JP2004283900A - Steel strip winding method - Google Patents

Steel strip winding method Download PDF

Info

Publication number
JP2004283900A
JP2004283900A JP2003082065A JP2003082065A JP2004283900A JP 2004283900 A JP2004283900 A JP 2004283900A JP 2003082065 A JP2003082065 A JP 2003082065A JP 2003082065 A JP2003082065 A JP 2003082065A JP 2004283900 A JP2004283900 A JP 2004283900A
Authority
JP
Japan
Prior art keywords
winding
tension
coil
steel sheet
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082065A
Other languages
Japanese (ja)
Other versions
JP3772847B2 (en
Inventor
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003082065A priority Critical patent/JP3772847B2/en
Publication of JP2004283900A publication Critical patent/JP2004283900A/en
Application granted granted Critical
Publication of JP3772847B2 publication Critical patent/JP3772847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel strip winding method which is easily introduced in a practical operation by a simple method without large change of a facility since defective shape caused in the inner circumferential part of the coiled part is suppressed. <P>SOLUTION: When the steel strip of ≤ 1 mm in thickness is coiled around a reel, the coiling tension is increased from the coiling start to the predetermined number of turns below ten. After the coiling tension reaches the initial maximum coiling tension Tc, a portion of constant tension is coiled while maintaining the tension Tc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷延鋼板等の比較的薄肉材の鋼板を巻き取り、巻き戻す時に発生するコイル巻き取り内周部の形状不良(耳波等)を防止させる為の鋼板の巻き取り方法に関するものである。
【0002】
【従来の技術】
冷延鋼板等比較的薄肉材(1.0mm厚以下)を巻き取って、次工程にて巻戻される時、コイル内周部にて形状不良が発生し、客先での苦情及び歩留り低下を招いている。この様な課題を解決する為の手段として、巻き取り機(テンションリール)を介してコイルを巻き取る際に、コイルに適正な巻き取り張力を付与する方法が行われている。
【0003】
例えば、特許文献1には、板厚0.5mm以下の鋼板を巻き取るに当たり、巻き取りコイルに低張力層を形成し、その該層においては2kg/mm≦巻始め張力≦4kg/mm、巻始め張力=4kg/mm×α(母材コイルの係数)なる条件にて巻き取る方法が提案されている。
【0004】
特許文献2には、巻き取り初期に発生する鋼帯両端部の耳波を確実に防止する方法として、テンションリールヘの鋼板巻き取り方向へ曲げを与え、鋼帯のテンションリール側表層部を塑性変形せしめて鋼帯の圧縮残留応力を低減して巻き取る方法が開示されている。
【0005】
同様に、特許文献3には、耳波防止の手段として形状矯正後の鋼帯をテンションリールに巻き取るに際し、テンションリールの幅方向中央部にクラウンを形成し巻き取る方法が、特許文献4には、テンションリールの幅方向中央部に鉄製等のスリーブを装着せしめて巻き取る方法が開示されている。
【0006】
さらに特許文献5には、コイル内周側に平坦度変化(耳波及び中伸び)が発生しない巻き取り方法として、鋼帯のプロフィール形状に着目して巻き取り張力を適正に設定して巻き取る方法が開示されている。
【0007】
【特許文献1】特開平6−71337号公報
【特許文献2】特開平9−57342号公報
【特許文献3】特開平9−57344号公報
【特許文献4】特開平9−76012号公報
【特許文献5】特開平10−71425号公報
【発明が解決しようとする課題】
しかし、特許文献1に開示されている方法では、低張力層となる巻始め張力については内径部からの巻高さで10〜30mmとなっており0.5mm厚以下の材料でこの様な条件で巻き取られたコイルは、ある巻高さになると内径部の巻き取りコア部が低い為、テレスコープという巻姿不良が発生し易く、巻き取りコイル径に制約を受けることになり客先仕様となる条件を全て満足し難いという不具合が生じる。
【0008】
また、特許文献2に開示されている方法によると、新たな一工程を余分に必要とする。さらに特許文献3、4に開示されている方法では、設備の変更や改良を必要とするという問題があった。
【0009】
特許文献5に開示されている方法では、巻き取り張力設定値を決定するパラメーターが複雑し過ぎて実操業に困難をもたらす。また、コイル外径の条件は、客先コイル仕様(振り当て単重)に適正範囲があるが検査結果によりコイル外径の実績は異なるものであり、このパラメーターにより適正張力を設定することは実操業上困難であるという問題があった。
【0010】
そこで本発明は、コイル巻き取り内周部に発生する形状不良を抑制するため、大掛かりな設備の変更を必要とせず、簡易な方法により実操業に導入することが容易なコイル巻き取り方法を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明者は、上記に示した従来技術における課題解決を図る為に、種々検討を重ね、巻き取り初期に低張力層を設け、さらに一端張力を上げた後、その張力を保持したまま巻き取るか、あるいは一旦上げた張力を定常巻き取り張力まで低下させることによって、コイル巻き取り内周部に発生する形状不良を抑制することができることを見出して本発明を完成するに至った。
【0012】
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。
【0013】
請求項1の発明は、板厚1mm以下の鋼板をリール(2)に巻き取る際に、巻き取り張力を巻き取り開始から10巻き未満の所定巻き数まで上昇させて、初期最大巻き取り張力Tcとした後、前記張力Tcを維持して定常部を巻き取ることを特徴とする鋼板の巻き取り方法を提供して前記課題を解決する。
【0014】
請求項2の発明は、請求項1に記載の鋼板の巻き取り方法において、初期最大巻き取り張力Tcの値を10MPa以上、20MPa未満とすることを特徴とする。
【0015】
請求項3の発明は、板厚1mm以下の鋼板をリール(2)に巻き取る際に、巻き取り張力を巻き取り開始から10巻き未満の所定巻き数まで上昇させて、初期最大巻き取り張力Tcとした後、定常部では前記初期最大巻き取り張力Tcより小さい定常部巻き取り張力Tnで巻き取ることを特徴とする鋼板の巻き取り方法により前記課題を解決する。
【0016】
請求項4の発明は、請求項3に記載の鋼板の巻き取り方法において、初期最大巻き取り張力Tcの値を10MPa以上、20MPa未満とし、定常部巻き取り張力Tnの値を10MPa以上とすることを特徴とする。
【0017】
【発明の実施の形態】
図1は、コイル巻き数と設定巻き取り張力との関係を示す図である。コイルの巻き取りは、テンションリールにより張力をかけつつ行う。本発明にかかる巻き取り方法においては、図1における実線で示すように、巻き取り初期に低張力の範囲Rが設定され、これによりテンションリールに巻き取られるコイル最内周部に低張力層を形成する。巻始めの所定コイル巻き数の範囲にて、張力を所定の上昇パターンに設定することによって、コイル巻き取り内周部にかかる引っ張り応力(巻き取りによる応力+巻き取りによりコイル内に生じる周方向応力)を低減させることができる。即ち、巻き取られたコイルを巻き戻す時に発生するコイル内周部の歪み(耳波)を軽減することができる。
【0018】
本発明において、板厚1mm以下の鋼板を巻き取る際に、初期最大巻き取り張力Tcに達するまでの初期コイル巻数Ncは、
