JP2004282881A - Apparatus and method for charging secondary battery - Google Patents

Apparatus and method for charging secondary battery Download PDF

Info

Publication number
JP2004282881A
JP2004282881A JP2003069779A JP2003069779A JP2004282881A JP 2004282881 A JP2004282881 A JP 2004282881A JP 2003069779 A JP2003069779 A JP 2003069779A JP 2003069779 A JP2003069779 A JP 2003069779A JP 2004282881 A JP2004282881 A JP 2004282881A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
circuit
constant current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003069779A
Other languages
Japanese (ja)
Inventor
Akira Ikeuchi
亮 池内
Katsuya Sakuma
勝也 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2003069779A priority Critical patent/JP2004282881A/en
Publication of JP2004282881A publication Critical patent/JP2004282881A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger for secondary batteries capable of charging a secondary battery in a short time. <P>SOLUTION: The charger comprises: a constant current circuit for constant current-charging a secondary battery (50); a voltage detection circuit (30) for detecting the voltage of the secondary battery; and a charge control circuit (40). According to the result of detection by the voltage detection circuit (30), the charge control circuit (40) continues to connect the constant current circuit to the secondary battery (50) until the secondary battery is brought to full charge voltage. When the secondary battery (50) is brought to a fully charged voltage, the constant-current circuit is disconnected from the secondary battery, and acquires the dropped voltage ΔVZ arising from voltage drop based on the internal impedance of the secondary battery (50). When the dropped voltage ΔVZ is acquired, the charge control circuit connects the constant current circuit to the secondary battery (50) again. Further, the charge control circuit continues to connect the constant current circuit to the secondary battery (50) until the voltage of the secondary battery (50) reaches (full charge voltage + dropped voltage ΔVZ). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池の充電装置に関し、特に、二次電池に負担をかけることなく短時間に充電を完了できる所謂急速充電装置に関する。
【0002】
【従来の技術】
現在、携帯電話機などの携帯用電子機器には、軽量、高容量、電池残量検出容易、サイクル寿命の長さなどの理由から、多くの場合に、リチウムイオン電池が二次電池として用いられる。
【0003】
