JP2004284333A - Mold for molding hollow body by injection molding machine and its molding method - Google Patents

Mold for molding hollow body by injection molding machine and its molding method Download PDF

Info

Publication number
JP2004284333A
JP2004284333A JP2003120673A JP2003120673A JP2004284333A JP 2004284333 A JP2004284333 A JP 2004284333A JP 2003120673 A JP2003120673 A JP 2003120673A JP 2003120673 A JP2003120673 A JP 2003120673A JP 2004284333 A JP2004284333 A JP 2004284333A
Authority
JP
Japan
Prior art keywords
welding
injection
resin
mold
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003120673A
Other languages
Japanese (ja)
Inventor
Keizo Ikegami
恵蔵 池上
Masato Soejima
政十 副島
Jo Suzuki
城 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikegami Mold & Die Manufacturing
Ikegami Mold Engineering Co Ltd
Original Assignee
Ikegami Mold & Die Manufacturing
Ikegami Mold Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikegami Mold & Die Manufacturing, Ikegami Mold Engineering Co Ltd filed Critical Ikegami Mold & Die Manufacturing
Priority to JP2003120673A priority Critical patent/JP2004284333A/en
Publication of JP2004284333A publication Critical patent/JP2004284333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that when an intake-manifold or the like is molded by an injection molding machine, strength of the portion where secondary welding injection is conducted is decreased, particularly the strength of a weld line portion is decreased, and a cycle time is increased by opening an undercutting mold forming a hollow body. <P>SOLUTION: The secondary injection is conducted on the welding surface having a rivet shape to achieve welding using shrinking force of the resin. The strength is increased by adjusting a rivet position to the welding line position or, if such adjustment is impossible, properly arranging a resin rich portion or a proper number of pins. The opening or closing time is decreased by dividing an inner core of a mold to remove the undercut and shortening opening and closing distance of the molding machine. In order to weld a vertically semi-circular portion becoming the hollow body to a flange, a part having a slidable side surface is advanced to prevent a void during the secondary injection. By the strength of the welding surface is enhanced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明に関する技術分野】
本発明は自動車部品の中空一体品であるインテークマニホールド(気体のエンジンシリンダーへの分配管)等複雑形状品を樹脂化するに当たり射出成形法で成形可能な構造を持つ金型で、後加工不要な一体成形品を金型内で成形完成する金型及びその成形方法に関する。
【0002】
【従来の技術】
従来の方法には幾つかの方法があるが、その代表である、四つの方法について説明すると次のようになる。
【0003】
【ロストコアー法】
この方法は自動車部品としてプラスチック中空成形体(インテークマニホールド)を得る方法として利用されているが、内面コアー部分を低溶融複合合金(鉛、錫、アンチモン等の複合合金)を用い、そのコアーの必要形状製作に別の金型を用いて成形し、これを本金型内に挿入して本体を成形し、その成形品を複合合金と共に本金型外に取り出し、これを高周波加熱によって内面の合金を溶融して取り出し、求める中空成形体を得る方法である。
【0004】
従って、コアー材料としての低溶融複合合金が必要、その合金によるコアー成形金型が必要、本金型に挿入する手間が必要、本体と共に取り出した成形品コアー部分の高周波溶融作業が必要、更に溶融するための設備が必要で、手間は掛かるし、設備費が掛かるのでコスト高とならざるを得ない。
【0005】
【振動溶着法】
【図1】に示す如き中空体(インテークマニホールド)を成形する場合
【図1】1はフランジを有する本体下面成形品、2は1をカバーする上面成形品でそれぞれの金型で成形し、取り出し、これを形状に合致したそれぞれの冶具に入れ対向させ振動機に掛けて上下の溶着面を振動熱によって溶着するものであるが、技術を必要とする。
【0006】
しかしながら次のような欠点を持っている、金型が二型必要、成形品を金型より取り出すため成形品に変形が起こり反り、Rの形状にバラツキがあって合いにくく、そのために押え冶具加工に問題を生ずる、内面にバリが発生しやすい、そのバリの検査が必要であると同時に、場合によってはバリ取り作業が追加される、また振動機が必要で設備費が必要である、成形、振動溶着という二段成形であるためコスト高とならざるを得ない。
【0007】
【金型キャビテー移動法】
この方法は特開平7−186183、7−186177(日本製鋼所)、特開平8−11155(三菱レーヨン)にて紹介されているが、いずれも金型移動(金型キャビテー移動)となっていて、成形品自体を移動させるため芯合わせが困難、また射出成形機に対して偏荷重とならざるを得ない、特にインテークマニホールドのような大型品では、この偏荷重が成形機のタイバーの破損に繋がるという問題点があると同時に中心部分より遠い部分ではこの偏過重によりバリが発生しやすい、また二次射出による溶着部分ではその溶着樹脂がガラス繊維30%混入のため流れの先端では、ガラス繊維は流れに対して直角方向に並ぶ、従ってウエルドライン部分では互いに平行方向に並びガラス繊維が互いに混入し合う事がない、従って樹脂の接着強度は出てもガラス繊維による強度が出ない、そのため溶着強度は摺動法の溶着強度と比較して落ちるという決定的問題点がある。
【0008】
【金型コアー移動法】
この方法は特開平10−58487(日本製鋼所)、特開平11−42670(東芝)にて示されているが、前者の10−58487の記述についてキャビテーBへの射出成形方法が図解されていない事は問題である、またこのような簡単な形状でインテークマニホールドのような複雑形状成形品の一部を記述しているわけであるが到底成形不可能である、またインテークマニホールドでは内面コアーにはアンダーカットが通常あり、移動のためにはまずこの内面のアンダーカットをはずす必要があり困難なケースが多い、上記両特開平(コアー移動法)の最大問題はキャビテー移動法と同様に溶着面の強度が振動法と比較して落ちるという決定的問題がある(原因はキャビテー移動法と同一)。
【0009】
本発明では
【図6】
【図10】のようなアンダーカットは通常あり、これを巧妙な方法ではずしている(下記説明)、またコアー形状は特開平10−58487の”請求範囲2”及び抜く方向を図面より判断すれば”一対の半中空成形品(A,B)コアーは一体(20)であってしかも水平平面一方向のみであり“、本発明と異なる、本発明は