Nc<10
を満たすことが必須である。
Nc≧10
すなわち、低張力で巻き取られた巻き数が10以上に多くなると、巻き取られたコイルの内周部においてコア部の巻締めが弱くなる。その結果コイル巻径が大きくなり、例えばコイル径が1500mm以上になると、次第にテレスコープと称される巻姿不良が発生するようになる。かくして、出荷が困難となるばかりでなく、再作業が必要となり生産性が低下する。又、極端に初期コイル巻き数Ncを大きくすると、内周部の剛性が弱くなる。その為、巻き取られたコイルを、テンションリールを縮小して抜き出すときに座屈(楕円形状に変形)し、最悪の場合コイル抜き出しができなくなるというトラブルが発生する。
【0019】
コイル巻き始めの部分に低張力層を形成させる理由は、材料力学的にはコイル内径変形の平坦不良発生に及ぼす影響として、以下の様に考えられる。すなわち、巻き取り、及び巻戻しにより鋼板に生じる応力は
1 巻き取り張力による応力 (σw)
2 巻き取りによる曲げ応力
3 巻き取りによりコイル内に生じる周方向応力 (σh)
4 巻き取りによりコイル内に生じる面圧(半径方向応力)
の4項目が挙げられる。
【0020】
これらの応力により鋼板に平坦不良を生じさせない為には、板厚中央に塑性延びが生じないことが必要条件となる。鋼板を弾完全塑性体と仮定すると、(引っ張り+曲げ)から除荷により生じる塑性延び (εp)は(式−1)で表される。
εp=(1/2)*(t/ρ)*(σ/σ)−(σ/E) (式−1)
ここに、
t:板厚
ρ:曲率半径
E:縦弾性係数(ヤング率)
σ:引っ張り応力
σ:鋼板の降伏点
である。また“*”はその両側の数を乗じることを示す記号である。(以下同じ。)
ここで、コイル内径部に生じる面圧、すなわち半径方向応力は、他の応力に比べて小さいため無視することができる。コイル内径部の変形に(式−1)を適用すると、
εp=(t/D)*[(σw+σh)/σ)]−(σ/E) (式−2)
ここに、
D:鋼板コイル径
σ=(σw+σh):引っ張り応力
である。
【0021】
(式−2)より
εp>0
であれば、鋼板はその大きさだけ塑性延びを生じることになり、コイル巻き取り内周部に於いて形状不良(耳波)が発生する。一方、
εp≦0
となれば鋼板中央部は塑性変形していないことになり、鋼板に塑性延びが生じない為、コイル巻き取り内周部において、形状不良は発生し難い。即ち、巻き取り時におけるコイル内周部に塑性変形を与えず、形状不良を発生させない為には
εp≦0
となる条件が必要である。同時に、この条件を満たす巻き取り条件としては、少なくともσw(巻き取り張力による応力)を小さく与えることが有効である。
【0022】
本発明は、(式−2)に基づき
εp≦0
となる適正な巻き取り張力を実機試験により求めた。その結果、コイル巻き取り内周部における形状不良である耳波を、コイル巻き取り初期に低張力層を形成させて低減することができた。
【0023】
【実施例】
以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0024】
図1は、巻始め張力の設定パターンを示したものであり、破線部は従来の張力設定を、実線部は本発明による巻始め張力設定パターンを示すものである。図中のRは初期巻き取り張力の設定領域、Rは初期最大巻き取り張力の設定領域、Rは定常部巻き取り張力の設定領域をそれぞれ示す。又、コイル巻き数で示したNa、Nb、Ncはそれぞれ初期巻き取り張力の設定領域Rにおいて、張力変化率の変更点を示すものであり、Nc点においては初期最大巻き取り張力Tcに到達するように電気的な制御を行っている。一方、巻き取り張力で示したTa、Tbは、コイル巻数がNa、Nbに到達した時の張力を示す。
【0025】
図2は、鋼板の形状不良を幅方向の断面で示す模式図である。ここに表される平坦不良の幅方向鋼板断面モデルは略「W」形状をなし、2つの谷部X、Zの間隔をL、山部Yの高さをaとして、急峻度d=a/Lの大きさで、平坦度の良/不良を判断している。本実施例においては、急峻度dが0.4%以上の時、平坦不良と判断した。また、図2において、XZ間の実際の板の長さ(曲線XYZ)をL´としたとき、伸び率εは、
ε=(L´−L)/L
で示される。
【0026】
図3は、巻き取り張力を制御するライン構成及びその制御ブロック図を示すものである。本装置における鋼板送りライン100は、テンションブライドルロール1と、テンションリール2と、デフレクトロール3と、切断機4とを備えている。初期における巻き取り張力のパターンは、操作盤10にて設定され、その情報は制御装置7に導かれる。制御装置7は、鋼板送り量を検出する回転検出器5、テンションリールの回転数をカウントする回転検出器6、テンションリール2に巻き取られたコイル巻数をカウントする検出器8、及び制御の開始点を認識する鋼板先端検出器7により得られた情報を受け容れて、これらの情報により決定される所定の動作命令を鋼板送りライン100に発し、初期巻き取り張力の設定領域Rにおける各巻き数Na、Nb、Ncの終了時点において所定の張力Ta、Tb、Tcが設定されるように、初期最大巻き取り張力の設定領域Rでは初期最大巻き取り張力Tcが保持されるように、さらに定常部Rでは前記最大巻き取り張力Tc、または定常部巻き取り張力Tcとなるように制御している。
【0027】
本実施例において使用した材料は、
形状:0.4〜1.0mm(厚)×850mm(幅)×長さ(コイル)
C(炭素)重量%:0.05%
規格:JIS G3141(1996)冷間圧延鋼板及び鋼帯;SPCC−SD(標準調質ダル仕上げ)相当
であり、この一般低炭素鋼のコイルを対象に形状不良の品質評価を行った。当該材料は需要家における用途がパネル等、平坦度の重要性が高いものであり、従来からコイル巻き取り内周部における形状不良の問題発生が多い製品である。
【0028】
(張力一定による巻き取り)
図4に示すグラフは、従来の方法によりコイルを巻き取ったときの、1コイルあたりの平坦不良発生長さ(m)とその発生率(%)との関係を示すものである。ここでの平坦不良とは、上記急峻度dが0.4%以上の場合をさす。この場合、巻き取り張力は、全てのコイル巻き数(コイル全長)に対して、25MPa(一定値)に設定された。この従来の方法によれば、平坦不良長さ25〜50mに平坦不良発生率のピークがあり、実測コイル数43において、その平均長さは1コイル当たり約47mであった。
【0029】
図5は、図4において示した従来の張力設定値25MPaを、15MPa、20MPa及び30MPaに変化させたとき、巻き取り張力が形状不良に与える影響を、伸び率εとコイル内周部からの距離との関係に整理して示すものである。図5に示す張力設定は、一定張力であり初期巻き取り張力による低張力層を形成していない。この図に示した伸び率εは、図2で説明した伸び率εに関する式
ε=(L´−L)/L
より求めた値を示している。
【0030】
この関係式において、L‘の長さを正弦曲線と近似すれば、
L´=L*[1+(aπ/2L)] (式−3)
いま、△L=L´−Lとおけば
△L/L=(aπ/2L) (式−4)
ここで、急峻度d=a/L、
歪み(伸び率)ε=△L/L
であるから、
ε=(dπ/2)=2.47(a/L) (式−5)
したがって、(式−2)が示す様に巻き取り内周部に発生する形状不良に与える因子として、巻き取り張力(σw)が支配していることが確認され、形状不良を防止させる手段として低巻き取り張力が有効であることが確認された。
【0031】
また、急峻度d=a/Lが不良と判断される境界値は0.4%なのでこの値を(式−5)に代入して、不良とされる歪み(伸び率)の境界値は
ε=40×10−6
となる。
【0032】
巻き取り張力30MPaでは、伸び率ε=40×10−6に対応するコイル巻き取り内周部からの距離は約70mに達する。巻き取り張力20MPaでは伸び率の要求レベルを満たさない部分が依然として約20m存在する。巻き取り張力が15MPaでは平坦不良の大きさ、及び長さがいずれも小さく、需要家の品質要求を満足することができる適正な張力設定であることを確認した。15MPaの巻き取り張力では、内径の変形(つぶれ)及びテレスコープと称される巻姿不良も発生することなく、製品に問題ないことが確認された。
【0033】
(初期巻き取り張力を変化させた巻き取り)
平坦度の要求度がさらに厳格な(耳波高さ2mm未満)需要家に対する製品は、更に平坦不良の改善を要した。図6に示すグラフは、図5の場合で設定した、コイル全長に亘って一定の巻き取り張力を適用するという条件に対して、コイル巻き取り初期に低張力層を形成させるように初期巻き取り張力を設定した場合の、伸び率εとコイル内周部からの距離との関係を示すものである。
【0034】
ここでは、初期巻き取り張力設定領域Rにおいて、
Na=1
Nb=3
Nc=5
として、Nc=5に達した時点、すなわちテンションリールに鋼板を5巻きした時点で、初期最大巻き取り張力Tcに到達するように制御された。また、巻き数Nbに達した時点の巻き取り張力Tbは、
Tb=(Tc−Ta)/2
となるように設定された。初期巻き取り張力層を形成した結果、一定張力のみによる巻き取りに対して平坦不良の改善が認められ、その改善率は約20〜30%であった。
【0035】
表1に実機試験によるサンプル総数20の品質評価の事例を示す。また表1における各サンプルに適用した張力設定のパターンを図7に示す。
【0036】
【表1】