リチウムイオン電池等の二次電池の充電は、定電流・定電圧で行われるのが一般的である。この充電方法によれば、図1に示すように、充電開始から二次電池の電圧(電池電圧)が所定の電圧(=定電圧制御電圧、満充電電圧ともいう。)に達するまでは定電流制御電流による定電流充電が行われ、電池電圧が所定の電圧に達した後は定電圧制御電圧で定電圧充電が行われる。
【0004】
このような一般的な定電流・定電圧方法においては、定電流充電は、比較的短時間(例えば、40分)で終了する(充電率90%)。ところが、定電圧充電では、定電流充電に要する時間の何倍もの時間(例えば、3時間)を要する(充電率99%以上)。これは、二次電池が満充電状態(充電完了)に近づくにしたがって二次電池へ流れる充電電流が減少し、充電率を僅かに上昇させるのに長時間を要するようになるからである。また、二次電池の内部抵抗による電圧低下を考慮して、定電圧充電による充電時間が長めに設定されるからである。
【0005】
したがって、一般的な定電流・定電圧充電方法には、二次電池が満充電状態になるまでに長い時間を要するという問題点がある。
【0006】
この問題点を解決しようと、二次電池の電池電圧が定電圧制御電圧よりも高い所定の電圧に達するまで定電流充電を継続するようにした充電制御装置が既に提案されている(例えば、特許文献1参照)。
【0007】
この提案に係る充電制御装置は、例えば、図2に示すように構成される。即ち、この充電制御装置は、定電流回路11と、第1の定電圧回路12と、第2の定電圧回路13と、定電流回路11を第1の定電圧回路12または第2の定電圧回路13に選択的に接続するための切換スイッチ14と、充電される二次電池の電圧を検出する電圧検出回路15と、電圧検出回路15が検出した検出電圧に基づいて切換スイッチ14を切り替え制御する切換回路16とを備えている。
【0008】
定電流回路11は、電源17から供給される電流を定電流化する。
【0009】
第1の定電圧回路12は、二次電池18の電池電圧が、定電圧制御電圧Vc(例えば、4.2V)を超えないように、二次電池18の充電電流を制限する。
【0010】
第2の定電圧回路13は、二次電池18の電池電圧が、定電圧制御電圧Vcよりも所定の電圧V1だけ高い所定電圧Vc′(例えば、4.35V)を超えないように充電電流を制限する。
【0011】
電圧検出回路15は、二次電池18の電圧を検出して、検出した値に応じた出力信号を切換回路16へ供給する。
【0012】
切換回路16は、二次電池18の電池電圧が、所定電圧Vc′に達するまでは第2の定電圧回路13を選択し、所定電圧Vc′に達した後は第1の定電圧回路12を選択するよう切換スイッチ14を制御する。
【0013】
以下、図2および図3を参照して、この充電制御装置の動作について説明する。
【0014】
まず、充電制御装置を電源17に接続し、二次電池18を接続すると、電圧検出回路15が、二次電池18の電池電圧を検出し、それに応じた検出信号を出力する。
【0015】
切換回路16は、検出回路15からの出力信号に基づいて、二次電池18の電池電圧が所定電圧Vc′に達したか否を判断し、切換スイッチ14を制御する。未充電状態または放電状態の二次電池18が充電制御装置に接続された場合には、第2の定電圧回路13が切換スイッチ14を介して定電流回路11に接続される。
【0016】
定電流回路11は、二次電池18に定電流を供給する。定電流回路11に接続された第2の定電圧回路13は、二次電池18の電池電圧が所定電圧Vc′を超えないように二次電池18の充電電流を制御する。その結果、充電開始から二次電池18の電池電圧が所定電圧Vc′に達するまでは、二次電池18は定電流充電される。
【0017】
二次電池18の電池電圧が所定の電圧Vc′に達すると、切換回路16は、切換スイッチ14を制御して、第2の定電圧回路13に代えて第1の定電圧回路12を定電流回路11に接続する。第1の定電圧回路12は、二次電池18の電池電圧が定電圧制御電圧Vcとなるように、二次電池18の充電電流を制限する。これにより、二次電池18は、定電圧充電される。
【0018】
図3に、充電開始から満充電に至るまでの、二次電池18の充電電流Iおよび電池電圧Vの時間変化を示す。従来の一般的な充電方法では、破線で示すように充電完了までに時間T′を要していたが、図2の充電制御装置によれば、時間T(<T′)で二次電池の充電完了することができる。
【0019】
【特許文献1】
特開平6−325794号公報(要約および図1)
【0020】
【発明が解決しようとする課題】
上述したように、従来の一般的な充電方法には、充電時間が長いという問題点がある。また、この問題点を解決することを目的とする充電制御装置が既に提案されているものの、依然として二次電池の充電に要する時間は長く、さらなる短縮が望まれている。
【0021】
それ故、本発明の課題は、より短い時間でリチウムイオン電池等の二次電池を充電することができる二次電池の充電装置および二次電池の充電方法を提供することである。
【0022】
【課題を解決するための手段】
本発明によれば、二次電池(50)に定電流充電を行う定電流回路を有する二次電池の充電装置において、二次電池の電圧を検出する電圧検出回路(30)と、前記電圧検出回路の検出結果に応じて、二次電池が満充電電圧になるまで前記定電流回路を二次電池に接続し続け、二次電池が満充電電圧になった時点で該定電流回路を二次電池から切断し、二次電池の内部インピーダンスに基づく電圧降下による降下電圧ΔVZを取得し、降下電圧ΔVZを取得した時点で該定電流回路を二次電池に再接続すると共に二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になるまで前記定電流回路を二次電池に接続し続ける充電制御回路(40)とを有することを特徴とする二次電池の充電装置が得られる。