【図1】に示す1(フランジを有する本体下面成形品)、2(1をカバーする上面成形品)に示すように複雑形状、通常傾斜したPL面を持つ成形品となっている、上記記載の特開平10−58487、特開平11−42670の方法で射出成形機の型開きを行えば、非常に大きく開かなければならない結果となる、大きくすることはサイクルタイムの増大に繋がり、コストアップに繋がる、そこで下記のような内面コアーを分割し二方向移動法を考案した、またアンダーカットはずし構造加工のためにも分割は有効である。
【0010】
【解決すべき課題1】
射出中空体を成形する際、インテークマニホールド等では周囲縁内面溶着部の溶着強度を振動法並に上げる必要がある、上記の如く樹脂原料は通常6ナイロンに30%ガラス繊維入りであるので、ガラス繊維入り原料は特にウエルドラインの溶着強度が弱い、これに対応した金型構造と成形方法を考案する必要がある。
【0011】
【解決すべき課題2】
コアー部分には必ずアンダーカットがあるので、これを簡単にはずす方法を考案する必要がある。
【0012】
【解決すべき課題3】
射出成形機の金型開閉距離を出来る限り小さくしサイクルタイムを減少する必要がある。
【0013】
【解決すべき課題4】
【図1】、
【図4】、
【図6】、
【図12】部分に示されている垂直半円部分と相対する半円部分と同時成形されたフランジとの結合方法を考案する必要がある。
【0014】
【解決すべき課題5】
以上に関連する幾つかの確実化向上方法の考案の必要性があるが、本文では各部分に分散してその都度説明する。
【0015】
【解決のための手段1】
上記
【課題1】を解決するためにフランジを有する本体下面成形品(この場合インテークマニホールドのフランジ付き部品)1,その上面カバー2のそれぞれ
の溶着周囲縁11、21及びその溶着断面は
【図3】[3−1][3−2][3−3]に示すとおりであり、この面の溶着の確実性を上げる、二次溶着樹脂射出時にその収縮によってリベット構造となるピン空間孔13(一次射出時はリベット空間孔)、更に溶着樹脂が内部に流入しないような堰となるリブ14が溶着縁内面に設けてある、また溶着樹脂流入時溶解して密着を良くする微小凹凸12が設けられている、これらの詳細は
【図3】[3−1][3−2]及びその[3−3]組立図に示されている、更に拡大詳細は
【図5】[5−1]は二次溶着樹脂射出前、[5−2][5−3][5−4]は樹脂の溶着部に入ったことを示している(ハッチング部分)。
【0016】
しかし今まで一次溶融樹脂射出には当然の事として収縮を考えたが、二次溶融樹脂射出においても、必ずこの収縮が起こるのに考慮に入れなかった、従って溶着面積を広く取れば取る程、通常肉厚は一般的に厚くなって収縮は大きくなり、溶着にはマイナスの方向に働き強度を弱める方向に働いた、対策は金型温度を上げる、射出時間を延ばすことで対応してきたが金型温度を上げることは溶着を考えれば良いが、収縮の面より考えれば問題である、また射出時間の延長は金型温度より遥かに高い温度(230〜250℃)の樹脂が入るわけであるから、収縮と繊維配向を考えると完全なる対策にはならない。
【0017】
その対策は
【図11】[11−1]に示すようにスリーブピン方式でリベット形状の空隙13を形成し、この部分に二次射出で樹脂充満しその収縮によって垂直(上下)方向の収縮力を発生させ、更に[11−2]は水平方向(横方向)のみ、[11−3]は水平方向と垂直方向(但し[11−1]とピン形状が異なる)、[11−4]は必要に応じ溶着幅より小さ目(必要に応じて)の角形、または円形ピンで必要箇所に必要本数油圧、エアー圧、スプリング力等で二次溶着樹脂射出完了直後の樹脂硬化前、相互に強力に押すことによって空隙の防止、密度を上げ、密着度を向上させ、溶着強度を確実に上げることが出来る(含適正成形条件)。
【0018】
特にウエルドライン発生場所においては、上記説明のとおりガラス繊維の方向が樹脂流れに対して直角方向となっているため、ウエルドライン面では互いに平行方向となる、従って樹脂溶着強度のみで繊維による強度が出ず低いので、この繊維の方向を変える必要がある、垂直方向(上下)、水平方向(横方向)にピンを相互に加圧作動させることでガラス繊維の相互混入や方向変換をさせることが出来るので強度は向上するし、また樹脂密度も向上し強度は向上する、必要に応じ垂直、水平方向のみで充分なケースもある、またウエルドライン部をリベット形状部にもって来るのがよいが、それが困難な場合は
【図11】[11−4]に示すように樹脂溜まりを二次溶融樹脂射出時にPL面(パーテイングライン)に形成し、水平方向の角形、または円形ピン20と傾斜ピン21,22を設置し相互に加圧作動させ、ガラス繊維の相互混入、方向の変換を計る、またピン前進時樹脂逃げ部が必要な場合は適正場所に後部にスプリングを有するピストン設置し、この部分に樹脂を一時逃がし、ピン後退後にピストン反力で樹脂を元に戻す。
【0019】
【課題2に対する手段2】
アンダーカットをはずすには色々な方法があるが、
【図6】
【図10】に示すようにスプリングやマグネット力利用による巧妙な方法を考案した。
【0020】
【課題3に対する手段3】
成形サイクルを短縮するためにも成形機の型開きを少なくする必要がある、インテークマニホールドのように
【図1】
【図6】
【図7】に示すように傾斜した成形品では傾斜があるので内面コアー部分を分割し、互いに平行異方向(この場合反対方向)に動かすことによって成形機の金型開閉ストロークを約30〜50%少なくすることが出来る、型開ストロークを減少すれば、成形サイクルを短縮する事が出来るし、コスト低減にもなる、またこのように内部コアーを分割することによってアンダーカット部分の機械加工が容易になる効果もある。
【0021】
【課題4に対する手段4】
垂直半円部分と水平方向フランジとの結合方法は
【図6】
【図12】に示すようにスライドコアーを利用することによって解決出来る。
【0022】
【課題5に対する手段5】
この件については
【図11】の一次射出では[11−2][11−3]で示すようにリベット形状の構造とし、また
【図10】では内面コアーのR部のアンダーカットをスプリング方式により巧妙にはずしている。
【0023】
【発明実施の形態】
本発明は今までの二次溶着樹脂射出において溶着面積を大きくすれば溶着強度は上がるという考え方として、単に面積を大きくすれば逆に収縮が増大するという間違った考え方を打破し、溶着部分幅を適正寸法に、またリベット形状にして、その収縮力を利用し、しかもその部分では垂直、水平の圧力を交互に掛けることで強度の増大を計り、ウエルドライン部分ではガラス繊維の特性を考え
【図11】[11−4]に示すように、ピンの加圧作動を交互に行うことによってガラス繊維の混入、その方向の変換を計って、強度の向上を計る、更にインテークマニホールドに必ず付随しているアンダーカットを巧妙な方法ではずし、且つ内面コアーを分割して平行異方向(この場合反対方向)に移動し、射出成形機の型開きの距離を減らし、サイクルタイムの短縮し、更に垂直半円部分と水平フランジとの結合方法を考案したものである。
【0024】
【製品形状の特徴】
製品形状は
【図1】のとおりで、次の特徴がある
【0025】
【図5】
【図11】に示すように溶着周囲縁11,21の内面の溶着強度向上のためのリベット形状で一次射出時には溶着樹脂が充満しないピン空間孔13を形成し、二次射出時にはこのピンを後退させてリベット形状部分に樹脂が充満してこの収縮力により強度向上となる金型構造を考案。
【0026】
【図1】に示すようなインテークマニホールドの溶着周囲縁11,21の内面に二次射出される樹脂の収縮を考慮し丸形ピンをリベット形状部には垂直に、水平方向の適所に角形、または円形ピンを設置し相互に圧縮力を加え、またリベット方式を採れない部分では水平方向にピンを設置して圧力を加えて溶着強度を上げる金型構造を考案、特に弱いウエルドライン部にはリベット形状部に来るようにし、更に垂直、水平方向にピンを交互に加圧作動する、またこのウエルドラインがリベット形状部に来ない場合は必要に応じて樹脂溜まり及び数本のピンを設置し、相互に加圧前後進する事によってガラス繊維の相互混入、方向変換によって溶着部分の強度向上を計る(今までは二次射出については射出樹脂収縮に重点を置いていないのが通常の考え方、またガラス繊維のウエルドライン部分の強度向上策は樹脂温度、金型温度向上、射出時間以外余り考慮しなかった)。
【0027】
内面アンダーカットをもつ分割されたコアーを互いに平行異方向(この場合反対方向)に移動して射出成形機の型開閉ストロークの減少を計ることによってサイクルタイムの減少、また金型加工の容易性を計った。
【0028】
【図6】
【図12】に示すように、このインテークマホールドでは垂直半円部分と水平フランジとの溶着構造を必要とする場合があるのでその金型構造を考案した。
【0029】
次の2項目
【製品形状】
【金型構造と作動方法】につき説明する。
【0030】
【製品形状】
【図1】はインテークマニホールドの成形を当たり先ず成形品の形状について説明する、
【図1】、
【図2】に示すごとく[2−1]では1はフランジを共に成形した本体下面成形品であり、[2−2]の2はそれを上面よりカバーする部品となっている、その詳細が
【図3】の断面に示され、本体射出時に形成される溶着縁11,21の内面には三角形状微小凹凸12(二次溶融樹脂射出時に溶融して溶着力を向上する程度の高さ)、リベット構造となる空間孔13、更に溶融原料が内部に入らないように突起14が設置されている、
【図3】[3−3]ではその2成形品が対向した状態を示している
【図4】では成形品のE断面図を示しその成形品の対向状態が示されている。
【0031】
【図5】[5−1]では内面溶着部に未充填の詳細を[5−2][5−3][5−4]はハッチング部分に溶融原料が充満し、収縮によって接着面の圧縮効果が出るように考慮されている。