Figure 2004283900
【0037】
表1の「評価」の項目は、一定張力(15MPa)の場合に対する相対評価を表わしており、それぞれの記号は、
○+:優れる
○:同等
△:やや劣る
×:劣る
ことを示す。
【0038】
表1に示す実施例(サンプル総数20)において、巻き取り張力パターンとして、張力パターン▲1▼及び▲2▼はTc=Tnであり、本願の請求項1及び2に対応する。また、張力パターン▲3▼及び▲4▼は、Tc>Tnであり、請求項3及び4に対応するものである。
【0039】
初期コイル巻き数Ncが
Nc=10
の場合(サンプルNo.4、8、13、14、19、20)では、コイル内周部の巻き締め力が弱くなり、巻き姿不良が発生した。特に板厚が0.4mm(サンプルNo.4)及び0.6mm(サンプルNo.8)の場合においては、形状不良(耳波)の発生長さが150m/コイルを超えて現状レベルの品質が確保できなかった。
【0040】
一方、
Nc=9
以下では、表1に示す様に、現状レベル以上の品質が確保でき、初期コイル巻数Ncが
Nc<10
を満たす条件の有効性が認められた。
【0041】
板厚0.8mm以上1.0mm以下では、初期コイル巻き数Ncを増加してゆくと、「テレスコープ」と称される巻き姿不良が顕在化する。この問題解決にあたっては、初期最大巻き取り張力Tcを15MPaに設定し、定常部巻き取り張力Tnを10MPaにしたテーパ張力設定(図7におけるパターン▲3▼及び▲4▼)を適用することで巻き姿不良が改善されることを確認した。
【0042】
定常部巻き取り張力Tnを10MPa未満にすると、次工程でコイル払い出し時にスリップが生じて、「巻き締まり」と称する掻き傷の欠陥が発生するのでTnの低減は、
Tn≧10MPa
の範囲内で行うべきである。
【0043】
即ち、巻き取り張力の設定において、Tc≧Tnの条件を満たすことで品質改善が図られると共に、その値については、図6及び表1の結果が示すごとく、上限を20MPa未満、下限を10MPa以上に設定することが望ましい。
【0044】
以上、現時点において、もっとも実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う鋼板の巻き取り方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。
【0045】
【発明の効果】
以上に説明したように、本発明によるコイル巻き取り内周部に発生する形状不良(耳波)を、従来の一定の巻き取り張力設定に代えて、低張力層を形成させるようにコイルを巻き取ることにより、急峻度(a/L)を0.4%以下にして、形状不良発生長さを所定長以内に抑制することが可能である。
【0046】
本発明により、歩留向上が可能となる一方、製造工程においては、テレスコープ(巻姿不良)及びコイルを巻き取り、抜き出し時にコイル内径の変形(座屈)等も発生しない。かくして、設備の安定稼働、再作業による形状不良部の切り下げによる歩留低下を抑制し、品質面、操業面の向上に寄与するものである。
【図面の簡単な説明】
【図1】コイル巻き数と巻き取り張力との関係を示す図である。
【図2】鋼板の形状不良を幅方向の断面で示す模式図である。
【図3】本発明の巻始め張力制御に関する設備構成図、及び制御ブロック図である。
【図4】対策前の平坦不良の実績を、平坦不良長さと平坦不良率との関係で示す図である。
【図5】巻き取り張力が一定の場合の、コイル巻き取り内周部からの距離とその位置における伸び率(ε)との関係を示す図である。
【図6】図5に示す図表の一定張力に対して、巻始めに低張力層を形成させた場合のコイル巻き取り内周部からの距離とその位置における伸び率(ε)との関係を示す図である。
【図7】表1に示す巻き取り張力パターンの事例を示す図である。
【符号の説明】
1 テンションブライドルロール
2 テンションリール巻き取りコイル(リール)
3 デフレクトロール
4 切断機
5 テンションブライドルロール回転検出器
6 テンションリール回転検出器
7 板先端位置検出器
8 テンションリールコイル巻数検出器
10 操作盤
100 鋼板送りライン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of winding a steel sheet for preventing a shape defect (such as an ear wave) of an inner peripheral portion of a coil winding which occurs when winding and unwinding a relatively thin steel sheet such as a cold-rolled steel sheet. It is.
[0002]
[Prior art]
When a relatively thin material (less than 1.0 mm thick) such as a cold-rolled steel sheet is wound up and unwound in the next process, a shape defect occurs at the inner periphery of the coil, causing complaints at the customer and reduced yield. Inviting. As means for solving such a problem, a method of applying an appropriate winding tension to the coil when winding the coil through a winding machine (tension reel) has been performed.
[0003]
For example, in Patent Literature 1, when winding a steel sheet having a thickness of 0.5 mm or less, a low tension layer is formed on a winding coil, and in this layer, 2 kg / mm 2 ≤ winding start tension ≤ 4 kg / mm 2 A winding method has been proposed in which the winding start tension is 4 kg / mm 2 × α (the coefficient of the base material coil).
[0004]
Patent Document 2 discloses a method of reliably preventing ear waves at both ends of a steel strip generated at an early stage of winding, by bending the steel strip on a tension reel in a direction in which the steel strip is wound, and forming a plastic layer on the tension reel side surface layer of the steel strip. There is disclosed a method of winding a steel strip by deforming to reduce the compressive residual stress of the steel strip.
[0005]
Similarly, Patent Literature 3 discloses a method of forming a crown at the center in the width direction of a tension reel when winding a steel strip after shape correction onto a tension reel as means for preventing ear waves, and discloses a method disclosed in Patent Literature 4. Discloses a method in which a sleeve made of iron or the like is attached to a central portion in the width direction of a tension reel and wound.
[0006]
Further, Patent Document 5 discloses a winding method in which flatness change (ear waves and middle elongation) does not occur on the inner circumferential side of the coil, and winding is performed by appropriately setting a winding tension by focusing on a profile shape of a steel strip. A method is disclosed.
[0007]
[Patent Document 1] JP-A-6-71337 [Patent Document 2] JP-A 9-57342 [Patent Document 3] JP-A 9-57344 [Patent Document 4] JP-A 9-76012 [Patent Document 5: Japanese Patent Application Laid-Open No. Hei 10-71425 [Problems to be Solved by the Invention]
However, in the method disclosed in Patent Literature 1, the winding start tension, which becomes a low-tensile layer, is 10 to 30 mm as the winding height from the inner diameter portion. At a certain winding height, the winding core part of the inner diameter part is low, so it is easy for the telescope to have a poor winding appearance, and the winding coil diameter is limited, so it is customer specification Is difficult to satisfy all the following conditions.
[0008]
Further, according to the method disclosed in Patent Document 2, an additional new step is required. Further, the methods disclosed in Patent Literatures 3 and 4 have a problem that equipment needs to be changed or improved.
[0009]
In the method disclosed in Patent Literature 5, the parameters for determining the winding tension setting value are too complicated, which causes difficulty in actual operation. In addition, although there is an appropriate range for the coil outer diameter in the specification of the customer's coil (split single weight), the actual result of the coil outer diameter differs depending on the inspection result, and it is not possible to set the appropriate tension using this parameter. There was a problem that operation was difficult.
[0010]
Therefore, the present invention provides a coil winding method that can be easily introduced into actual operation by a simple method without requiring a large-scale equipment change in order to suppress a shape defect occurring in an inner peripheral portion of the coil winding. What you are trying to do.
[0011]
[Means for Solving the Problems]
The present inventor has conducted various studies in order to solve the problems in the prior art described above, provided a low tension layer in the initial stage of winding, further increased the tension at one end, and then wound up while maintaining the tension. Alternatively, it has been found that a shape defect occurring at the inner periphery of the coil winding can be suppressed by reducing the tension once raised to the steady winding tension, and the present invention has been completed.
