JPH0976012A - Method for coiling steel strip - Google Patents

Method for coiling steel strip

Info

Publication number
JPH0976012A
JPH0976012A JP23546695A JP23546695A JPH0976012A JP H0976012 A JPH0976012 A JP H0976012A JP 23546695 A JP23546695 A JP 23546695A JP 23546695 A JP23546695 A JP 23546695A JP H0976012 A JPH0976012 A JP H0976012A
Authority
JP
Japan
Prior art keywords
steel strip
winding
coil
tension reel
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23546695A
Other languages
Japanese (ja)
Inventor
Koji Tanaka
康治 田中
Satoru Matoba
哲 的場
Masaaki Mori
正晃 森
Yuji Imashiro
雄治 今城
Shinya Nakamura
真也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23546695A priority Critical patent/JPH0976012A/en
Publication of JPH0976012A publication Critical patent/JPH0976012A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent defects in shape at an early stage of coiling by mounting a sleeve in the middle part in the width direction of a tension reel and coiling a steel strip. SOLUTION: For example, by mounting the sleeve 5 of 5-30mm in thick in the position of 30-90% of the middle part in the width direction of the steel strip to be coiled with the tension reel (mandrel) 2, the steel strip is coiled as a coil 3. At the time of drawing out the coil 3, because the sleeve 5 is hardly contracted even when the mandrel of the tension reel 2 is contracted, the inside surface of the coil 3 is supported. So, the total of the amount of compressive strain and permanent strain are enough small, thus the change of the strain amount in the width direction of the steel strip also becomes small and the defects in shape (edge wave) at the early stage 4 of coiling of the steel strip around the tension reel 2 are prevented. In this way, the quality is improved as maintaining high productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明方法は、鋼帯巻き取り
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel strip winding method.

【0002】[0002]

【従来の技術】調質圧延後の鋼帯、連続焼鈍設備での熱
処理後調質圧延を施した鋼帯及び形状矯正のためテンシ
ョンレベラを施した鋼帯(以下形状矯正後の鋼帯とい
う)は、テンションリールに所定量巻き取って鋼帯コイ
ルとし、この鋼帯コイルをテンションリールから抜き取
り、次工程あるいは需要家のめっき工程、成形工程等の
プロセシングライン入側のコイル巻き戻しリールに供給
するものである。このようにテンションリールから鋼帯
コイルを抜き取るため、上記テンションリールの芯、す
なわちマンドレルは直径を拡大・縮小可能とし、拡大時
に真円になるようにしておいて形状矯正後の鋼帯を所定
量巻き取り、その後マンドレル直径を縮小して、鋼帯コ
イルを抜き取るものであり、抜き取り後のコイル潰れ防
止の観点および鋼帯に押し疵等を付けない観点からマン
ドレル表面を可能な限り真円に近い円筒状すると共に、
鋼帯に強い巻き癖が付かないようにマンドレル直径は鋼
帯が降伏しない条件としている。さらに、テンションリ
ールは鋼帯に張力を掛けてコイル状に巻き取るためコイ
ル内径部分に強い巻き締まり力が掛かるので、マンドレ
ルは変形ができるだけ少なくなるよう設計・製作されて
いる。
2. Description of the Related Art Steel strips after temper rolling, steel strips that have been subjected to temper rolling after heat treatment in a continuous annealing facility, and steel strips that have been subjected to a tension leveler to correct the shape (hereinafter referred to as "steel strips after shape correction") Is a predetermined amount wound on a tension reel to form a steel strip coil, and this steel strip coil is extracted from the tension reel and supplied to the coil rewind reel on the processing line entry side of the next process or the customer's plating process, molding process, etc. It is a thing. Since the steel strip coil is pulled out from the tension reel in this way, the core of the tension reel, that is, the mandrel, can be enlarged or reduced in diameter, and when it is enlarged, it is made into a perfect circle so that the shape-corrected steel strip has a predetermined amount. Winding and then reducing the mandrel diameter to extract the steel strip coil.The mandrel surface is as close to a perfect circle as possible from the viewpoints of preventing the coil from collapsing after extraction and preventing the steel strip from being damaged. While making it cylindrical,
The mandrel diameter is set so that the steel strip does not yield so that the steel strip does not have a strong curl. Furthermore, since the tension reel applies a tension to the steel strip and winds it into a coil, a strong winding tightening force is applied to the inner diameter portion of the coil, so the mandrel is designed and manufactured so that deformation is minimized.