【0023】
本発明によればまた、前記電圧検出回路(30)は、二次電池の電圧を取得して第1の制御電圧として出力する第1のモードならびに電圧降下をサンプリングして降下電圧ΔVZを取得すると共に(満充電電圧−降下電圧ΔVZ)を第2の制御電圧として出力する第2のモードの二つの動作モードが可能なサンプル/ホールド回路(31)を備えており、前記充電制御回路(40)は、前記サンプル/ホールド回路から出力される前記第1の制御電圧または前記第2の制御電圧と二次電池の満充電電圧に等しい所定の基準電圧とを比較して該第1の制御電圧または該第2の制御電圧が基準電圧以上となったときに制御信号を出力するコンパレータ(41)と、前記コンパレータから前記制御信号が入力されたときに前記定電流回路と二次電池との間を切断する切替器(42)と、前記サンプル/ホールド回路が前記第1のモードおよび前記第2のモードを引き続いて行うように制御する制御ロジック回路(43)とを備えている前記二次電池の充電装置が得られる。
【0024】
本発明によればさらに、前記制御ロジック回路(43)は、前記サンプル/ホールド回路(31)に対して前記第1のモードおよび前記第2のモードを引き続いて行う制御サイクルを複数回行うように制御する前記二次電池の充電装置が得られる。
【0025】
また、本発明によれば、二次電池に定電圧充電を行う定電圧回路をさらに有し、前記充電制御回路は、前記電圧検出回路の検出結果に応じて、二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になった時点で前記定電流回路を二次電池から切断すると共に前記定電圧回路を二次電池に接続して二次電池の電圧が所定時間に亘って満充電電圧となるように該定電圧回路を二次電池に接続し続ける前記二次電池の充電装置が得られる。
【0026】
さらに、本発明によれば、前記切替器(42)は、半導体スイッチにより構成されている前記二次電池の充電装置が得られる。
【0027】
また、本発明によれば、二次電池に定電流充電を行うことが可能な二次電池の充電方法において、二次電池が満充電電圧になるまで定電流充電を行う工程と、二次電池が満充電電圧になった時点で充電を一旦停止する工程と、二次電池の内部インピーダンスに基づく電圧降下ΔVZを取得する工程と、電圧降下ΔVZを取得した時点で充電を再開する工程と、二次電池の電圧が(満充電電圧+ΔVZ)になるまで定電流充電を行う工程とを有することを特徴とする二次電池の充電方法が得られる。
【0028】
尚、上記括弧内の符号は、本発明の理解を容易にするために付したものであり、一例にすぎず、これらに限定されないことは勿論である。
【0029】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態による二次電池の充電装置について説明する。
【0030】
[実施の形態1]
図4を参照して、本発明の実施の形態1による二次電池の充電装置は、二次電池50に定電流充電を行うための定電流回路と、二次電池の電圧を検出する電圧検出回路30と、充電制御回路40とを有している。尚、定電流回路は、通常、ACアダプタとして構成される電源10に含まれている。
【0031】
図4および図5を参照して、充電制御回路40は、電圧検出回路30の検出結果に応じて、二次電池50が満充電電圧になるまで定電流回路を二次電池50に接続し続け、二次電池50が満充電電圧になった時点で定電流回路を二次電池50から切断し、二次電池50の内部インピーダンスに基づく電圧降下による降下電圧ΔVZを取得し、降下電圧ΔVZを取得した時点で定電流回路を二次電池50に再接続すると共に二次電池50の電圧が(満充電電圧+降下電圧ΔVZ)になるまで定電流回路を二次電池50に接続し続けるものである。
【0032】
より具体的には、電圧検出回路30は、二次電池50の電圧を取得して第1の制御電圧として出力する第1のモードならびに電圧降下をサンプリングして降下電圧ΔVZを取得すると共に(満充電電圧−降下電圧ΔVZ)を第2の制御電圧として出力する第2のモードの二つの動作モードが可能なサンプル/ホールド回路31を備えている。
【0033】
また、充電制御回路40は、サンプル/ホールド回路31から出力される第1の制御電圧または第2の制御電圧と二次電池50の満充電電圧に等しい所定の基準電圧とを比較して第1の制御電圧または第2の制御電圧が基準電圧以上となったときに制御信号を出力するコンパレータ41と、コンパレータ41から制御信号が入力されたときに定電流回路と二次電池50との間を切断する切替器42と、サンプル/ホールド回路31が第1のモードおよび第2のモードを引き続いて行うように制御すべく、当該制御ロジックを予め記憶している制御ロジック回路43とを備えている。
【0034】
切替器42は、FET(電界効果トランジスタ)による半導体スイッチにより構成されている。
【0035】
次に、図4および図6を参照して、本装置の動作について説明する。
【0036】