[0012]
Hereinafter, the present invention will be described. In addition, in order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are added in parentheses, but the present invention is not limited to the illustrated embodiment.
[0013]
According to the first aspect of the present invention, when a steel sheet having a thickness of 1 mm or less is wound on a reel (2), the winding tension is increased to a predetermined number of windings of less than 10 windings from the start of winding, and the initial maximum winding tension Tc is increased. After that, the above-described problem is solved by providing a method for winding a steel sheet, wherein the steady portion is wound while maintaining the tension Tc.
[0014]
According to a second aspect of the present invention, in the method for winding a steel sheet according to the first aspect, the value of the initial maximum winding tension Tc is set to 10 MPa or more and less than 20 MPa.
[0015]
According to a third aspect of the present invention, when a steel sheet having a thickness of 1 mm or less is wound on the reel (2), the winding tension is increased to a predetermined number of windings of less than 10 windings from the start of winding, and the initial maximum winding tension Tc is increased. After that, the above problem is solved by a winding method for a steel sheet, wherein the winding is performed at a steady portion winding tension Tn smaller than the initial maximum winding tension Tc in the steady portion.
[0016]
According to a fourth aspect of the present invention, in the method for winding a steel sheet according to the third aspect, the value of the initial maximum winding tension Tc is set to 10 MPa or more and less than 20 MPa, and the value of the steady portion winding tension Tn is set to 10 MPa or more. It is characterized by.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram illustrating a relationship between the number of coil turns and a set winding tension. The winding of the coil is performed while applying tension by a tension reel. In the winding method according to the present invention, as shown by the solid line in FIG. 1, a low tension range R0 is set at the initial stage of winding, whereby a low tension layer is formed on the innermost peripheral portion of the coil wound on the tension reel. To form By setting the tension in a predetermined ascending pattern within the range of the number of turns of the coil at the beginning of winding, the tensile stress applied to the inner periphery of the coil winding (the stress due to winding + the circumferential stress generated in the coil due to winding) ) Can be reduced. That is, it is possible to reduce distortion (ear waves) of the inner peripheral portion of the coil that occurs when the wound coil is unwound.
[0018]
In the present invention, when winding a steel plate having a thickness of 1 mm or less, the initial number of coil turns Nc until the initial maximum winding tension Tc is reached is as follows:
Nc <10
It is essential to satisfy
Nc ≧ 10
That is, when the number of windings wound with low tension is increased to 10 or more, the tightening of the core in the inner peripheral portion of the wound coil becomes weak. As a result, when the coil diameter becomes large, for example, when the coil diameter becomes 1500 mm or more, a winding defect called a telescope gradually occurs. Thus, not only is shipping difficult, but rework is required and productivity is reduced. Also, if the initial coil winding number Nc is extremely increased, the rigidity of the inner peripheral portion is weakened. Therefore, when the tension coil is pulled out while reducing the tension reel, the wound coil buckles (deforms into an elliptical shape), and in the worst case, a trouble occurs in which the coil cannot be pulled out.
[0019]
The reason why the low tension layer is formed at the beginning of coil winding is considered as the influence of the deformation of the coil inner diameter on the occurrence of flat defects in terms of material mechanics as follows. That is, the stress generated in the steel sheet by winding and unwinding is 1 stress due to winding tension (σw)
2 Bending stress due to winding 3 Circumferential stress generated in coil due to winding (σh)
4 Surface pressure (radial stress) generated in coil by winding
4 items.
[0020]
In order to prevent the flatness of the steel sheet from being caused by these stresses, a necessary condition is that no plastic elongation occurs in the center of the sheet thickness. Assuming that the steel sheet is an elastic perfect plastic body, the plastic elongation (εp) generated by unloading from (tensile + bending) is expressed by (Equation-1).
εp = (1/2) * (t / ρ) * (σ 0 / σ e ) − (σ e / E) (Equation-1)
here,
t: thickness ρ: radius of curvature E: modulus of longitudinal elasticity (Young's modulus)
σ 0 : tensile stress σ e : yield point of steel sheet. “*” Is a symbol indicating that the numbers on both sides are multiplied. (same as below.)
Here, the surface pressure generated in the inner diameter portion of the coil, that is, the radial stress, can be ignored since it is smaller than other stresses. Applying (Equation-1) to the deformation of the coil inner diameter,
εp = (t / D) * [(σw + σh) / σ e)] - (σ e / E) ( Equation -2)
here,
D: steel sheet coil diameter σ 0 = (σw + σh): tensile stress.
[0021]
From (Equation-2), εp> 0
In this case, the steel sheet undergoes plastic elongation by the size of the steel sheet, and a shape defect (ear wave) occurs in the inner peripheral portion of the coil winding. on the other hand,
εp ≦ 0
In this case, the central part of the steel sheet is not plastically deformed, and no plastic elongation occurs in the steel sheet, so that a shape defect hardly occurs in the inner peripheral part of the coil winding. That is, εp ≦ 0 so as not to give plastic deformation to the inner peripheral portion of the coil at the time of winding and to prevent shape defects.
The following conditions are required. At the same time, as a winding condition satisfying this condition, it is effective to give at least σw (stress due to winding tension) small.