【0003】[0003]

【発明が解決しょうとする課題】しかしながら、図2に
示すごとく形状矯正後の板厚0.1〜1.0mmの鋼帯
1をテンションリール2に巻き取り鋼帯コイル3にする
と、巻き取り初期4(テンションリールマンドレル径の
設定穴径から、5〜50mm巻き厚部、鋼帯長さでテン
ションリール巻き取り先端から50〜500m長さ)の
鋼帯1の幅方向両端部が鋼帯長手方向に波を打つ(一般
に耳波という)形状不良が発生し、品質を著しく損な
い、しかも歩留りも大幅に低下させる等の課題がある。
本発明方法は、このような課題を有利に解決するために
なされたものであり、耳波形状不良をほとんど発生しな
い、形状矯正後の鋼帯巻き取り方法を提供することを目
的とするものである。
However, as shown in FIG. 2, when a steel strip 1 having a shape-corrected plate thickness of 0.1 to 1.0 mm is wound on a tension reel 2 to form a steel strip coil 3, the initial winding stage is as follows. The width direction both ends of the steel strip 1 of 4 (5 to 50 mm thick portion from the set diameter of the tension reel mandrel diameter, 50 to 500 m length from the winding end of the tension reel at the steel strip length) are in the longitudinal direction of the steel strip. There is a problem in that a shape defect of waving (generally called an ear wave) occurs, the quality is remarkably impaired, and the yield is significantly reduced.
The method of the present invention has been made in order to advantageously solve such a problem, and an object thereof is to provide a steel strip winding method after shape correction, which hardly causes seismic wave shape defects. is there.

【0004】[0004]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、形状矯正後の鋼帯をテンションリールに巻き取る
に際し、テンションリールの幅方向中央部にスリーブを
装着せしめて、鋼帯を巻き取ることを特徴する鋼帯巻き
取り方法である。
A feature of the present invention is that when a shape-corrected steel strip is wound on a tension reel, a sleeve is attached to the center of the tension reel in the width direction to wind the steel strip. It is a steel strip winding method characterized by taking.

【0005】[0005]

【発明の実施の形態】一般に、鋼帯を処理するめっき設
備、コイル準備設備、形状矯正を施すテンションレベラ
設備、調質圧延設備などの鋼帯の処理ラインにおいて
は、通板用ロールおよびテンションリールの直径は、当
該ラインを通板する鋼帯に、これらのロール類での曲げ
変形により塑性変形することのないように、降伏曲率よ
りも大径ロールとしている。式で記述すると曲率係数β
を、板厚h、弾性係数E、ロール類の直径D、鋼帯の降
伏応力をYを用いて, β= hE/DY (1) と定義したとき, β<1としており、薄鋼帯の場合は、
ほとんど板厚と鋼帯材質の条件で、β<0.5となるよ
うな大径ロール径を設定するのが一般的である。
BEST MODE FOR CARRYING OUT THE INVENTION Generally, in a steel strip processing line such as plating equipment for treating steel strip, coil preparation equipment, tension leveler equipment for shape correction, temper rolling equipment, etc. The diameter of the roll is larger than the yield curvature so that the steel strip passing through the line is not plastically deformed by bending deformation of these rolls. Curvature coefficient β
Is defined as β = hE / DY (1) using the plate thickness h, the elastic modulus E, the diameter D of the rolls, and the yield stress of the steel strip as Y. If
It is general to set a large-diameter roll diameter such that β <0.5, depending on the conditions of the plate thickness and the steel strip material.

【0006】ところが、本発明者等が解析した結果によ
ると、前記のごとき鋼帯の形状不良が発生する原因は、
塑性変形しないようにしているはずのテンションリール
への巻き取りに際して、鋼帯のテンションリールへの巻
き付きによる曲げ応力だけでなく、巻き取りによる巻き
締まりによる鋼帯の周方向圧縮応力と鋼帯内部の残留応
力が加わるため鋼帯が塑性変形することに起因している
ことが判明した。また、従来は鋼帯コイルの巻き締まり
による鋼帯の周方向圧縮応力、鋼帯の残留応力等を十分
考慮していなかっため、テンションリールでの鋼帯の変
形挙動を十分に把握できていなかったことも判明した。
形状矯正後の鋼帯をテンションリールに巻き取って行く
場合、鋼帯巻き取り初期(巻き取り厚み5〜50mm、
巻き取り先端から50〜500m)の鋼帯には、巻き取
張力に等しい引張応力がかかっているが、巻き数が増え
ていくにつれて、コイル外周部からの巻き締まりによる
鋼帯の周方向圧縮応力により、巻き取り初期は強く圧縮
されるようになり、鋼帯が巻きつくテンションリールマ
ンドレルは弾性変形で縮んで直径が小さくなり、コイル
の内径が減少する。更に、テンションリールマンドレル
からコイルを抜き取る際に、マンドレルによりコイル内
径面を支えることができなくなるため内径が縮小する。
それにつれて、巻き取り初期の鋼帯に圧縮ひずみが加わ
ることになる。つまり、巻き取り初期の鋼帯は鋼帯長手
方向の圧縮曲げの変形状態となる。この圧縮ひずみが鋼
帯の降伏ひずみ(弾性限界ひずみ)を越えると鋼帯が塑
性変形して、鋼帯の長さが僅かに短くなることになる。
However, according to the result of analysis by the present inventors, the cause of the shape defect of the steel strip is as follows.
When winding on a tension reel that should not be plastically deformed, not only the bending stress due to the winding of the steel strip on the tension reel, but also the circumferential compressive stress of the steel strip due to the tightening due to winding and the It was found that this is due to plastic deformation of the steel strip due to residual stress. Further, conventionally, since the circumferential compressive stress of the steel strip due to the tightening of the steel strip coil, the residual stress of the steel strip, etc. were not sufficiently taken into consideration, the deformation behavior of the steel strip on the tension reel could not be fully grasped. I also found out.
When the steel strip after shape correction is wound on a tension reel, the steel strip is wound in the initial stage (winding thickness 5 to 50 mm,
Tensile stress equal to the winding tension is applied to the steel strip (50 to 500 m from the winding tip), but as the number of windings increases, the compressive stress in the circumferential direction of the steel strip due to the tightening of the winding from the outer circumference of the coil. As a result, the tension reel mandrel around which the steel strip is wound is strongly compressed in the initial stage of winding, and the tension reel mandrel contracts due to elastic deformation to reduce the diameter, thereby reducing the inner diameter of the coil. Further, when the coil is pulled out from the tension reel mandrel, the mandrel cannot support the inner diameter surface of the coil, so that the inner diameter is reduced.
Along with that, compressive strain is applied to the steel strip in the early stage of winding. That is, the steel strip in the initial winding stage is in a deformed state of compression bending in the longitudinal direction of the steel strip. When this compressive strain exceeds the yield strain (elastic limit strain) of the steel strip, the steel strip is plastically deformed and the length of the steel strip is slightly shortened.