【0032】
【金型構造と作動方法】
成形の順序に従い
【中空本体の一次射出成形】、
【中空体周囲縁内面の二次射出成形】及び
【垂直部二次射出溶着部形成】の三項に分けて説明する
【0033】
【中空本体の一次射出成形】
【図6】は金型閉の状態でのE金型断面図(
【図2】E−E,E−E)を示し内面コアーを挟んで成形品とキャビテーは対向状態を示している、本体成形品は最適位置に必要個数(例として51,52,53等)の湯口が設置され、その部分より溶融樹脂はキャビテーに注入されて充満し相対する二個の成形品が成形される(一次射出成形完了)、しかし内面コアーをはずす必要があるが、内面分割コアー31には33のアンダーカット、内面分割コアー32には34のアンダーカットが存在する、先ずこれをはずす必要がある、詳細は
【図10】に示す如く、傾斜スライド37が後退するとピン35,36はスプリングによって矢印方向に後退し、アンダーカット部分33,34は38,39を中心として内側に回転してはずれる、この状態で金型は61,62,63の順に金型を必要最小限に開き、更に
【図6】は本体内面分割コアー31が311の方向に金型外部で保持されたガイド(簡単事項のため省略)に沿って後退中の処を示しているが、内部コアー32も同様に必要最小限開き、反対方向322の方向に後退する、それぞれ平行異方向(この場合反対方向)に移動し傾斜スライド37もコアー32と一緒に外方に後退する、後退完了後、金型は再度前進しPL面(パーテングライン面)が合い、キャビテーに入ったままの中空体が対向形成される。
【0034】
【図7】は本体下面成形品1側の本体分割コアー31が矢印方向311に移動しつつある状態を示している、上面カバー2側分割コアー32も1側分割コアーと同様な状態でコアー31と反対矢印方向322に移動する、このようにすることによって、成形機の開閉距離を約1/3〜1/2減少させる事が出来る。
【0035】
【図8】は金型のF断面図(
【図2】F−F、F−F)を示し本体内面分割コアー31,32はコアー切断方向が
【図7】F金型断面図と直角方向のため紙面に直角方向にそれぞれ反対方向に移動し、移動完了後
【図9】に示す如くPL面(パーテングライン面)が前進して対向し、上記同様に内面コアーが抜け、キャビテーに入ったままの中空体が形成される。
【0036】
【中空体周囲縁内面の二次射出溶着部形成】
これは中空体周囲縁11,21の内面に二次溶着樹脂を射出し完全中空体を完成するものである。
今まで上記の如く振動溶着法に比較して溶着強度が弱いという難点があった、これに対して金型温度を上げ溶着を良くする、射出圧力を上げて収縮分を補給する等の方法や形状的には
【図5】[5−4]形状のもの、
【図13】[13−1][13−2]等の形状が試みられたが、成功しなかった、その原因は溶着面積を広げれば溶着強度は向上するという考え方と溶着面積を広げれば、それだけ収縮量が増大する、射出圧を上げても射出樹脂の温度は金型温度に比較して100〜150℃以上も高く収縮は必ず起こることを見落としていた事とガラス繊維がウエルドライン部では流れ方向に直角方向にしかも平行方向に並ぶということが最大の原因と考えられる。
【0037】
この対策として
【図11】[11−1]に示す如く周囲縁11に15,16のスリーブピンを設置する事によって[11−2]のようなピン空間孔13が形成され、その垂直の押上力を取り除くことによってピンは後退し空隙[11−2]が形成され、その空隙に溶着樹脂が充満して(ハッチング部分)垂直方向の収縮によってリベット効果が発生する更に角形、または円形ピン18、少し小さい目寸法のピン20[11−4]を水平方向(横方向)に油圧、エアー圧、またはスプリング力で加圧する、更に前記の[11−1]のスリーブピン15,16、または[11−3]のピン17とを相互に加圧作動する事によって溶着を確実なものにする事が出来る、この操作は必要に応じて行うもので一方向、垂直、水平方向の二方向等溶着面の強度状態で決定される。
【0038】
特にウエルドライン部にあるときは、相互加圧作動によってガラス繊維の方向が変わるため、強度向上には効果がある、またリベット効果の出るところにウエルドラインを発生させれば垂直、水平方向の操作となるため強度は容易に向上できる。しかし、ウエルドラインがリベット形状部に発生できない場合は、
【図11】[11−4]のように必要に応じ樹脂留まりを形成し、上記図のように角形又は円形で小さ目のピンを適正場所に適正本数(図面では3本)配置し、これを加圧前後進する事によって、ガラス繊維の繊維配向を修正し、溶着強度が向上する、またこのように金型内にて一体成形のため振動溶着法に比較してコスト低減となる。但し,適正樹脂温度、金型温度、圧力を選択する必要がある。
【0039】
ピン先端形状は[11−2]のように平坦な面を得るためには[5−1]に示すようなスリーブ方式(二段装置)が必要になる、外観は問題ないというのであれば一段形式の[5−3]の段付きのピンを使用すればよい。
【0040】
【垂直部二次射出成形】
この部分は
【図2】
【図4】
【図6】
【図12】に記載されているとおり40部分を示すもので、詳細は
【図12】に示されている、作動については可動本体50及びそれに設置された可動部品41,42、スライド部品45,46より構成されている、一次樹脂射出時に可動部品41,42は、内側に回転して所定の位置に止まり、可動本体50が前方向80に進むのでN−N10−N11−N12−NラインはN−N−N−N−Nの円弧と同一になり、垂直半円部の成形が出来る、次に二次溶着樹脂射出の場合は均一間隙40が必要であるが、N円弧をそのままの後方向80に後退したのでは可動本体50の中心点N11、41部品N10点,42部品N12点では円弧が同一のためN10点とN11,N12点の間隔が大幅に異なり、均一肉厚に樹脂を二次射出出来ない、従ってN−N10−N11−N12−Nのラインになるようにしなくてはならない、そのために考案された構造で
【図12】及び[H−H]断面が示すような状態となるのであるが、そのためには、先ず可動本体50がやや多めに後退し、部品41,42が43,44を中心として外方に開動し、部品45,46が70方向に所定の位置まで前進し、次の可動本体50が前進して、樹脂注入の間隙40を形成し、ここに二次溶着樹脂射出が行われてフランジとの溶着が進行する、
【0041】
この部分でも収縮、ガラス繊維配向等による溶着不充分な事項が考えられるので射出完了後、必要に応じ可動本体50を80前方向に、部品45,46を交互に加圧前進させて収縮による空隙防止をして密着を計り溶着強度の向上を計る、成形品取出しの際には部品45,46を、次に可動本体50を後退させる、尚
【図12】を見て収縮防止の前進は不可能と考える人がいるかも知れないが、対向部分が樹脂のため柔軟性があるため可能である事を付け加える。
【0042】
【発明の効果】
以上の本発明は上記説明のように実行することによって次のような効果をもたらす
【0043】
溶着周囲縁内面のリベット効果の収縮効果とピンによる垂直、水平方向の加圧作動(振動の場合は更に良い)により、ウエルドライン部がリベット形状部に発生の場合は、垂直、水平方向の上記と同じ加圧作動により、
【図11】[11−4]ように必要に応じ樹脂溜まりを形成し、上記図のように角形又は円形小さ目のピンを適正場所に適正本数(図面では3本)配置し、これを加圧前後進する事によって、ガラス繊維の繊維配向を修正し、溶着強度が向上する、また金型内にて一体成形のため振動溶着法に比較してコスト低減となる
【0044】
内面コアーを平面異方向(この場合反対方向)の稼働するため射出成形機の開閉の距離が減少し成形サイクルタイムを減少できるし、コスト削減できる
【0045】
今まで不可能であった垂直部分とフランジとの溶着が可能となった
【図面の簡単な説明】
【図1】[1−1]本発明の自動車部品インテークマニホールドの中空成形体完成品平面図
[1−2]完成品A1矢視側面図
[1−3]完成品側面図
【図2】[2−1]フランジ付き本体下面部品
[2−2]上面カバー部品図
【図3】[3−1]2部品の[c−c]断面図
[3−2]1部品の[c−c]断面図
[3−3]1,2部品の溶着前の[c]部分組立断面図 (溶着前)
【図4】
【図2】[E]成形品断面図 (溶着前)
【図5】[5−1]溶着周囲縁図 (溶着前)
[5−2]溶着図(リベット型溶着図 ピン上面が平面)
[5−3]溶着図(リベット型溶着図 ピン上面が凹凸)
[5−4]溶着図(通常部分溶着図)
【図6】
【図2】成形品E部分金型断面図(成形品対向前)
【図7】アンダーカット33をはずし部品1内面コアー31が矢印方向311に移動中の図 [註]内面コアー32は反対方向322方向に動くことに注意
【図8】
【図2】成形品F部分金型断面図(分割コアー31,32の後退方向は、紙面直角反対方向)
【図9】
【図2】成形品F部分金型断面図(周囲縁及び内面溶着前)
【図10】内面コアーのアンダーカットをはずす構造図
【図11】[11−1]リベット方式溶着するためのスリーブ構造(溶融樹脂未充填)
[11−2]−リベット形状に溶着樹脂が充填した図及び角形または円形のサイドピン(この場合通常円形)[註]リベット天井面が平坦となるような構造に注意
[11−3]簡単なピン方式構造(外観が問題)及び角形または円形のサイドピン
[11−4]リベット部分の中間G断面形状、樹脂だまり及び角形または円形の細目のサイドピン
【図12】垂直半円形部二次射出によりフランジとの溶着構造図
【図13】[13−1]溶着部形状(大きな効果なし)
[13−2]溶着部形状(大きな効果なし)
【符号の説明】
1. フランジを有する本体下面成形品
2. 上記成形品の上面カバー
11.1部品の周囲縁
21.2部品の周囲縁
12.溶着部分の微小凹凸
13.リベット形成用の孔