[0022]
According to the present invention, εp ≦ 0
Was determined by an actual machine test. As a result, it was possible to reduce an ear wave having a shape defect in the inner peripheral portion of the coil winding by forming a low-tensile layer at the beginning of coil winding.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0024]
FIG. 1 shows a pattern for setting the tension at the start of winding. The broken line indicates the conventional tension setting, and the solid line indicates the pattern for setting the winding tension according to the present invention. In the drawing, R 0 indicates a setting area for an initial winding tension, R 1 indicates a setting area for an initial maximum winding tension, and R 2 indicates a setting area for a steady-state winding tension. Further, Na, Nb, and Nc indicated by the number of coil windings respectively indicate a change point of the tension change rate in the initial winding tension setting region R0 , and reach the initial maximum winding tension Tc at the point Nc. Electrical control is performed as follows. On the other hand, Ta and Tb indicated by the winding tension indicate the tension when the number of coil turns reaches Na and Nb.
[0025]
FIG. 2 is a schematic diagram illustrating a shape defect of a steel plate in a cross section in a width direction. The widthwise steel plate cross-sectional model of the flat defect shown here has a substantially “W” shape, and the steepness d = a /, where the interval between the two valleys X and Z is L and the height of the peak Y is a. Good / bad flatness is determined based on the size of L. In this embodiment, when the steepness d is 0.4% or more, it is determined that the flatness is poor. In FIG. 2, when the actual plate length between X and Z (curve XYZ) is L ′, the elongation ε is
ε = (L′−L) / L
Indicated by
[0026]
FIG. 3 shows a line configuration for controlling the winding tension and a control block diagram thereof. The steel plate feed line 100 in the present apparatus includes a tension bridle roll 1, a tension reel 2, a deflector roll 3, and a cutting machine 4. The initial winding tension pattern is set on the operation panel 10, and the information is guided to the control device 7. The control device 7 includes a rotation detector 5 for detecting the feed amount of the steel sheet, a rotation detector 6 for counting the number of rotations of the tension reel, a detector 8 for counting the number of coil windings wound on the tension reel 2, and a start of control. Receiving information obtained by the steel plate tip detector 7 which recognizes a point, a predetermined operation command determined by the information is issued to the steel plate feed line 100, and each winding in the initial winding tension setting region R0 is performed. the number Na, Nb, given at the end of Nc tension Ta, as Tb, Tc is set so that the initial maximum take-up tension of the set area R 1 in the initial maximum take-up tension Tc is maintained, further constant region R 2 at the maximum take-up tension Tc or are controlled to be constant region winding tension Tc,.
[0027]
The materials used in this example are:
Shape: 0.4-1.0mm (thickness) x 850mm (width) x length (coil)
C (carbon) weight%: 0.05%
Standard: JIS G3141 (1996) cold rolled steel sheet and steel strip; equivalent to SPCC-SD (standard temper dull finish), and quality evaluation of shape defects was performed on coils of this general low carbon steel. This material has a high degree of importance in flatness such as a panel for use in a consumer, and is a product that often causes a problem of a shape defect in an inner peripheral portion of a coil winding.
[0028]
(Winding with constant tension)
The graph shown in FIG. 4 shows the relationship between the flat defect occurrence length (m) per coil and the occurrence rate (%) when the coil is wound by a conventional method. Here, the flat defect means a case where the steepness d is 0.4% or more. In this case, the winding tension was set to 25 MPa (constant value) for all the number of coil turns (total length of the coil). According to this conventional method, the flat defect occurrence rate has a peak at a flat defect length of 25 to 50 m, and the average length is about 47 m per coil when the number of measured coils is 43.
[0029]
FIG. 5 shows the effect of the winding tension on the shape defect when the conventional tension set value of 25 MPa shown in FIG. 4 is changed to 15 MPa, 20 MPa, and 30 MPa. The relationship is shown in the table below. The tension setting shown in FIG. 5 is a constant tension and does not form a low tension layer due to the initial winding tension. The elongation rate ε shown in this figure is obtained by the equation ε = (L′−L) / L regarding the elongation rate ε described in FIG.
The values obtained from the above are shown.
[0030]
In this relational expression, if the length of L ′ is approximated by a sine curve,
L ′ = L * [1+ (aπ / 2L) 2 ] (Equation-3)
Now, if △ L = L′−L, △ L / L = (aπ / 2L) 2 (Equation-4)
Here, steepness d = a / L,
Strain (elongation) ε = △ L / L
Because
ε = (dπ / 2) 2 = 2.47 (a / L) 2 (Equation-5)
Therefore, as shown in (Equation 2), it has been confirmed that the winding tension (σw) is dominant as a factor given to the shape defect generated in the inner peripheral portion of the winding, and a low factor as a means for preventing the shape defect. It was confirmed that the winding tension was effective.
[0031]
Since the boundary value at which the steepness d = a / L is determined to be defective is 0.4%, this value is substituted into (Equation-5), and the boundary value of the strain (elongation) determined to be defective is ε. = 40 × 10 −6
It becomes.
[0032]
At a winding tension of 30 MPa, the distance from the inner periphery of the coil winding corresponding to the elongation ε = 40 × 10 −6 reaches about 70 m. At a winding tension of 20 MPa, there is still a portion of about 20 m that does not satisfy the required level of elongation. When the winding tension was 15 MPa, both the size of the flat defect and the length were small, and it was confirmed that the tension was set appropriately so as to satisfy the quality requirements of consumers. With a winding tension of 15 MPa, it was confirmed that there was no problem in the product without deformation (crushing) of the inner diameter and poor winding appearance called a telescope.