【0007】しかしながら一般に鋼帯には、鋼帯幅方向
に板クラウン(鋼帯幅方向の中央部が若干厚く、両端部
が若干薄い)が形成されており、テンションリールへの
巻き取りに際し、鋼帯幅方向中央部の巻き取り初期を圧
縮する力が大きいため、この圧縮ひずみも幅方向中央部
の方が大きくなり、幅方向中央部の鋼帯長さが短くなる
ことになる。また、たとえ板クラウンの無い幅方向に均
一な板厚の鋼帯をテンションリールに巻き付け、均一な
圧縮力がマンドレルに掛かっても、材料力学の理論から
は端部よりも板幅方向中央部のマンドレルの変形の方が
大きくなることが導かれる。つまり、テンションリール
に巻き取ったコイルにおいて、巻き締まり力でコイル内
径部が変形するとき、鋼帯の幅中央部が短くなる傾向と
なる。すなわち、鋼帯にとっては幅方向中央部の長さが
短くなっており、コイルを巻き戻して鋼帯の拘束を取り
除くと相対的に鋼帯端部が長くなった形状となる。つま
り、これが耳波の形状不良として現れることになる。
However, in general, a steel strip is formed with a plate crown in the widthwise direction of the steel strip (the center portion in the widthwise direction of the strip is slightly thicker and both ends are slightly thinner). Since the force that compresses the initial portion of the winding in the central portion in the width direction is large, this compressive strain also becomes larger in the central portion in the width direction, and the steel strip length in the central portion in the width direction becomes shorter. Also, even if a steel strip with no plate crown and a uniform plate thickness in the width direction is wound around the tension reel and a uniform compression force is applied to the mandrel, the theory of material mechanics suggests that the central part of the plate width direction is more than the end part. It can be seen that the deformation of the mandrel is larger. That is, in the coil wound on the tension reel, when the coil inner diameter portion is deformed by the winding tightening force, the width center portion of the steel strip tends to be shortened. That is, for the steel strip, the central portion in the width direction is short, and when the coil is rewound to remove the restraint of the steel strip, the end portion of the steel strip becomes relatively long. That is, this appears as a defective shape of the ear wave.