14.二次射出時に溶融樹脂が内面に流れ止めリブ
15.リベット形成用のスリーブセンターピン
16.リベット形成用のスリーブライナー
17.リベット形成用ピン(一体ピン)
18.溶融樹脂の空洞、密度向上用角形または円形の加圧ピン
20.溶融樹詣の空洞防止、密度向上用角形または円形の少し細い加圧ピン
21、22.上記と同じ加圧作動用傾斜ピン
23.24 リベット形成用のピン加圧作動用傾斜
25.傾斜受ブロック
26.油圧またはエアーシリンダー
28.樹脂溜まり
31.1部品コアー
311.1部品コアースライド方向
32.2部品コアー
322.2部品コアースライド方向
33.1部品コアーアンダーカット
34.2部品コアーアンダーカット
35,36アンダーカットをはずすための傾斜ブロック
37.35,36作動用傾斜ブロック
38、33用アンダーカット回転中心
39.34用アンダーカット回転中心
40.垂直部とフランジとの二次溶着樹脂射出用間隙
41,42.部品50に設置された可動ブロック
43,44.部品41,42の可動ブロック中心
45,46.スライドブロック
50.可動部品
51,ピンゲートスプルー
52,53.サイドゲートスプルー、ランナー
61,62,63.金型開き
70.垂直部とフランジとの間隙40形成用スライドブロックのスライド方向
72.可動ブロック41,42の可動方向
80. 垂直部とフランジとの可動ブロックスライド方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mold having a structure that can be formed by injection molding when resinating complicated-shaped products such as an intake manifold (distribution pipe for gas to an engine cylinder), which is a hollow integrated product of an automobile part, and does not require post-processing. The present invention relates to a mold and a molding method for completing an integrally molded product in the mold.
[0002]
[Prior art]
There are several conventional methods, and four typical methods will be described as follows.
[0003]
[Lost core method]
This method is used as a method of obtaining a plastic hollow molded body (intake manifold) as an automobile part. However, the inner core is made of a low melting composite alloy (composite alloy of lead, tin, antimony, etc.), and the core is required. It is molded by using another mold for shape production, it is inserted into this mold to form the main body, the molded product is taken out of this mold together with the composite alloy, and this is heated by high frequency heating to the alloy on the inner surface. Is melted and taken out to obtain a desired hollow molded body.
[0004]
Therefore, a low melting composite alloy is required as a core material, a core molding die of the alloy is required, labor for inserting into this die is required, high-frequency melting work of the molded product core part taken out together with the main body is required, further melting Equipment is required, which is troublesome, and the equipment costs are high, which inevitably leads to high costs.
[0005]
[Vibration welding method]
When forming a hollow body (intake manifold) as shown in FIG.
FIG. 1 is a bottom molded product of a main body having a flange, 2 is a top molded product covering 1 and is molded by a mold, taken out, put into a jig conforming to the shape, and opposed to each other to a vibrator. The upper and lower welding surfaces are welded by vibrating heat, but require technology.
[0006]
However, it has the following disadvantages, two molds are required, the molded product is deformed because the molded product is removed from the mold, and the molded product is warped, and the shape of R is uneven and it is difficult to fit. Burrs are likely to be generated on the inner surface, and it is necessary to inspect the burrs.At the same time, deburring work may be added in some cases. Also, a vibrator is required and equipment costs are required. The cost is unavoidably high because of the two-stage molding called vibration welding.
[0007]
【Mold cavity movement method】
This method is introduced in JP-A-7-186183, 7-186177 (Nippon Steel Works) and JP-A-8-11155 (Mitsubishi Rayon). However, since the molded product itself is moved, it is difficult to align the core, and there is no other way than to load the injection molding machine with an eccentric load.Especially for large products such as intake manifolds, this eccentric load can damage the tie bars of the molding machine. At the same time, there is a problem of connection, and at the part farther than the center part, burrs are apt to be generated due to this unbalanced weight. Further, at the welding part by secondary injection, the welding resin is mixed with 30% of glass fiber, so that the glass fiber Are aligned in a direction perpendicular to the flow, so that in the weld line, they are aligned in parallel with each other and glass fibers do not mix with each other. Strength strength by the glass fiber does not come out even out, therefore weld strength is decisive problem fall compared to the weld strength of the sliding method.