[0033]
(Winding with the initial winding tension changed)
Products for consumers who have more strict requirements for flatness (less than 2 mm in height of ear wave) required further improvement in flatness failure. The graph shown in FIG. 6 shows that, under the condition that a constant winding tension is applied over the entire length of the coil set in the case of FIG. 5, the initial winding is performed so that a low tension layer is formed at the beginning of coil winding. This shows the relationship between the elongation percentage ε and the distance from the inner periphery of the coil when the tension is set.
[0034]
Here, in the initial winding tension setting area R0 ,
Na = 1
Nb = 3
Nc = 5
At the time when Nc = 5, that is, when the steel plate was wound five times on the tension reel, it was controlled to reach the initial maximum winding tension Tc. The winding tension Tb at the time when the number of windings Nb is reached is:
Tb = (Tc−Ta) / 2
It was set to be. As a result of the formation of the initial winding tension layer, improvement in flatness defect was recognized with respect to winding with only a constant tension, and the improvement rate was about 20 to 30%.
[0035]
Table 1 shows examples of quality evaluation of a total number of 20 samples by an actual machine test. FIG. 7 shows a tension setting pattern applied to each sample in Table 1.
[0036]
[Table 1]
Figure 2004283900
[0037]
The item of “Evaluation” in Table 1 represents a relative evaluation with respect to the case of a constant tension (15 MPa).
○ +: Excellent ○: Equal Δ: Slightly inferior ×: Inferior.
[0038]
In the examples shown in Table 1 (total number of samples: 20), tension patterns (1) and (2) as winding tension patterns are Tc = Tn, and correspond to claims 1 and 2 of the present application. The tension patterns (3) and (4) satisfy Tc> Tn, and correspond to claims 3 and 4.
[0039]
Initial coil winding number Nc is Nc = 10
In the case of (Sample Nos. 4, 8, 13, 14, 19, and 20), the tightening force on the inner peripheral portion of the coil was weak, and the winding appearance was poor. In particular, when the plate thickness is 0.4 mm (sample No. 4) and 0.6 mm (sample No. 8), the length of the shape defect (ear wave) exceeds 150 m / coil and the quality at the current level is high. Could not secure.
[0040]
on the other hand,
Nc = 9
In the following, as shown in Table 1, quality higher than the current level can be ensured, and the initial number of coil turns Nc is Nc <10.
The effectiveness of the condition that satisfies was confirmed.
[0041]
When the plate thickness is 0.8 mm or more and 1.0 mm or less, as the initial coil winding number Nc increases, a poor winding appearance called a “telescope” becomes apparent. To solve this problem, the initial maximum winding tension Tc is set to 15 MPa, and the constant-section winding tension Tn is set to 10 MPa. It was confirmed that poor appearance was improved.
[0042]
If the constant portion winding tension Tn is less than 10 MPa, a slip occurs at the time of dispensing the coil in the next process, and a scratch defect called “tightening” occurs.
Tn ≧ 10MPa
It should be done within the range.
[0043]
That is, in setting the winding tension, quality is improved by satisfying the condition of Tc ≧ Tn, and the upper limit is less than 20 MPa and the lower limit is 10 MPa or more as shown in the results of FIG. 6 and Table 1. It is desirable to set to.
[0044]
Although the present invention has been described in connection with the most practical and preferred embodiments at this time, the present invention is not limited to the embodiments disclosed herein. Without departing from the spirit or spirit of the invention, which can be read from the claims and the entire specification, the method for winding a steel sheet with such a change is also included in the technical scope of the present invention. Must be understood as something.
[0045]
【The invention's effect】
As described above, the shape defect (ear wave) generated in the inner peripheral portion of the coil winding according to the present invention is replaced with the coil winding so as to form a low tension layer instead of the conventional constant winding tension setting. By taking this value, the steepness (a / L) can be reduced to 0.4% or less, and the length of the shape defect occurrence can be suppressed within a predetermined length.
[0046]
According to the present invention, the yield can be improved, but in the manufacturing process, deformation of the coil inner diameter (buckling) does not occur at the time of winding and unwinding the coil in the telescope. Thus, the stable operation of the equipment and the reduction of the yield due to the cut-down of the defective part due to the reworking are suppressed, which contributes to the improvement in quality and operation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between the number of coil turns and a winding tension.
FIG. 2 is a schematic diagram illustrating a shape defect of a steel plate in a cross section in a width direction.
FIG. 3 is a configuration diagram and a control block diagram relating to winding start tension control of the present invention.
FIG. 4 is a diagram showing the results of flat defects before the countermeasure in relation to the flat defect length and the flat defect rate.
FIG. 5 is a diagram showing the relationship between the distance from the coil winding inner peripheral portion and the elongation (ε) at that position when the winding tension is constant.
FIG. 6 shows the relationship between the distance from the inner periphery of the coil winding and the elongation (ε) at that position when a low-tensile layer is formed at the beginning of winding, with respect to the constant tension shown in the table of FIG. FIG.
FIG. 7 is a diagram showing an example of a winding tension pattern shown in Table 1.
[Explanation of symbols]
1 tension bridle roll 2 tension reel winding coil (reel)
3 Deflection Roll 4 Cutting Machine 5 Tension Bridle Roll Rotation Detector 6 Tension Reel Rotation Detector 7 Plate Tip Position Detector 8 Tension Reel Coil Winding Detector 10 Operation Panel 100 Steel Plate Feed Line