【0008】更に、本発明者等は鋼帯のテンションリー
ル巻き取りにおける鋼帯の変形状態を力学的に検討した
ところ、テンションリール直径をDr(mm)、巻き取
りで生ずるリールマンドレル直径の縮小量をΔD1とす
ると、リールマンドレル変形によって生ずるコイル内径
付近の鋼帯の圧縮のひずみ量εc1は、直径がほぼDr
なので、 εc1= ΔD1/Dr (2) となる。(ここでは、圧縮応力、圧縮ひずみの符号を正
と定義する。) 続いて、この巻き取った鋼帯コイルをテンションリール
から取り外すため、マンドレルを縮小すると、いままで
コイル外周部からの巻き締まりによる鋼帯の周方向圧縮
応力を支えていたマンドレルの抵抗がなくなるのでコイ
ル内径部の付近の鋼帯は圧縮されて更に直径でΔD2分
だけ縮む。内径部付近の直径はほぼDrと見なせるの
で、その時の圧縮ひずみΔε2は、 εc2= ΔD2/Dr (3) となる。この圧縮ひずみの合計εc1+εc2は幅方向中央
部が大きく, 板端部では幅中央部の数分の1という測定
結果が得られた。テンションリールに巻きついた鋼帯巻
き取り初期の鋼帯の曲げひずみεbは、板厚hとリール
直径Drにより、 εb=h/Dr (4) と求められ、鋼帯のリール側表層部は圧縮ひずみ、反対
側表層部に引張ひずみが加わる。このひずみは鋼帯幅方
向でほとんど一定である。一方、形状矯正を施した薄鋼
帯の長手方向残留応力の板厚位置での分布を詳細に測定
した結果では、鋼帯の表層部に圧縮の残留応力があり、
鋼帯厚中心部には引張の残留応力がある。この鋼帯表層
部の圧縮の残留応力をσs(ここでは圧縮応力の符号を
正と定義した)とすると、この残留応力σsによる鋼帯
表層の残留ひずみεsは、弾性係数Eを用いて、 εs= σs/E (5) と表すことができる。したがって、巻き取られた鋼帯の
リール側表層部に導入されるひずみの合計は、 εc1
+εc2+εb+εs となる。鋼帯の降伏ひずみεe
は鋼帯の降伏応力Yと弾性係数Eにより、 εe= Y/E (6) 求まるので、このεeよりも鋼帯巻き取り初期の鋼帯に
加わる各種の圧縮ひずみの合計の方が大きいと鋼帯は塑
性変形し、永久ひずみεp(鋼帯は長手方向に短くな
る)が次の式のように残ることになる。 εp=(εc1+εc2+εb+εs)−εe (7) 本発明方法により解決しようとしている鋼帯巻き取り時
のコイル内径部の形状不良は、(7)式において、εp
>0の条件となり、しかも、鋼帯の幅方向中央部が大き
く、鋼帯幅方向端部が小さいために耳波として形状に現
れるものである。
Further, the inventors of the present invention mechanically examined the deformed state of the steel strip in winding the tension reel of the steel strip. As a result, the diameter of the tension reel was Dr (mm), and the reduction amount of the reel mandrel diameter caused by the winding. Is ΔD1, the strain amount εc1 of compression of the steel strip near the inner diameter of the coil caused by the reel mandrel deformation is approximately Dr.
Therefore, εc1 = ΔD1 / Dr (2). (Here, the signs of compressive stress and compressive strain are defined as positive.) Next, in order to remove this wound steel strip coil from the tension reel, when the mandrel is contracted, the winding tightening from the outer circumference of the coil has been caused until now. Since the resistance of the mandrel supporting the circumferential compressive stress of the steel strip disappears, the steel strip near the inner diameter of the coil is compressed and further contracted by ΔD2 in diameter. Since the diameter in the vicinity of the inner diameter portion can be regarded as substantially Dr, the compression strain Δε2 at that time is εc2 = ΔD2 / Dr (3). The total compression strain εc1 + εc2 was large in the widthwise central part, and a measurement result was obtained that was a fraction of the widthwise central part at the plate edge. The bending strain εb of the steel strip in the initial stage of winding the steel strip wound on the tension reel is determined as εb = h / Dr (4) from the plate thickness h and the reel diameter Dr, and the surface layer of the steel strip on the reel side is compressed. Strain, tensile strain is applied to the surface layer on the opposite side. This strain is almost constant in the width direction of the steel strip. On the other hand, the result of detailed measurement of the distribution of the residual stress in the longitudinal direction of the thin steel strip that has undergone shape correction at the plate thickness position shows that there is a compressive residual stress in the surface layer of the steel strip.
There is tensile residual stress in the center of the steel strip thickness. Assuming that the compressive residual stress of this steel strip surface layer is σs (here, the sign of the compressive stress is defined as positive), the residual strain εs of the steel strip surface layer due to this residual stress σs is given by εs = σs / E (5) Therefore, the total strain introduced to the reel side surface layer of the wound steel strip is εc1
+ Εc2 + εb + εs. Yield strain of steel strip εe
Is εe = Y / E (6) from the yield stress Y of the steel strip and the elastic modulus E. Therefore, if the sum of various compressive strains applied to the steel strip at the initial stage of winding the steel strip is larger than εe, The strip is plastically deformed, and the permanent strain εp (the steel strip becomes shorter in the longitudinal direction) remains as in the following formula. [epsilon] p = ([epsilon] c1 + [epsilon] c2 + [epsilon] b + [epsilon] s)-[epsilon] e (7) The shape defect of the coil inner diameter portion at the time of winding the steel strip, which is to be solved by the method of the present invention, is expressed by the formula (7).
The condition is> 0, and the steel strip has a large central portion in the width direction and a small end portion in the width direction of the steel strip, so that it appears as a wave.

【0009】巻き取り鋼帯巻き取り初期(巻き取り厚み
5〜50mm、巻き取り先端から5〜500m)の鋼帯
にのみ形状不良が発生するのは、巻き取り初期に巻かれ
た鋼帯自体が、コイル外周部を支え巻き締まり力に対抗
するため鋼帯コイルの外周側では、上記(3)式の圧縮
ひずみの合計が小さくなることと、(4)式の曲げひず
みも鋼帯の板厚と曲げ直径の比なので、鋼帯コイルの外
径側で巻き太って直径が大になるにつれて小さくなり、
(7)式においてεp<0の条件、すなわち弾性変形領
域に入り易くなるためである。また、実際には、たとえ
永久ひずみがあっても、それが小さい場合は、形状不良
として鋼帯に現れないのコイルに巻かれた鋼帯の外周ま
で形状不良になることは稀である。
Winding steel strip A defective shape occurs only in the steel strip in the initial winding stage (winding thickness 5 to 50 mm, 5 to 500 m from the winding tip) because the steel strip itself wound in the initial stage of winding is , In order to support the coil outer peripheral portion against the winding tightening force, on the outer peripheral side of the steel strip coil, the total of the compressive strains of the above formula (3) becomes small, and the bending strain of the formula (4) is also the plate thickness of the steel strip. Since it is the ratio of the bending diameter and the bending diameter, it becomes smaller as the diameter increases with winding on the outer diameter side of the steel coil.
This is because the condition of εp <0 in Expression (7), that is, the elastic deformation region is easily entered. Further, in reality, even if there is a permanent strain, if it is small, it is rare that the outer circumference of the steel strip wound around the coil does not appear as a poor shape and the outer circumference of the steel strip is defective.