[0008]
[Mold core moving method]
This method is disclosed in JP-A-10-58487 (Nippon Steel Works) and JP-A-11-42670 (Toshiba), but the injection molding method for the cavity B is not illustrated in the description of the former 10-58487. This is a problem.Also, although such a simple shape describes a part of a complex-shaped molded product such as an intake manifold, it is impossible to form at all, and in the intake manifold, there is no inner core. There is usually an undercut, and it is often difficult to move the inner surface by removing the undercut first. In most cases, the biggest problem of both the above-mentioned Japanese Patent Laid-Open Publications (core moving method) is that the welding surface is similar to the cavity moving method. There is a decisive problem that the strength drops compared to the vibration method (the cause is the same as the cavitation movement method).
[0009]
In the present invention
FIG. 6
There is usually an undercut as shown in FIG. 10, which is removed by a clever method (described below). The core shape is "claim 2" of JP-A-10-58487, and the drawing direction can be determined from the drawing. For example, "a pair of semi-hollow molded products (A, B) cores are integral (20) and only in one horizontal plane direction."
FIG. 1 shows a molded article having a complicated shape and usually a sloping PL surface as shown in 1 (molded body lower surface having a flange) and 2 (molded upper surface article covering 1) shown in FIG. If the mold of the injection molding machine is opened by the methods of Japanese Patent Application Laid-Open Nos. 10-58487 and 11-42670, it is necessary to open the mold very large. Enlargement leads to an increase in cycle time and cost. Therefore, the following inner core is divided and the two-way moving method is devised, and the division is effective for undercut removal and structural processing.
[0010]
[Issue 1 to be solved]
When molding an injection hollow body, it is necessary to increase the welding strength of the welded portion on the inner surface of the peripheral edge of an intake manifold or the like to the level of the vibration method. Fiber-containing raw materials have particularly low weld line welding strength, and it is necessary to devise a mold structure and molding method corresponding to this.
[0011]
[Issue 2 to be solved]
Since there is always an undercut in the core, it is necessary to devise a method to remove this easily.
[0012]
[Issue 3 to be solved]
It is necessary to make the mold opening / closing distance of the injection molding machine as small as possible to reduce the cycle time.
[0013]
[Issue 4 to be solved]
FIG.
FIG.
FIG.
FIG. 12 It is necessary to devise a method of connecting the semi-circular part opposite to the vertical semi-circular part shown in the part and the simultaneously formed flange.
[0014]
[Issue 5 to be solved]
There is a need to devise several methods for improving reliability related to the above, but in the text, each part will be described separately.
[0015]
[Solution 1]
the above
In order to solve the problem 1, a molded product of a lower surface of a main body having a flange (in this case, a flanged component of an intake manifold) 1 and an upper cover 2 thereof.
The welding peripheral edges 11, 21 and the welding cross section of
FIG. 3 shows [3-1], [3-2], and [3-3], which increase the reliability of welding on this surface. A pin space having a rivet structure due to shrinkage during injection of a secondary welding resin. A hole 13 (a rivet space hole at the time of primary injection) and a rib 14 serving as a weir to prevent the welding resin from flowing into the inside are provided on the inner surface of the welding edge. 12 are provided, these details
FIG. 3 is an enlarged view of [3-1] [3-2] and its [3-3] assembly drawing.
FIG. 5A shows that [5-1] is before injection of the secondary welding resin, and [5-2], [5-3], and [5-4] show that the resin has entered the welded portion (hatched portion).
[0016]
However, until now we considered shrinkage as a matter of course in the primary molten resin injection, but in the secondary molten resin injection, we did not always take this shrinkage into account, so the larger the welding area was, Generally, the wall thickness is generally thicker and the shrinkage is larger, and the welding has been performed in the negative direction to reduce the strength.The countermeasures have been to increase the mold temperature and extend the injection time. Raising the mold temperature may be considered in terms of welding, but is problematic in terms of shrinkage, and prolonging the injection time involves entering a resin at a temperature (230-250 ° C.) much higher than the mold temperature. Therefore, considering shrinkage and fiber orientation, this is not a complete measure.
[0017]
The measures are
FIG. 11 shows a rivet-shaped space 13 formed by a sleeve pin method as shown in [11-1], which is filled with a resin by secondary injection and contracted to generate a contraction force in a vertical (up and down) direction. Further, [11-2] is only in the horizontal direction (lateral direction), [11-3] is in the horizontal direction and vertical direction (however, the pin shape is different from [11-1]), and [11-4] is as required The required number of square or circular pins smaller than the welding width (if necessary) and the required number of places required by hydraulic, air pressure, spring force, etc. It can prevent voids, increase the density, improve the degree of adhesion, and reliably increase the welding strength (including appropriate molding conditions).
[0018]
In particular, at the weld line generation location, as described above, the direction of the glass fiber is perpendicular to the resin flow, so that the weld line surfaces are parallel to each other. It is necessary to change the direction of this fiber because it does not come out. It is possible to intermix and change the direction of glass fiber by pressing pins vertically (vertically) and horizontally (horizontally). As it can be done, the strength is improved, and the resin density is also improved and the strength is improved.In some cases, only the vertical and horizontal directions are sufficient if necessary.Also, it is better to bring the weld line part to the rivet shape part, If it is difficult
FIG. 11 shows a resin reservoir formed on a PL surface (parting line) at the time of secondary molten resin injection as shown in [11-4], and a horizontal square or circular pin 20 and inclined pins 21 and 22 are installed. Pressing each other to measure the mutual incorporation of glass fiber and change of direction.If a resin escape part is required when the pin advances, install a piston with a spring at the rear at the appropriate place, and temporarily fill the resin with this part. After the pin retracts, the resin is returned by the piston reaction force.
[0019]
[Means 2 for Problem 2]
There are various ways to remove the undercut,
FIG. 6
As shown in FIG. 10, a clever method using a spring or magnet force has been devised.
[0020]
[Means 3 for Problem 3]
In order to shorten the molding cycle, it is necessary to reduce the mold opening of the molding machine, like the intake manifold
FIG.
FIG. 6
As shown in FIG. 7, since the molded article having a slope has a slope, the inner core portion is divided and moved in parallel and different directions (in this case, opposite directions) to make the mold opening / closing stroke of the molding machine approximately 30 to 50. %, The mold opening stroke can be reduced, the molding cycle can be shortened, the cost can be reduced, and the machining of the undercut part is easy by dividing the inner core. There is also an effect.
[0021]
[Means 4 for Problem 4]
How to connect the vertical semicircle to the horizontal flange
FIG. 6
FIG. 12 shows a solution by using a slide core.
[0022]
[Means 5 for Problem 5]
About this matter
FIG. 11 shows a rivet-shaped structure as shown in [11-2] and [11-3] in the primary injection.
In FIG. 10, the undercut of the R portion of the inner core is subtly removed by a spring method.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention breaks down the wrong idea that increasing the welding area in conventional secondary resin injection increases the welding strength if the welding area is increased, and conversely increases the shrinkage by simply increasing the area. Use the shrinking force to make it the proper size and rivet shape, and in that part, increase the strength by applying vertical and horizontal pressure alternately, and consider the properties of glass fiber in the weld line part
[11] As shown in [11-4], by alternately performing the pressing operation of the pins, the mixing of the glass fiber and the change of the direction thereof are measured to improve the strength, and further, it is always attached to the intake manifold. Remove the undercut by a clever method, and divide the inner surface core and move it in parallel different directions (in this case, the opposite direction), reduce the mold opening distance of the injection molding machine, shorten the cycle time, and It is a method of connecting a vertical semicircular portion and a horizontal flange.
[0024]
[Features of product shape]
Product shape
FIG. 1 shows the following features.
[0025]
FIG. 5
FIG. 11 shows a rivet shape for improving the welding strength of the inner peripheral surfaces of the welding peripheral edges 11 and 21. A pin space hole 13 which is not filled with the welding resin at the time of the primary injection is formed, and this pin is retracted at the time of the secondary injection. Then, the rivet-shaped part is filled with resin, and the mold structure is designed to improve the strength by this contraction force.
[0026]
In consideration of shrinkage of the resin injected into the inner peripheral surfaces of the welding peripheral edges 11 and 21 of the intake manifold as shown in FIG. 1, a round pin is vertically formed on the rivet-shaped portion, and a square is formed at an appropriate position in the horizontal direction. Or devising a mold structure to increase the welding strength by installing a circular pin and applying compressive force to each other, and in a part where the rivet method can not be adopted, installing a pin in the horizontal direction and applying pressure, especially for the weak weld line part Press the pin alternately vertically and horizontally in the rivet-shaped part.If this weld line does not come in the rivet-shaped part, install a resin pool and several pins as necessary. In order to improve the strength of the welded part by intermixing glass fibers by moving forward and backward with each other, and to change the direction (the conventional practice has not focused on injection resin shrinkage for secondary injection). Concept, the strength improvement measures weld line portion of the glass fiber resin temperature, mold temperature increase was not considered much except injection times).
[0027]
By moving the divided cores having inner undercuts in parallel and different directions (in this case, in opposite directions) to reduce the opening and closing stroke of the injection molding machine, the cycle time is reduced and the mold processing is easier. Measured.
[0028]
FIG. 6
As shown in FIG. 12, this intake manifold may require a welded structure of a vertical semicircular portion and a horizontal flange, so a mold structure has been devised.
[0029]
Next two items
[Product shape]
[Mold structure and operation method] will be described.
[0030]
[Product shape]
FIG. 1 illustrates the shape of a molded product when forming an intake manifold.
FIG.
As shown in FIG. 2, in [2-1], reference numeral 1 denotes a molded product of the lower surface of the main body in which a flange is molded together, and reference numeral 2 in [2-2] denotes a component that covers it from the upper surface.
FIG. 3 is a cross-sectional view, and triangular fine irregularities 12 (high enough to melt and improve the welding force during the injection of the secondary molten resin) are formed on the inner surfaces of the welding edges 11 and 21 formed during the injection of the main body. , A space hole 13 having a rivet structure, and a projection 14 are further provided so that molten material does not enter inside.
FIG. 3 [3-3] shows a state in which the two molded articles face each other.
FIG. 4 is a sectional view taken along the line E of the molded product, and shows a state in which the molded product faces each other.
[0031]
FIG. 5 shows details of the unfilled inner surface welded part in [5-1], and molten materials in hatched parts in [5-2], [5-3] and [5-4]. It is considered to be effective.
[0032]
[Mold structure and operation method]
According to molding order
[Primary injection molding of hollow body],
[Secondary injection molding of inner peripheral surface of hollow body] and
[Formation of vertical injection welding part]
[0033]
[Primary injection molding of hollow body]
FIG. 6 is a cross-sectional view of the E mold in a state where the mold is closed (
FIG. 2E 1 -E 1 , E 2 -E 2 ) Indicates that the molded product and the cavities are opposed to each other with the inner core interposed therebetween. The necessary number of gates (eg, 51, 52, 53, etc.) are installed at the optimal positions in the main molded product, and the molten resin Is injected into the cavities to fill and form two opposing molded articles (primary injection molding is completed), but the inner core must be removed, but the inner split core 31 has 33 undercuts and the inner split core There are 34 undercuts in 32, you need to remove them first,
As shown in FIG. 10, when the inclined slide 37 retreats, the pins 35, 36 retreat in the direction of the arrow by the spring, and the undercut portions 33, 34 rotate inward about the 38, 39 and come off. Open the dies in the order of 61, 62, 63 to the minimum necessary.
FIG. 6 shows a process in which the body inner surface divided core 31 is retreating along a guide (omitted for simplicity) held outside the mold in the direction of 311. However, the inner core 32 is also required. Minimally open, retreat in the opposite direction 322, move in parallel different directions (in this case, the opposite direction), and the inclined slide 37 also retreats outward together with the core 32. After the retreat is completed, the mold advances again. Then, the PL surface (parting line surface) is matched, and the hollow body in the cavity is formed facing the cavity.
[0034]
FIG. 7 shows a state in which the main body split core 31 on the main body lower surface molded product 1 side is moving in the arrow direction 311. The upper cover 2 side split core 32 is also in the same state as the 1 side split core. The opening and closing distance of the molding machine can be reduced by about 1/3 to 1/2 by doing so.
[0035]
FIG. 8 is a cross-sectional view of the mold F (
FIG. 2F 1 -F 1 , F 2 -F 2 ) Indicates that the core inner surface divided cores 31 and 32
FIG. 7 shows a direction perpendicular to the cross-sectional view of the mold F, and moves in opposite directions at right angles to the sheet of FIG.
As shown in FIG. 9, the PL surface (parting line surface) moves forward and opposes, the inner core is pulled out in the same manner as described above, and a hollow body remains in the cavity.
[0036]
[Formation of secondary injection welded part on inner surface of peripheral edge of hollow body]
This is to inject a secondary welding resin into the inner surfaces of the peripheral edges 11 and 21 of the hollow body to complete the complete hollow body.
There has been a drawback that the welding strength is weaker than the vibration welding method as described above, but methods such as increasing the mold temperature to improve welding, increasing the injection pressure, and replenishing the shrinkage amount have been used. In terms of shape
FIG. 5 shows a [5-4] shape;
FIGS. 13A and 13B have tried shapes such as [13-1] and [13-2], but were unsuccessful. The reason for this is that if the welding area is increased, the welding strength is improved. The amount of shrinkage increases accordingly. Even if the injection pressure is increased, the temperature of the injection resin is higher than the mold temperature by 100 to 150 ° C or higher, and it has been overlooked that shrinkage always occurs. It is considered that the greatest cause is that they are arranged in a direction perpendicular to the direction and in a parallel direction.
[0037]
As a measure against this
FIG. 11 shows that a pin space hole 13 like [11-2] is formed by installing 15, 16 sleeve pins on the peripheral edge 11 as shown in [11-1], and the vertical lifting force is removed. As a result, the pin recedes to form a gap [11-2], and the gap is filled with the welding resin (hatched portion), and the rivet effect is generated by the shrinkage in the vertical direction. The pin 20 [11-4] having the dimensions is horizontally (laterally) pressurized by hydraulic pressure, air pressure, or spring force, and further the sleeve pin 15, 16 or [11-3] of [11-1]. The welding can be assured by pressing the pins 17 with each other. This operation is performed as necessary, and the strength state of the welding surface in one direction, vertical direction, horizontal direction, etc. Decided by It is.
[0038]
Especially when in the weld line area, the direction of the glass fiber is changed by the mutual pressing operation, which is effective in improving the strength. In addition, if the weld line is generated where the rivet effect appears, the operation in the vertical and horizontal directions Therefore, the strength can be easily improved. However, if the weld line cannot be generated in the rivet shape part,
FIG. 11 shows a case in which a resin stay is formed as necessary as shown in [11-4], and an appropriate number (three in the drawing) of square or circular small pins is arranged at an appropriate place as shown in the above figure. By moving forward and backward under pressure, the fiber orientation of the glass fiber is corrected, and the welding strength is improved. In addition, the cost is reduced as compared with the vibration welding method because the glass fiber is integrally formed in a mold. However, it is necessary to select appropriate resin temperature, mold temperature, and pressure.
[0039]
In order to obtain a flat surface such as [11-2], a sleeve type (two-stage device) as shown in [5-1] is required for the pin tip shape. What is necessary is just to use the stepped pin of type [5-3].
[0040]
[Vertical secondary injection molding]
This part
FIG. 2
FIG. 4
FIG. 6
FIG. 12 shows 40 parts as described in FIG.
FIG. 12 shows the operation, which is composed of a movable main body 50 and movable parts 41 and 42 and slide parts 45 and 46 installed thereon. And the movable body 50 stops at a predetermined position, and the movable body 50 advances in the forward direction 80. 1 -N 10 -N 11 -N 12 -N 1 Line is N 2 -N 2 -N 2 -N 2 -N 2 And the vertical semicircular portion can be formed. Next, in the case of secondary welding resin injection, a uniform gap 40 is required. 2 If the arc is retracted in the backward direction 80 as it is, the center point N of the movable body 50 11 , 41 parts N 10 Point, 42 parts N 12 N at the point because the arcs are the same 10 Point and N 11 , N 12 The distance between the points is greatly different, so that the resin cannot be secondarily injected with a uniform thickness. 1 -N 10 -N 11 -N 12 -N 1 Must be made into a line of, with a structure devised for that
12 and [HH] cross section, the movable body 50 first retreats a little more, and the parts 41, 42 are moved outward with the centers of 43, 44. , The parts 45 and 46 advance in the direction of 70 to a predetermined position, the next movable body 50 advances and forms a gap 40 for resin injection, where the secondary welding resin injection is performed and the flange is formed. Welding progresses with
[0041]
Also in this part, insufficient welding due to shrinkage, glass fiber orientation, etc. can be considered. Therefore, after the injection is completed, if necessary, the movable body 50 is moved forward by 80, and the parts 45 and 46 are alternately pressed and advanced so that the gap due to shrinkage is obtained. In order to improve the welding strength by preventing adhesion, the parts 45 and 46 are retracted when removing the molded product, and then the movable body 50 is retracted.
Although it may be considered that it is impossible to advance the shrinkage prevention by looking at FIG. 12, it is added that the opposing portion is made of resin and has flexibility.
[0042]
【The invention's effect】
The present invention has the following effects by being executed as described above.
[0043]
Due to the shrinkage effect of the rivet effect on the inner surface of the welded peripheral edge and the vertical and horizontal pressurization operation by the pin (better in the case of vibration), if the weld line part occurs in the rivet shape part, the vertical and horizontal direction With the same pressurized operation as
FIG. 11 forms a resin reservoir as needed as shown in [11-4], arranges an appropriate number (three in the drawing) of square or circular small pins at appropriate locations as shown in the above figure, and pressurizes the pins. By moving forward and backward, the fiber orientation of the glass fiber is corrected, and the welding strength is improved. In addition, the cost is reduced compared to the vibration welding method because it is integrally molded in the mold.
[0044]
Since the inner core is operated in a different plane direction (in this case, the opposite direction), the opening and closing distance of the injection molding machine is reduced, so that the molding cycle time can be reduced and the cost can be reduced.
[0045]
Welding of vertical parts and flanges, which was impossible until now, is now possible
[Brief description of the drawings]
FIG. 1 is a plan view of a completed hollow molded article of an automobile part intake manifold according to the present invention.
[1-2] Completed product A1 arrow side view
[1-3] Side view of finished product
FIG. 2 [2-1] Lower body parts with flange
[2-2] Top cover parts diagram
[3-1] [3-1] [c] of two parts 2 -C 2 ] Cross section
[3-2] [c] of one part 1 -C 1 ] Cross section
[3-3] Partial sectional view of [c] before welding of 1 and 2 parts (before welding)
FIG. 4
FIG. 2 [E] Cross-sectional view of molded product (before welding)
[5-1] Peripheral view of welding (before welding)
[5-2] Welding diagram (rivet type welding diagram Pin upper surface is flat)
[5-3] Welding diagram (rivet type welding diagram Pin top surface is uneven)
[5-4] Welding diagram (normal partial welding diagram)
FIG. 6
FIG. 2 is a sectional view of a part E of a molded product (before facing a molded product).
FIG. 7 is a view in which the undercut 33 is removed and the inner core 31 of the part 1 is moving in the arrow direction 311. [Note] Note that the inner core 32 moves in the opposite direction 322.
FIG. 8
FIG. 2 is a cross-sectional view of a part F of a molded product F (the retracting directions of the divided cores 31 and 32 are opposite to the direction perpendicular to the plane of the paper).
FIG. 9
FIG. 2 is a sectional view of a part F of a molded product F (peripheral edge and before inner surface welding).
FIG. 10 is a structural view showing an undercut of an inner core.
[11-1] Sleeve structure for rivet welding (without filling of molten resin)
[11-2]-Riveted shape filled with welding resin and square or circular side pins (usually circular in this case) [Note] Be careful of the structure so that the rivet ceiling surface is flat
[11-3] Simple pin type structure (appearance is a problem) and square or circular side pins
[11-4] Intermediate G cross-sectional shape of the rivet portion, resin pool, and square or circular fine side pins
FIG. 12 is a view showing a structure of welding to a flange by secondary injection of a vertical semicircular portion.
FIG. 13 [13-1] Welded part shape (no significant effect)
[13-2] Welding section shape (no significant effect)
[Explanation of symbols]
1. Lower body molded product with flange
2. Top cover of the above molded product
11.1 Perimeter edge of part
21.2 Perimeter edge of component
12. Small irregularities on the welded part
13. Riveting holes
14. Rib to prevent molten resin from flowing to inner surface during secondary injection
15. Sleeve center pin for rivet formation
16. Sleeve liner for rivet formation
17. Rivet forming pin (integral pin)
18. Hollow of molten resin, square or circular pressure pin for density improvement
20. Square or circular slightly thin pressure pin for preventing cavities from melting and improving density
21, 22. Inclined pin for pressurizing operation
23.24 Inclined Pin Pressing Actuation for Riveting
25. Inclined block
26. Hydraulic or air cylinder
28. Resin pool
31.1 Parts core
311.1 Parts core sliding direction
32.2 parts core
322.2 parts core sliding direction
33.1 Parts core undercut
34.2 parts core undercut
Inclined block for removing 35, 36 undercut
37. Inclination block for 35, 36 operation
Undercut rotation center for 38, 33
Undercut rotation center for 39.34
40. Gap for injection of secondary welding resin between vertical part and flange
41, 42. Movable block installed on part 50
43,44. Center of movable block of parts 41 and 42
45, 46. Slide block
50. Moving parts
51, pin gate sprue
52, 53. Side gate sprue, runner
61, 62, 63. Mold opening
70. Sliding direction of slide block for forming gap 40 between vertical portion and flange
72. The movable direction of the movable blocks 41 and 42
80. Sliding direction of movable block between vertical part and flange

Claims (3)

射出成形機による中空体成形金型において
【図5】溶着周囲縁11、21の内面に適正な厚みと大きさの溶着面を形成し、強度向上のため、その適当箇所に
【図5】[5−1][5−3]のようなリベット形状を形成し、その部分には
【図11】[11−1]に示すように円形スリーブピン15,16を、また同図[11−3]に示すように円形ピン17を設置し、一次樹脂射出時にはリベット形状の空間孔13とし、二次溶着樹脂射出時にはこれを後退させて、この空間13に樹脂を充填してリベット形状を形成させ、その収縮力を利用すると共に油圧、エアー圧力、スプリング等を利用し直接または、ピン底部の傾斜部23,24を利用して上方向(上部もほぼ同一形状)に圧力を加える、また同時に水平方向(側面)より角形または円形のピンに油圧、エアー圧力、スプリング等の力を加える、これら三方向の加圧作動を相互に行い、必要に応じては一方のみ、または垂直、水平等の二方向とする、また弱いウエルドラインの位置がリベット形状の位置に来るようにする、出来ない場合は
【図11】[11−4]に示すように必要に応じて成形体外のPL面(パーテイングライン面)に適正な形状の樹脂溜まり28を形成させ、その箇所の適正な位置に数個の周囲縁内面幅より小さ目(必要に応じて)の角形または円形のピン20とそのピンと適正な傾斜角のピン21,22を配置し、その加圧作動は上記同様に相互前後進し、ウエルドライン部のガラス繊維の相互混入や方向変換を行わせ溶着部強度の向上や収縮による空隙を防止、密着低下の防止を計る金型構造及びその成形方法(含成形条件)。
[Fig. 5] In a hollow body molding die by an injection molding machine, [Fig. 5] A welding surface having an appropriate thickness and size is formed on the inner surfaces of the welding peripheral edges 11 and 21. 5-1] [5-3] is formed into a rivet shape, and circular sleeve pins 15 and 16 as shown in [11-1] in FIG. ], A circular pin 17 is provided to form a rivet-shaped space hole 13 during the injection of the primary resin, and is retracted during the injection of the secondary welding resin. The space 13 is filled with resin to form a rivet shape. Using the contraction force and applying pressure in the upward direction (the upper part is almost the same shape) directly using hydraulic pressure, air pressure, springs or the like, or using the inclined portions 23 and 24 at the bottom of the pin, and at the same time horizontal Square or circle from direction (side) Apply pressure such as oil pressure, air pressure, spring, etc. to the pins of each other, and perform these three directions of pressurization operation mutually, if necessary, only one direction, or two directions such as vertical and horizontal, and weak weld line Is set at the position of the rivet shape. If it is not possible, as shown in [11-4], if necessary, the PL surface (parting line surface) outside the molded body should have an appropriate shape. A resin puddle 28 is formed, and several square or circular pins 20 smaller (if necessary) smaller than the inner surface width of the peripheral edge and pins 21 and 22 having appropriate inclination angles are arranged at appropriate positions at the corresponding locations. The pressurizing operation moves forward and backward in the same manner as described above, and the mold is used to intermix glass fibers in the weld line portion and to change the direction, thereby improving the strength of the welded portion and preventing voids due to shrinkage, and preventing a decrease in adhesion. Structure and its Form method (含成 type conditions).