Claims (4)

板厚1mm以下の鋼板をリールに巻き取る際に、巻き取り張力を巻き取り開始から10巻き未満の所定巻き数まで上昇させて、初期最大巻き取り張力Tcとした後、前記張力Tcを維持して定常部を巻き取ることを特徴とする鋼板の巻き取り方法。When winding a steel sheet having a thickness of 1 mm or less onto a reel, the winding tension is increased to a predetermined number of windings of less than 10 windings from the start of winding to obtain an initial maximum winding tension Tc, and then the tension Tc is maintained. A method for winding a steel sheet, comprising winding a stationary portion by rolling. 前記初期最大巻き取り張力Tcの値を10MPa以上、20MPa未満とすることを特徴とする請求項1に記載の鋼板の巻き取り方法。The method of winding a steel sheet according to claim 1, wherein the value of the initial maximum winding tension Tc is set to 10 MPa or more and less than 20 MPa. 板厚1mm以下の鋼板をリールに巻き取る際に、巻き取り張力を巻き取り開始から10巻き未満の所定巻き数まで上昇させて、初期最大巻き取り張力Tcとした後、定常部では前記初期最大巻き取り張力Tcより小さい定常部巻き取り張力Tnで巻き取ることを特徴とする鋼板の巻き取り方法。When a steel sheet having a thickness of 1 mm or less is wound on a reel, the winding tension is increased to a predetermined number of turns of less than 10 turns from the start of winding to obtain an initial maximum winding tension Tc. A method for winding a steel sheet, wherein winding is performed at a steady portion winding tension Tn smaller than the winding tension Tc. 前記初期最大巻き取り張力Tcの値を10MPa以上、20MPa未満とし、前記定常部巻き取り張力Tnの値を10MPa以上とすることを特徴とする請求項3に記載の鋼板の巻き取り方法。The method of winding a steel sheet according to claim 3, wherein the value of the initial maximum winding tension Tc is 10 MPa or more and less than 20 MPa, and the value of the steady-state winding tension Tn is 10 MPa or more.
JP2003082065A 2003-03-25 2003-03-25 Steel sheet winding method Expired - Fee Related JP3772847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082065A JP3772847B2 (en) 2003-03-25 2003-03-25 Steel sheet winding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082065A JP3772847B2 (en) 2003-03-25 2003-03-25 Steel sheet winding method