【0010】したがって、巻き取りで発生する塑性ひず
みを表す(7)式より、形状不良を起こさなくするため
には、εp≦0 として、鋼帯の全幅、全長にわたって
全体を弾性変形域に止めるか、εp>0であってもεp
が十分小さければ耳波の発生する形状不良とはならない
ことになる。εp≦0の条件は、降伏応力の大きい鋼
帯、つまり硬くて変形しにくい鋼帯を選べば、(6)式
のようにεeが大きくなり、容易に達成できるようにな
るが、降伏応力は鋼帯用途で決まっており製造者側で勝
手に変更することができない。また、(2)式の圧縮ひ
ずみεc1を小さくするために、巻き取り張力による巻
き締まり力に耐える強固な剛性を持ったテンションリー
ルに巻き取る方法も考えられるが、実際には巻き取った
鋼帯コイルをテンションリールから抜き取る際にリール
径を縮小すると、鋼帯の剛性だけでは巻き締まり力に耐
えきれず、結局、(3)式に示したリール抜き取りによ
る圧縮ひずみεc2が、それほど強固でないリールのと
きよりも大きくなる。つまり、εc1+εc2としては
あまり変わらなくなり、有効性はかなり減少する。
Therefore, according to the equation (7) representing the plastic strain generated in the winding, in order to prevent the defective shape, εp≤0, and the entire width and the entire length of the steel strip are kept in the elastic deformation region. , Εp> 0, εp
Is sufficiently small, it does not result in a defective shape in which an ear wave is generated. The condition of εp ≦ 0 is that if a steel strip with a large yield stress, that is, a steel strip that is hard and difficult to deform, is selected, εe will increase as shown in equation (6) and it will be easy to achieve it, but the yield stress will be It is determined by the steel strip application and cannot be changed by the manufacturer. Further, in order to reduce the compressive strain εc1 of the formula (2), a method of winding on a tension reel having strong rigidity to withstand a winding tightening force due to winding tension can be considered, but in reality, the rolled steel strip is used. If the reel diameter is reduced when the coil is pulled out from the tension reel, the rigidity of the steel strip alone cannot withstand the winding tightening force. It will be bigger than when. That is, εc1 + εc2 does not change much, and the effectiveness is considerably reduced.

【0011】しかして、本発明方法においては、上記
(7)式において、εp≦0の条件を満たすため、また
はεpを十分小さくするために、(2)式のコイル巻き
締まりによる鋼帯の周方向圧縮応力による圧縮ひずみ量
εc1及び(3)式のマンドレル径の縮小による圧縮ひ
ずみ量εc2を軽減する方法を見出したものである。即
ち、鋼帯をテンションリールへ巻き取る前に、テンショ
ンリールの幅方向中央部にスリーブを装着し、その後鋼
帯をコイルに巻き取ることによって、スリーブによりコ
イルの巻き締まりに対する巻き取り芯の剛性が上がり、
巻き締まり力によるコイル内径の縮小量ΔD1が小さく
なり、その結果(1)式よりεc1が小さくなる。更
に、コイルをマンドレルから抜き取るためにマンドレル
径を縮小しても、スリーブはほとんど縮小しないため、
コイルの内径を支えることができ、マンドレル径を縮小
したときのコイル内径の縮小量ΔD2は極めて小さくな
り、その結果(2)式より鋼帯の圧縮ひずみ量εc2も
極めて小さくなる。このとき圧縮ひずみ量εc1及びε
c2の低減量は、スリーブの剛性と厚みにより影響され
る、本発明者等が種々検討した結果によれば6×104
MPa以上の周方向縦弾性係数で、5mm以上スリーブ
厚みがあればεc1とεc2の合計圧縮ひずみ量を0.
0004〜0.0012低減でき、形状不良を大幅に改
善することができる。またスリーブの剛性があまり高い
とスリーブが脆くなり、衝撃等により亀裂が発生して破
損し易くなるので、実用的にはスリーブの縦弾性係数は
40×104 MPa以下にすることが好ましく。また厚
みの上限としては30mmで十分である。
Therefore, in the method of the present invention, in order to satisfy the condition of εp ≦ 0 in the above formula (7) or to make εp sufficiently small, the circumference of the steel strip due to the coil winding tightening of the formula (2). The inventors have found a method for reducing the amount of compressive strain εc1 due to the directional compressive stress and the amount of compressive strain εc2 due to the reduction of the mandrel diameter of the equation (3). That is, before winding the steel strip on the tension reel, a sleeve is attached to the central portion in the width direction of the tension reel, and then the steel strip is wound on the coil, whereby the rigidity of the winding core against tightening of the coil is reduced by the sleeve. Going up
The reduction amount ΔD1 of the coil inner diameter due to the winding tightening force becomes smaller, and as a result, εc1 becomes smaller from the equation (1). Furthermore, even if the mandrel diameter is reduced in order to remove the coil from the mandrel, the sleeve hardly shrinks,
The inner diameter of the coil can be supported, and the reduction amount ΔD2 of the coil inner diameter when the mandrel diameter is reduced becomes extremely small. As a result, the compressive strain amount εc2 of the steel strip becomes extremely small according to the equation (2). At this time, the compressive strain amounts εc1 and ε
The reduction amount of c2 is influenced by the rigidity and thickness of the sleeve. According to the results of various studies by the present inventors, 6 × 10 4
If the longitudinal elastic modulus in the circumferential direction is MPa or more and the sleeve thickness is 5 mm or more, the total compressive strain amount of εc1 and εc2 is 0.
It is possible to reduce 0004 to 0.0012, and it is possible to significantly improve the defective shape. Further, if the rigidity of the sleeve is too high, the sleeve becomes brittle and cracks easily occur due to impact or the like, so that it is practically preferable that the longitudinal elastic modulus of the sleeve is 40 × 10 4 MPa or less. Further, 30 mm is sufficient as the upper limit of the thickness.

【0012】しかしながら、一般に用いられているコイ
ル潰れ防止のための内径スリーブは、コイル潰れ防止が
目的でありハンドリング上軽いほうが有利なため、鋼帯
幅以上の長さを有する鋼製の厚み2〜4mmの薄いスリ
ーブや紙製の厚さ10〜20mmのスリーブが用いられ
るが、このようなスリーブを本発明方法の対象とする形
状不良防止に用いても剛性、厚みが十分でないので、鋼
帯の巻き取り初期の形状不良を防止することはできな
い。またコイル巻き取り時の圧縮ひずみ量は、前記のご
とく鋼帯幅方向の中央部において大きいので、上記のご
ときスリーブによって鋼帯幅方向中央部の30〜90%
を支えることにより、確実に形状不良を防止することが
でき、具体的には例えば700〜1100mm幅の薄鋼
帯の巻き取りの場合には、長さ600mm、厚み10m
m、内径500mmの鋼製スリーブを用いることによ
り、確実に鋼帯の巻き取り初期の形状不良を防止するこ
とができ、またスリーブの重量を軽減することができ
る。更にスリーブのハンドリングのための装置を小型化
することができ、かつ炭素繊維複合材等によってスリー
ブを構成することにより重量を約30%以下にすること
ができる。スリーブの材質としては、上記のごとき鋼
製、炭素繊維複合材の他銅、チタン、アルミニウム等、
これらの合金、セラミックス系材料、更に、これら材料
の組合せ、あるいはこれら材料と樹脂系材料との組合せ
たものを用いることができる。
[0012] However, the commonly used inner diameter sleeve for preventing the coil collapse is for the purpose of preventing the coil collapse and it is advantageous that it is light in terms of handling. A thin sleeve of 4 mm or a sleeve made of paper and having a thickness of 10 to 20 mm is used. However, even if such a sleeve is used for preventing a defective shape which is a target of the method of the present invention, the rigidity and the thickness are not sufficient. It is impossible to prevent the defective shape in the initial stage of winding. Further, since the amount of compressive strain at the time of winding the coil is large in the central portion in the width direction of the steel strip as described above, 30 to 90% of the central portion in the width direction of the steel strip is provided by the sleeve as described above.
It is possible to surely prevent the defective shape by supporting, for example, in the case of winding a thin steel strip with a width of 700 to 1100 mm, the length is 600 mm and the thickness is 10 m.
By using a steel sleeve having a diameter of m and an inner diameter of 500 mm, it is possible to reliably prevent the defective shape of the steel strip in the initial stage of winding and reduce the weight of the sleeve. Further, the device for handling the sleeve can be downsized, and the weight can be reduced to about 30% or less by constructing the sleeve from a carbon fiber composite material or the like. As the material of the sleeve, steel such as the above, carbon fiber composite material, copper, titanium, aluminum, etc.,
These alloys, ceramic materials, and combinations of these materials or combinations of these materials and resin materials can be used.

【0013】次に、本発明方法を図面によって説明す
る。図1において、5〜30mmのスリーブ5をテンシ
ョンリール(マンドレル)2の巻き取り鋼帯幅方向中央
部の30〜90%の位置に装着せしめて、鋼帯をコイル
3として巻き取り、巻き取り後、コイル3をテンション
リール2マンドレルからコイル3を抜き取るに際し、テ
ンションリール2のマンドレルを縮小してもスリーブ5
はほとんど縮小しないので、コイル3の内面を支えるこ
とができことから、前記のごとき圧縮ひずみ量の合計及
び永久ひずみが十分に小さく、従って、鋼帯幅方向のひ
ずみ量の変化も小さくなり、テンションリール2への鋼
帯巻き取り初期4(巻き取り厚5〜50mm、巻き取り
鋼帯先端から50〜500m)の形状不良(耳波)を防
止するものである。
Next, the method of the present invention will be described with reference to the drawings. In FIG. 1, a sleeve 5 of 5 to 30 mm is mounted on the tension reel (mandrel) 2 at a position of 30 to 90% of the center of the winding steel strip in the width direction, and the steel strip is wound as a coil 3 and wound. , When pulling out the coil 3 from the tension reel 2 mandrel, the sleeve 5 is removed even if the mandrel of the tension reel 2 is reduced.
Since the inner surface of the coil 3 can be supported, the total amount of compressive strain and the permanent strain as described above are sufficiently small. Therefore, the change in strain in the width direction of the steel strip is also small, and the tension The purpose of the present invention is to prevent a defective shape (ear wave) in the initial stage 4 of winding the steel strip on the reel 2 (winding thickness 5 to 50 mm, 50 to 500 m from the tip of the winding steel strip).

【0014】次に本発明方法の実施例を比較例とともに
挙げる。
Next, examples of the method of the present invention will be given together with comparative examples.

【表1】 [Table 1]

【0015】[0015]

【表2】 注1:鋼帯成分 重量% 、C :0.04〜0.12、Mn:0.30 〜
0.45、Si:0.005、P:0.015 〜0.025 、S :0.010〜0.020
、Sol.Al:0.01 、i:痕跡、Nb:痕跡、残りFe及び不純物
からなる鋼帯厚 0.18 〜0.90mm、鋼帯幅 715〜1200mm
の冷延鋼帯を原板としてテンパー度 T4〜 T5になるよ
うに焼鈍し、続いて圧下率 1.5〜2.0 %の調質圧延を施
した。次いで、テンションリールへの巻き取りは、20
00〜3500巻きで、巻き取り平均速度400 〜600m/
分で約15tコイルとした。 注2:鋼帯形状矯正は、SPと表記したものは調質圧延
後に巻き取った鋼帯を示し, 調質圧延後、テンションレ
ベラにて形状矯正を施した鋼帯はTLと表記した。 注3:鋼帯耳波の評価は、鋼帯巻き取り初期(巻き取り
先端から200m)の鋼帯を2m毎切り出して、水平な
定盤上においたとき、鋼帯端の波高さ 1.5mm未満
の耳波発生を小、1.5〜3.0mmの波高さを中、
3.0〜4.5mmの波高さを大、4.5mm超を特大
とした。耳波小にできればほとんどの用途で合格とな
る。耳波中の場合は厳しい用途には不合格となり、耳波
大では全ての用途で不合格となる。
[Table 2] Note 1: Steel strip composition wt%, C: 0.04 to 0.12, Mn: 0.30 to
0.45, Si: 0.005, P: 0.015 to 0.025, S: 0.010 to 0.020
, Sol.Al: 0.01, i: trace, Nb: trace, residual steel strip thickness consisting of Fe and impurities 0.18 to 0.90 mm, steel strip width 715 to 1200 mm
The cold-rolled steel strip of No. 1 was used as an original plate, annealed so as to have a temper degree of T4 to T5, and then subjected to temper rolling at a rolling reduction of 1.5 to 2.0%. Then, winding on the tension reel is 20
The average winding speed is 400-600m /
It took about 15 t coil in minutes. Note 2: For the steel strip shape correction, the one denoted by SP indicates a steel strip wound after temper rolling, and the steel strip subjected to shape correction by the tension leveler after temper rolling is denoted as TL. Note 3: Steel strip seismic waves are evaluated by cutting the steel strip in the initial stage of winding the strip (200 m from the winding tip) every 2 m and placing it on a horizontal surface plate, and the wave height at the end of the strip is 1.5 mm. Small ear wave generation less than, medium wave height of 1.5-3.0 mm,
The wave height of 3.0 to 4.5 mm is large, and the wave height of more than 4.5 mm is extra large. If the ear wave is small, it will pass in most applications. In the case of ear wave, it fails in severe applications, and in the case of ear wave, it fails in all applications.

【0016】[0016]

【発明の効果】本発明法によれば、調質圧延の形状矯正
後の鋼帯巻き取り時に発生する、巻き取り初期の形状不
良(耳波等)を確実に防止することができ、鋼帯の品質
を向上せしめると共に、歩留りも高めることができ、さ
らに、形状不良部を切り捨てるための余計な工程も不要
となる。また、装置の改造としては、リールマンドレル
に鋼帯幅より狭い固定スリーブ(着脱自在に設計した)
を被せる程度ですむので、低コストで鋼帯両端部の耳波
を防止することができる。また、巻き取り張力制御など
の複雑な制御を必要としないので、従前の高い生産性を
維持しつつ、品質を向上することができる等の優れた効
果が得られる。
EFFECTS OF THE INVENTION According to the method of the present invention, it is possible to reliably prevent shape defects (ear waves, etc.) at the initial stage of winding, which occur during winding of the steel strip after the shape correction in temper rolling. The quality can be improved and the yield can be improved, and an extra step for discarding the defective shape portion is unnecessary. In addition, as a modification of the device, a fixed sleeve narrower than the steel strip width on the reel mandrel (removably designed)
Since it only needs to be covered, it is possible to prevent seismic waves at both ends of the steel strip at low cost. Further, since complicated control such as winding tension control is not required, it is possible to obtain an excellent effect such that the quality can be improved while maintaining the conventional high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の一例を示す正面断面図である。FIG. 1 is a front sectional view showing an example of the method of the present invention.

【図2】従来の鋼帯巻き取りを示す側面図である。FIG. 2 is a side view showing a conventional steel strip winding.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今城 雄治 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 中村 真也 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Imajo 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Co., Ltd. Nagoya Steel Works (72) Inventor Shinya Nakamura 5-Tokai-cho, Tokai-shi, Aichi 3 Inside Nippon Steel Works, Nippon Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 形状矯正後の鋼帯をテンションリールに
巻き取るに際し、テンションリールの幅方向中央部にス
リーブを装着せしめて、鋼帯を巻き取ることを特徴する
鋼帯巻き取り方法。
1. A method of winding a steel strip, comprising winding a steel strip after shape correction on a tension reel, by attaching a sleeve to the center of the tension reel in the width direction and winding the steel strip.
【請求項2】 テンションリールに鋼帯幅方向中央部の
30〜90%に5〜30mmのスリーブを装着せしめ
て、鋼帯を巻き取ることを特徴とする請求項1に記載の
鋼帯巻き取り方法。
2. The steel strip winding according to claim 1, wherein the tension reel is fitted with a sleeve of 5 to 30 mm at 30 to 90% of the central portion in the widthwise direction of the steel strip, and the steel strip is wound up. Method.
JP23546695A 1995-09-13 1995-09-13 Method for coiling steel strip Withdrawn JPH0976012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23546695A JPH0976012A (en) 1995-09-13 1995-09-13 Method for coiling steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23546695A JPH0976012A (en) 1995-09-13 1995-09-13 Method for coiling steel strip

Publications (1)

Publication Number Publication Date
JPH0976012A true JPH0976012A (en) 1997-03-25

Family

ID=16986513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23546695A Withdrawn JPH0976012A (en) 1995-09-13 1995-09-13 Method for coiling steel strip

Country Status (1)

Country Link
JP (1) JPH0976012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045876A1 (en) * 2000-12-04 2002-06-13 Alcan International Limited Storage and transportation of aluminium strip
JP2006247669A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Sleeve for tension reel
JP4465409B1 (en) * 2009-08-17 2010-05-19 株式会社片木鉄工所 Steel band bundling method and sleeve
JP2015016490A (en) * 2013-07-11 2015-01-29 日新製鋼株式会社 Division type take-up sleeve
WO2020196293A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 Manufacturing device and manufacturing method for hot-rolled coil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045876A1 (en) * 2000-12-04 2002-06-13 Alcan International Limited Storage and transportation of aluminium strip
US7497402B2 (en) 2000-12-04 2009-03-03 Alcan International Limited Storage and transportation of aluminium strip
JP2006247669A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Sleeve for tension reel
JP4671718B2 (en) * 2005-03-08 2011-04-20 日新製鋼株式会社 Sleeve for tension reel
JP4465409B1 (en) * 2009-08-17 2010-05-19 株式会社片木鉄工所 Steel band bundling method and sleeve
JP2011037501A (en) * 2009-08-17 2011-02-24 Katagi Tekkosho:Kk Bundling method of steel belt and sleeve
JP2015016490A (en) * 2013-07-11 2015-01-29 日新製鋼株式会社 Division type take-up sleeve
WO2020196293A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 Manufacturing device and manufacturing method for hot-rolled coil
JPWO2020196293A1 (en) * 2019-03-22 2021-10-21 日本製鉄株式会社 Hot-rolled coil manufacturing equipment and manufacturing method
CN113597348A (en) * 2019-03-22 2021-11-02 日本制铁株式会社 Device and method for manufacturing hot-rolled coil

Similar Documents

Publication Publication Date Title
US5226989A (en) Method for reducing thickness of a titanium foil or thin strip element
KR20120090088A (en) Magnesium alloy coiled material
JPH0976012A (en) Method for coiling steel strip
JP4332117B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JPH0957344A (en) Method for coiling steel strip
JP3403272B2 (en) Winding method of steel strip
JP3113801B2 (en) Winding method of steel strip
US4168185A (en) Production method of titanium hot coil by continuous hot rolling system
JP2006247670A (en) Steel strip rolling method
JP4671718B2 (en) Sleeve for tension reel
JPH0663606A (en) Method for rolling metallic foil
JP3772847B2 (en) Steel sheet winding method
JP3139726B2 (en) Winding method for coil of metal strip
JP3595095B2 (en) Antenna material and manufacturing method
JP3301088B2 (en) Spring with excellent fatigue resistance
JP3264725B2 (en) Rewinding method of cold rolled coil
JP3632391B2 (en) Rubber sleeve for winding metal band
JP3702853B2 (en) Winding method of thin steel strip
JP2003062613A (en) Method for winding very thin metal sheet
JP5779948B2 (en) Method for producing grain-oriented electrical steel sheet
JPH07178453A (en) Sleeve for reel
JPH081239A (en) Rubber-made sleeve for coiling metallic strip
JP2003211220A (en) Rubber sleeve for coiling metallic strip and method of coiling metallic strip
JPH11179422A (en) Method for controlling shape of thin steel strip
JPS63140035A (en) Production of light-gage grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203