上記同様の金型において
【図6】、
【図7】、
【図10】に示すように分割した内面コアーに付随するアンダーカット33.34を38,39を中心にして内側にはずし、且つ内面コアーを必要最小限型開き後、互いに平行異方向(この場合反対方向)または直角方向(含斜め方向)に移動させ、後退完了後PL面(パーテイングライン面)を前進し、中空体となるキャビテー部の成形品を対向させ、射出成形機の開閉距離の大幅な減少、サイクルタイムの減少を計ると共にアンダーカットの機械加工を容易にする金型構造及びその成形方法。
[Fig. 6]
FIG.
As shown in FIG. 10, the undercuts 33.34 attached to the divided inner cores are removed inward around the centers 38 and 39, and the inner cores are opened to a minimum necessary shape. (In the opposite direction) or in the perpendicular direction (including the diagonal direction), and after the retreat is completed, the PL surface (parting line surface) is advanced, and the molded product of the cavity part, which becomes a hollow body, is opposed. A mold structure and a molding method thereof capable of greatly reducing the cycle time and facilitating machining of an undercut.
【図6】、
【図12】に示すように中空体とするため垂直半円形部分等または一部と相対する半円部分に同時成形されたフランジとを溶着させるために、一次樹脂射出時には
【図12】円弧N−N−N−N−Nに円弧N−N10−N11−N12−Nを密着させて本体を成形し、二次溶着樹脂射出時には可動本体50が外方向80に移動し、次に本体50に設置した可動部品41,42がピン43,44を中心に外方向72に開動し、次にスライド可能な部品45,46を70方向に前進させて二次溶着樹脂射出可能な空隙40(N10−N11−N12円弧)を形成し、その空隙に溶着樹脂を射出充填し、更に射出後本体部品50を80方向に部品45,46を相互に加圧前進させて収縮による空隙を防止し、密着度を高め、溶着面の強度向上を計る金型構造及びその成形法(含成形条件)。
FIG.
FIG. 12 shows a vertical semicircular portion or the like or a semicircular portion opposed to a part thereof, which is formed into a hollow body, by welding a flange formed at the same time to a semicircular portion. to 2 -N 2 -N 2 -N 2 -N 2 are brought into close contact with the arc N 1 -N 10 -N 11 -N 12 -N 1 by molding the body, outwardly movable body 50 during the secondary welding resin injection 80, and then the movable parts 41, 42 installed on the main body 50 are opened in the outward direction 72 around the pins 43, 44, and then the slidable parts 45, 46 are advanced in the 70 direction, and welding resin jettable gap 40 (N 10 -N 11 -N 12 arc) is formed, a welding resin injected and filled in a gap therebetween, mutually pressurized further parts 45, 46 of injection after main body part 50 in the 80 direction Pressure advance to prevent voids due to shrinkage, Enhanced, mold structure and its molding method measures the strength improvement of the welding surface (含成 type conditions).
JP2003120673A 2003-03-24 2003-03-24 Mold for molding hollow body by injection molding machine and its molding method Pending JP2004284333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120673A JP2004284333A (en) 2003-03-24 2003-03-24 Mold for molding hollow body by injection molding machine and its molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120673A JP2004284333A (en) 2003-03-24 2003-03-24 Mold for molding hollow body by injection molding machine and its molding method

Publications (1)

Publication Number Publication Date
JP2004284333A true JP2004284333A (en) 2004-10-14

Family

ID=33296484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120673A Pending JP2004284333A (en) 2003-03-24 2003-03-24 Mold for molding hollow body by injection molding machine and its molding method

Country Status (1)

Country Link
JP (1) JP2004284333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175610A (en) * 2004-12-20 2006-07-06 Toyota Motor Corp Resin molded component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175610A (en) * 2004-12-20 2006-07-06 Toyota Motor Corp Resin molded component
JP4535862B2 (en) * 2004-12-20 2010-09-01 トヨタ自動車株式会社 Plastic molded parts

Similar Documents

Publication Publication Date Title
US7588809B2 (en) Hollow body of synthetic resin, method and mold for injection molding of the hollow body
CN100377862C (en) Method of molding a hollow molded article, hollow molded article, and apparatus for manufacturing the same
CA2628460C (en) Laminant hot runner manifold
WO2015076013A1 (en) Resin molding and manufacturing method therefor, injection molding apparatus for implementing same, injection molding die, and injection molding method
CN101332658B (en) Hot runner injection method of plastic part with side core-pulling and forming mold thereof
KR101705003B1 (en) Injection mold for provide simultaneous forming two kind of product at the sametime
JP2004284333A (en) Mold for molding hollow body by injection molding machine and its molding method
JP2012016944A (en) Resin molding method, die device, and resin molded article
JPS59165632A (en) Method and apparatus for injecting and molding hollow article
JP5969884B2 (en) Injection molding equipment
KR19980018186A (en) Injection Mold
KR101173067B1 (en) Manufacturing apparatus and method of door trim for vehicle
JP2009143104A (en) Molding tool and molding method
US8337745B2 (en) Integral molten evacuation channel
JP4812033B2 (en) Method for molding composite molded article and molding die
JP3906719B2 (en) Assembling method of molded products
CN217704470U (en) Water-assisted forming pipeline mold
CN201264341Y (en) Hot runner injection forming mould for side core pulling plastic member
KR102494505B1 (en) Manufacturing jig for slide core
JPH11170306A (en) Injection mold
JP2005053074A (en) Valve gate type injection molding method
US5785107A (en) Apparatus and method for producing multiple cores
JP3097906U (en) Injection mold for composite molding
JP2007130914A (en) Multicolor molded article and its molding method
JP5804635B2 (en) Manufacturing method of resin molded products