Publications (2)

Publication Number Publication Date
JP2004283900A true JP2004283900A (en) 2004-10-14
JP3772847B2 JP3772847B2 (en) 2006-05-10

Family

ID=33295449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082065A Expired - Fee Related JP3772847B2 (en) 2003-03-25 2003-03-25 Steel sheet winding method

Country Status (1)

Country Link
JP (1) JP3772847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219327A (en) * 2011-04-08 2012-11-12 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2015182084A (en) * 2014-03-20 2015-10-22 Jfeスチール株式会社 Acceptance determination method of steel strip coiling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219327A (en) * 2011-04-08 2012-11-12 Jfe Steel Corp Method of manufacturing grain-oriented electromagnetic steel sheet
JP2015182084A (en) * 2014-03-20 2015-10-22 Jfeスチール株式会社 Acceptance determination method of steel strip coiling

Also Published As

Publication number Publication date
JP3772847B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
Mazur et al. Efficient cold rolling and coiling modes
JP3772847B2 (en) Steel sheet winding method
JP4238198B2 (en) Skin pass rolling machine and rolling method thereof
JPH04294813A (en) Preventing roll for buckling wave and wrinkle, etc., generated on passing extra thin metal strip and its use method
JPH0663606A (en) Method for rolling metallic foil
JP3606267B2 (en) Shape control method
KR101373137B1 (en) Sleeve for preventing end-mark of steel plate and steel plate winding apparatus having the same
JP2933518B2 (en) Winding method of metal strip by up coiler
JP3403272B2 (en) Winding method of steel strip
JP4052140B2 (en) Steel plate shape correction method
JP6564209B2 (en) Cold rolling equipment and manufacturing method for steel strip
JPH0976012A (en) Method for coiling steel strip
JP2001137943A (en) Method and device for controlling flatness of metallic sheet
JP2010264493A (en) Device and method for winding high-strength thick hot-rolled steel sheet
JP2003211219A (en) Method for coiling cold-rolled steel strip
JPH0957344A (en) Method for coiling steel strip
JP3113801B2 (en) Winding method of steel strip
EP3753643B1 (en) Method for producing metal thin strip coil, and metal thin strip coil
JP2012170960A (en) Method of preventing winding deviation of steel strip
JP2000301237A (en) Method and device for uncoiling steel strip coil
JPS61126927A (en) End mark prevention method of steel strip
JP3623839B2 (en) Method for producing aluminum strip for offset printing plate support excellent in flatness
KR101758487B1 (en) Steel strip winding method for improving flatness
JPH07328719A (en) Method and device for coiling low tension of strip metal
JP3381629B2 (en) Rubber sleeve for winding metal band and winding reel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Ref document number: 3772847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20110301

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees