
[0042]
As shown in FIGS. 7 and 8A, the vehicle body front structure according to the third embodiment is similar to the first embodiment in that the shape of the subframe 10 is changed from the vertical member 11 to the front horizontal member 12 as shown in FIG. A front arc portion 14 bulging outward from the vehicle body is provided in the front diagonal portion, and a concave shape portion 15 is provided in the front transverse member 12 so as to smoothly curve toward the rear of the vehicle at the center in the vehicle width direction.
[0043]
The main difference from the first embodiment is that an inwardly arcuate portion 18 bulging inward with a larger radius of curvature than the forwardly arcuate portion 14 is provided on the vehicle rear portion of the vertical member 11 connected to the forwardly arcuate portion 14. It is provided.
[0044]
The rear lateral member 13 of the second embodiment extends linearly in the vehicle width direction as in the first embodiment.
[0045]
A connecting portion C6 is provided near the inflection point K2 between the front circular arc portion 14 and the front horizontal member 12 continuous thereto, and a connecting portion C7 is provided near the inflection point K3 between the vertical member 11 and the rear horizontal member 13. By connecting the connecting portion C6 to the mounting portion P6 of the side member 3 and connecting the connecting portion C7 to the mounting portion P7 of the side member 3, the subframe 4 is connected to the vehicle body 1 in four places.
[0046]
Further, in the third embodiment, engine mounts E5 and E6 supporting a power unit (not shown) are arranged near the coupling portions C6 and C7.
[0047]
Therefore, in the vehicle body front structure according to the third embodiment, when a collision load F3 is input from an oblique front due to an oblique front collision as shown in FIG. Bending deformation is performed with the joint portion C6 provided near the inflection point K2 of the front transverse member 11 and the front transverse member 12 as shown in FIG. 8C, and the bending moment M5 generated by the movement is transmitted to the non-collision side as shown in FIG. You.
[0048]
As shown in FIG. 8B, energy is absorbed by bending deformation of the front horizontal member 12, and the load f8 in the front-rear direction is applied to the inner arc portion 18 arranged from the front outer side to the rear inner side by the axial force f8. And the moment M4. At this time, the radius of curvature of the inner circular arc portion 18 arranged rearward of the front circular arc portion 14 is large, and the rear end portion is connected to the vehicle body 1 by the coupling portion C7, so that the front circular arc portion 14 is deformed. After this, the vertical member 11 bends and deforms from the inner circular arc portion 18, so that high energy absorption can be secured.
[0049]
That is, in the third embodiment, the horizontal component of the load received by the front circular arc portion 14 is applied to the front cross member 12 when the collision load acts on one side in the front in the case of the offset collision without being limited to the oblique front collision. While efficiently transmitting the energy, the energy is absorbed by the bending deformation of the front transverse member 12, and the longitudinal load is transmitted by the axial force and the moment to the inner arc portion 18 arranged from the front outer side to the rear inner side of the vehicle body.
[0050]
At this time, since the radius of curvature of the inner arc portion 18 behind the front arc portion 14 is large, the inner arc portion 18 is deformed after the front arc portion 14 is deformed. Energy absorption efficiency can be increased.
[0051]
In the third embodiment, in addition to the above-described functions and effects, the connecting portion of the sub-frame 10 to the vehicle body is located near the inflection point K2 between the front circular arc portion 14 and the front horizontal member 12 continuous therewith, By providing four points near the inflection point K3 between the member 11 and the rear lateral member 13, when a load is input from diagonally forward and lateral directions, the lateral load is applied by the front arc portion 14 and the front lateral member 12. By moving together, the load can be transmitted to the non-collision side. Then, in the latter half of the collision, the front horizontal member 12 and the vertical member 11 perform bending deformation triggered by the inflection point to absorb energy.
[0052]
Furthermore, when a load is input from the front by constraining the vicinity of the rear inflection point K3, the sub-frame 10 can absorb energy by crushing and bending deformation due to the load in the front-rear direction.
[0053]
In other words, since energy can be absorbed by bending after the load is transmitted from the front horizontal member 12 to the non-collision side, the front end of the vertical member 11 is securely crushed by the support of the rear end, and the energy is absorbed by bending. can do.
[0054]
9 and 10 show a fourth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 9 shows a vehicle body front right side. FIG. 10 is a plan view of the vehicle body front skeleton showing the operation of the vehicle body front part at the time of a side collision in order.
[0055]
As shown in FIGS. 9 and 10 (a), the vehicle body front structure according to the fourth embodiment changes the shape of the subframe 10 from the vertical member 11 to the front horizontal member 12 as in the first embodiment. A front arc portion 14 bulging outward from the vehicle body is provided in the front diagonal portion, and a concave shape portion 15 is provided in the front transverse member 12 so as to smoothly curve toward the rear of the vehicle at the center in the vehicle width direction.
[0056]
The main difference from the first embodiment is that the front arc portion 14 smoothly connects the vehicle rear portion of the vertical member 11 to the vehicle, and the rear transverse member 13 is curved into a plane semicircular shape bulging rearward of the vehicle body. The rear horizontal member 13 is smoothly connected to the vertical member 11.
[0057]
Further, as in the first embodiment, a coupling portion C1 is provided near the inflection point K1 between the front circular arc portion 14 and the vertical member 11 connected thereto, and the vehicle width direction of each of the front horizontal member 12 and the rear horizontal member 13 is set. Connecting portions C2 and C3 are provided substantially at the center, and the connecting portion C1 is connected to the mounting portion P1 of the side member 3, and the connecting portion C2 is connected to the mounting portion P2 of the bumper reinforce 4, and the connecting portion C3 is connected. By connecting to the mounting portion P3 of the dash cross member 5a, the connecting portions of the sub-frame 10 to the vehicle body 1 are four portions of a pair of right and left connecting portions C1, C1 and front and rear connecting portions C2, C3.
[0058]
Further, in the fourth embodiment, engine mounts E8, E9, and E10 that support the power unit are provided at four locations near the pair of left and right coupling portions C1 and near the coupling portions C2 and C3.
[0059]
Therefore, in the vehicle body front structure according to the fourth embodiment, as shown in FIG. 10B, when the collision load F4 is input from the lateral direction due to the front side collision, the rear horizontal member 13 is semicircular. Due to the formation of the arc shape, the reaction force of the axial forces f9 and f10 dispersed in the front arc portion 14 is increased, and the connecting portions C2 and C3 provided at the central portions of the front transverse member 12 and the rear transverse member 13 are provided. Since the bending deformation is performed as a base point, a more balanced load distribution and deformation distribution can be performed.
[0060]
That is, in the fourth embodiment, when the collision load is applied not only to the diagonally forward collision but also to the front side collision and from the diagonally forward and side directions, the load is uniformly distributed in a well-balanced manner at the front arc portion 14. In the lateral direction component, if the collision site is forward, the front horizontal member 12 is mainly loaded, and if it is behind, the rear horizontal member 13 is mainly loaded, so that a wide collision range can be handled.
[0061]
Further, the load in the lateral direction can be transmitted to the non-collision side, and the inflection points K4 and K5 are formed at the center portions of the front and rear transverse members 12 and 13, respectively, so that the deformation can progress as the deformation progresses. Since the front and rear transverse members 12 and 13 can bend and deform to absorb energy, the strength of the subframe 10 can be improved and the amount of energy absorbed by the deformation can be increased.
[0062]
11 and 12 show a fifth embodiment of the present invention, in which the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 12 is a plan view of the vehicle body front skeleton showing the action of the vehicle body front part in an oblique forward collision in order.
[0063]
As shown in FIGS. 11 and 12A, the vehicle body front structure according to the fifth embodiment changes the shape of the subframe 10 from the vertical member 11 to the front horizontal member 12 as in the first embodiment. A front arc portion 14 bulging outward from the vehicle body is provided in the front diagonal portion, and a recessed portion 15 that smoothly curves rearward in the vehicle width direction at the center in the vehicle width direction is provided in the front transverse member 12.
[0064]
The first embodiment differs from the first embodiment mainly in the vicinity of the inflection point K1 between the front circular arc portion 14 and the vertical member 11 continuous therewith, and the change between the front circular arc portion 14 and the front horizontal member 12 continuous therewith. A mounting bracket 20 is provided for connecting the vicinity of the curved point K2, and a connecting portion C8 to the vehicle body is provided on the mounting bracket 20.
[0065]
Therefore, in this embodiment, by providing the connecting portion C8 to the mounting bracket 20, the vicinity of the inflection point K2 to which the mounting bracket 20 is connected is supported. In this case, the connecting portion of the subframe 10 to the vehicle body Is located near the inflection point K2 between the front circular arc portion 14 and the front horizontal member 12 continuous therewith, provided with a coupling portion C3 substantially at the center of the rear lateral member 13 in the vehicle width direction, and connected the coupling portion C8 to the side member 3 By connecting the connecting portion C3 to the mounting portion P3 of the dash cross member 5a, the subframe 4 is connected to the vehicle body 1 at three locations.
[0066]
Further, in the fifth embodiment, the engine mounts E11 and E12 for supporting the power unit are arranged near the mounting bracket 20 and the joint C3.
[0067]
By the way, the sub-frame 10 of the fifth embodiment is similar to the fourth embodiment in that the front arc portion 14 smoothly connects the rear portion of the vertical member 11 to the vehicle, and the rear cross member 13 extends in the plane half which swells to the rear of the vehicle body. The rear horizontal member 13 is smoothly connected to the vertical member 11 by being curved in an arc shape. However, the present invention is not limited to this. The structure of the subframe 10 according to the first to third embodiments, or another structure Can be adopted.
[0068]
Therefore, in the vehicle body front structure according to the fifth embodiment, when the load F5 is input from an oblique front due to an oblique front collision or the like as shown in FIG. The closed structure is deformed, and the deformation of the closed structure and the deformation induce bending deformation centered on the center of the front cross member 12. In addition, the rear part of the vertical member 11 is also bent and deformed with the joint C3 at the center of the rear horizontal member 13 as a base point, so that the energy absorbing effect can be further enhanced.
[0069]
That is, in this embodiment, not limited to the oblique forward collision, when the collision load acts on one side in the front due to the front side collision or the offset collision, the closed structure portion formed by the front arc portion 14 and the mounting bracket 20 Can absorb the same energy as in a head-on collision.
[0070]
In addition, the connection points of the sub-frame 10 to the vehicle body are three places near the inflection point K2 between the front circular arc portion 14 and the front horizontal member 12 continuous therewith, and approximately at the center of the rear horizontal member 13 in the vehicle width direction. Therefore, when a load is input diagonally forward or in the front lateral direction, a deformation is performed such that a curved portion is extended in a portion of the vertical member 11 continuing from the front circular arc portion 14.
[0071]
At this time, since the connecting portion of the front portion is close to the connecting portion, the restraint is sufficiently performed, and the cross-sectional deformation of the front circular arc portion 14 can be positively promoted. After that, energy absorption is performed by bending deformation of the vertical member 11.
[0072]
In the case of an offset collision, the energy absorption efficiency can be increased by the deformation due to the crushing of the front end in the initial stage of the collision and the bending deformation of the member having the curve or inflection point up to the fastening portion in the latter half.
[0073]
By the way, the vehicle body front structure of the present invention has been described by taking the first to fifth embodiments as examples. However, the present invention is not limited to these embodiments, and various other embodiments may be adopted without departing from the gist of the present invention. be able to.
[Brief description of the drawings]
FIG. 1 is a perspective view of a vehicle body to which the present invention is applied.
FIG. 2 is a perspective view showing a skeletal structure of a vehicle body front right side in the first embodiment of the present invention.
FIG. 3 is a plan view of a vehicle body front skeleton sequentially showing an action at the time of a side collision of the vehicle body front in the first embodiment of the present invention.
FIG. 4 is a plan view of the vehicle body front skeleton showing the operation at the time of an offset collision in the first embodiment of the present invention in order.
FIG. 5 is a perspective view showing a skeletal structure of a vehicle body front right side according to a second embodiment of the present invention.
FIG. 6 is a plan view of a vehicle body front skeleton showing in order a function of a vehicle body front portion in a diagonal forward collision according to a second embodiment of the present invention.
FIG. 7 is a perspective view showing a skeletal structure of a vehicle body front right side according to a third embodiment of the present invention.
FIG. 8 is a plan view of a vehicle body front skeleton showing in order a function of a vehicle body front portion in a diagonally forward collision according to a third embodiment of the present invention.
FIG. 9 is a perspective view showing a skeletal structure of a vehicle body front right side according to a fourth embodiment of the present invention.
FIG. 10 is a plan view of a vehicle body front skeleton showing in order a function of a vehicle body front in a side collision according to a fourth embodiment of the present invention.
FIG. 11 is a perspective view showing a skeletal structure of a vehicle body front right side according to a fifth embodiment of the present invention.
FIG. 12 is a plan view of a vehicle body front skeleton showing in order a function of a vehicle body front in a diagonal forward collision in a fifth embodiment of the present invention.
[Explanation of symbols]
1 Body
3 Side member
10 subframes
11 vertical members
12 Front horizontal member
13 Rear transverse member
14 Forward arc
15 Recessed shape
16 Back arc part
17 Rear straight section
18 Inner arc
20 Mounting bracket
K1-K5 inflection point
C1-C8 joint
P1 to P8 Mounting part

Claims (9)

車体前部の車幅方向両側に車体前後方向に延在配置したサイドメンバと、これらサイドメンバの下方に位置してパワーユニットを搭載支持したサブフレームと、を備えた車体前部構造において、
サブフレームは、車幅方向に対向した縦部材と、これら縦部材の前方部分間および後方部分間をそれぞれ繋ぐ前方横部材および後方横部材と、によって全体が閉じた構造としてあり、
縦部材から前方横部材に至る車両前方斜め部分に、車体外方に膨らむ前方円弧部分を設けるとともに、前方横部材にその車幅方向中央部で車両後方に滑らかに弯曲する凹設形状部を設けたことを特徴とする車体前部構造。
In a vehicle body front structure including a side member extending in the vehicle front-rear direction on both sides in a vehicle width direction of a vehicle body front portion, and a subframe positioned below these side members and supporting a power unit mounted thereon,
The subframe has a structure in which the entirety is closed by vertical members opposed in the vehicle width direction, and a front horizontal member and a rear horizontal member connecting the front portion and the rear portion of the vertical members,
A front arc portion that bulges outward from the vehicle body is provided at an oblique front portion of the vehicle from the vertical member to the front horizontal member, and a concave portion that smoothly curves rearward at the center of the vehicle in the vehicle width direction is provided at the front horizontal member. The front structure of the vehicle body.
前方円弧部分に連なる縦部材の車両後方部分に、この前方円弧部分との間に、前方横部材と後方横部材とが略等長となる位置に変曲点を備えて、この前方円弧部分から同一方向に湾曲する後方円弧部分を設けたことを特徴とする請求項1に記載の車体前部構造。An inflection point is provided at a position where the front transverse member and the rear transverse member are substantially equal in length between the front circular arc portion and the vehicle rear portion of the vertical member connected to the front circular arc portion. 2. The vehicle body front structure according to claim 1, wherein a rear arc portion curved in the same direction is provided. 前方円弧部分に連なる縦部材の車両後方部分に、この前方円弧部分との間に、前方横部材が後方横部材よりも長くなる位置に変曲点を備えて、この前方円弧部分から直線状に連なる後方直線部分を設けたことを特徴とする請求項1に記載の車体前部構造。An inflection point is provided at a position where the front transverse member is longer than the rear transverse member between the front circular arc portion and the vehicle rear portion of the vertical member connected to the front circular arc portion, and linearly extends from the front circular arc portion. The vehicle body front structure according to claim 1, wherein a continuous rear straight portion is provided. 前方円弧部分に連なる縦部材の車両後方部分に、この前方円弧部分よりも大きな曲率半径をもって車体内方に膨らむ内方円弧部分を設けたことを特徴とする請求項1に記載の車体前部構造。2. The vehicle body front structure according to claim 1, wherein an inner arc portion bulging inward with a larger radius of curvature than the front arc portion is provided in a vehicle rear portion of the vertical member connected to the front arc portion. . 前方円弧部分に縦部材の車両後方部分を滑らかに連続させるとともに、後方横部材を車体後方に膨らむ平面半円弧状に湾曲して、この後方横部材を前記縦部材に滑らかに連続させたことを特徴とする請求項1に記載の車体前部構造。Along the front arc portion, the vehicle rear portion of the vertical member smoothly continues, and the rear horizontal member is curved in a plane semi-arc shape swelling toward the rear of the vehicle body, and the rear horizontal member is smoothly connected to the vertical member. The vehicle body front structure according to claim 1, wherein: サブフレームの車体への結合箇所を、前方円弧部分とこれに連続する縦部材との変曲点近傍と、前方横部材および後方横部材それぞれの車幅方向略中央部と、の4箇所としたことを特徴とする請求項1,2,5のいずれか1つに記載の車体前部構造。The subframe is connected to the vehicle body at four points: near the inflection point between the front circular arc portion and the vertical member connected thereto, and substantially at the center in the vehicle width direction of each of the front horizontal member and the rear horizontal member. The vehicle body front structure according to any one of claims 1, 2, and 5, wherein: サブフレームの車体への結合箇所を、前方円弧部分とこれに連続する前方横部材との変曲点近傍と、縦部材と後方横部材との変曲点近傍と、の4箇所としたことを特徴とする請求項1または4に記載の車体前部構造。The subframe is connected to the vehicle body at four points: a point near the inflection point between the front circular arc portion and the front horizontal member continuous with the front arc portion, and a point near the inflection point between the vertical member and the rear horizontal member. The vehicle body front structure according to claim 1 or 4, wherein: 前方円弧部分とこれに連続する縦部材との変曲点近傍と、前方円弧部分とこれに連続する前方横部材との変曲点近傍と、を連結する取付ブラケットを設け、この取付ブラケットに車体への結合部を設けたことを特徴とする請求項1に記載に車体前部構造。A mounting bracket is provided for connecting the vicinity of the inflection point between the front arc portion and the vertical member continuous thereto and the vicinity of the inflection point between the front arc portion and the front horizontal member continuous thereto. The vehicle body front structure according to claim 1, further comprising a connecting portion to the vehicle body. サブフレームの車体への結合箇所を、前方円弧部分とこれに連続する前方横部材との変曲点近傍と、後方横部材の車幅方向略中央部と、の3箇所としたことを特徴とする請求項1または8に記載の車体前部構造。The sub-frame is connected to the vehicle body at three points: a point near the inflection point between the front circular arc portion and the front horizontal member connected thereto, and a substantially central portion in the vehicle width direction of the rear horizontal member. The vehicle body front structure according to claim 1 or 8, wherein
JP2003075979A 2003-03-19 2003-03-19 Vehicle body front part structure Pending JP2004284405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075979A JP2004284405A (en) 2003-03-19 2003-03-19 Vehicle body front part structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075979A JP2004284405A (en) 2003-03-19 2003-03-19 Vehicle body front part structure

Publications (1)

Publication Number Publication Date
JP2004284405A true JP2004284405A (en) 2004-10-14

Family

ID=33291143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075979A Pending JP2004284405A (en) 2003-03-19 2003-03-19 Vehicle body front part structure

Country Status (1)

Country Link
JP (1) JP2004284405A (en)

Similar Documents

Publication Publication Date Title
JP3632666B2 (en) Body front structure
JP5504820B2 (en) Front body structure of the vehicle
JP2017136947A (en) Body structure of automobile
JP2003127893A (en) Front structure of vehicle body
JP2005125989A (en) Hood structure for vehicle
JP2006232147A (en) Vehicle body front structure
JP5417463B2 (en) Auto body front structure
JP2017136973A (en) Vehicular frame structure
JP2004123027A (en) Structure of car body front part
KR20040023489A (en) Automobile front end body structure
JP2003146242A (en) Vehicle body front structure
JP5104272B2 (en) Front body structure of automobile
JP5942920B2 (en) Front body structure of the vehicle
JP2004106808A (en) Front body structure for automobile
JP5465705B2 (en) Vehicle knee bolster
JP3446718B2 (en) Car body structure
JP2003246277A (en) Vehicle body skeleton structure
JP2009107445A (en) Front structure of vehicle body
JP2005297857A (en) Bumper reinforcing structure
JP3632654B2 (en) Body front structure
JP2004284405A (en) Vehicle body front part structure
JP2004155393A (en) Front structure of car body
JP3861622B2 (en) Auto body front structure
JP5228014B2 (en) Body front structure
JP2005161938A (en) Vehicle body front structure