まず、サンプル/ホールド回路31は、制御ロジック回路43の指示に従って二次電池50の電圧(A点)を取得して第1の制御電圧(B点)として出力する(第1のモード)。コンパレータ41は、サンプル/ホールド回路31から出力される第1の制御電圧と二次電池50の満充電電圧に等しい所定の基準電圧(C点)とを比較して、第1の制御電圧が基準電圧となったときに制御信号を出力する。切替器42は、コンパレータ41から制御信号に基づいて定電流回路と二次電池50との間を切断する。
【0037】
サンプル/ホールド回路31は、制御ロジック回路43の指示に従って電圧降下をサンプリング(降下電圧ΔVZがサンプル/ホールド回路31によってチャージされる)して降下電圧ΔVZを取得する(降下電圧ΔVZが正負逆転されると共にA点の電位に加算され、B点電位、即ち、(A点電位−降下電圧ΔVZ)が生成される)。
【0038】
制御ロジック回路は、充電を再開させる。
【0039】
サンプル/ホールド回路31は、(A点電圧−降下電圧ΔVZ)、即ち、(満充電電圧−降下電圧ΔVZ)を第2の制御電圧として出力する(第2のモード)。コンパレータ41は、サンプル/ホールド回路31から出力される第2の制御電圧と二次電池50の満充電電圧に等しい所定の基準電圧(C点)とを比較して、第2の制御電圧が基準電圧以上となったときに制御信号を出力する。切替器42は、コンパレータ41から制御信号に基づいて定電流回路と二次電池50との間を切断する。
【0040】
かくして、二次電池50は(満充電電圧+降下電圧ΔVZ)になるまで充電され、二次電池50の充電が完了する。
【0041】
その後、二次電池50は、その内部インピーダンスに基づく電圧降下によって、満充電電圧となる。
【0042】
サンプル/ホールド回路31が電圧降下をサンプリング(降下電圧ΔVZがサンプル/ホールド回路31によってチャージされる)に要する時間は、実際上、数秒〜数分と短く、したがって、サンプリング所要時間以外は全て定電流充電が行われるため、本装置によれば、非常に短い時間で二次電池を満充電状態に充電可能である。
【0043】
また、一回の充電毎に二次電池の内部インピーダンスを間接的に測定することになるため、内部インピーダンスの変化として表れる二次電池の劣化に応じて充電を行うことになり、長期に亘って二次電池を正確に満充電状態に充電可能である。
【0044】
[実施の形態2]
本発明の実施の形態2による二次電池の充電装置は、図4に示した実施の形態1による装置と同様に、二次電池に定電流充電を行うための定電流回路と、二次電池の電圧を検出する電圧検出回路と、充電制御回路とを有している。充電制御回路は、電圧検出回路の検出結果に応じて、二次電池が満充電電圧になるまで定電流回路を二次電池に接続し続け、二次電池が満充電電圧になった時点で定電流回路を二次電池から切断し、二次電池の内部インピーダンスに基づく電圧降下による降下電圧ΔVZを取得し、降下電圧ΔVZを取得した時点で定電流回路を二次電池に再接続すると共に二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になるまで定電流回路を二次電池に接続し続けるものである。
【0045】
本実施の形態では特に、図7に示すように、制御ロジック回路は、サンプル/ホールド回路に対して第1のモードおよび第2のモードを引き続いて行う制御サイクルを、複数回行うように制御する。
【0046】
尚、本装置においては、制御サイクルを行う度に、(満充電電圧+降下電圧ΔVZ)充電終了電圧は、更新的に上昇される。
【0047】
このような制御により、二次電池は、図7に示すように、充電完了後に内部インピーダンスに基づいて電圧降下しても、ほぼ確実に、満充電電圧を維持できる。
【0048】
[実施の形態3]
本発明の実施の形態3による二次電池の充電装置は、図4に示した実施の形態1による装置と同様に、二次電池に定電流充電を行うための定電流回路と、二次電池の電圧を検出する電圧検出回路と、充電制御回路とを有している。充電制御回路は、電圧検出回路の検出結果に応じて、二次電池が満充電電圧になるまで定電流回路を二次電池に接続し続け、二次電池が満充電電圧になった時点で定電流回路を二次電池から切断し、二次電池の内部インピーダンスに基づく電圧降下による降下電圧ΔVZを取得し、降下電圧ΔVZを取得した時点で定電流回路を二次電池に再接続すると共に二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になるまで定電流回路を二次電池に接続し続けるものである。
【0049】
本実施の形態では特に、二次電池に定電圧充電を行う定電圧回路をさらに有している。充電制御回路は、図8に示すように、電圧検出回路の検出結果に応じて、二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になった時点で定電流回路を二次電池から切断すると共に定電圧回路を二次電池に接続して二次電池の電圧が所定時間に亘って満充電電圧となるように定電圧回路を二次電池に接続し続ける。
【0050】
このような制御により、二次電池は、図8に示すように、充電完了した後も、ほぼ確実に、満充電電圧を維持できる。
【0051】
以上のように、本実施の形態に係る二次電池の充電装置を用いれば、図から明らかなように、従来に比べてより短時間で充電を完了することができる。
【0052】
以上、本発明について、実施の形態に即して説明したが、本発明はこれらの実施の形態に限定されるものではない。例えば、定電流回路および/または定電圧回路は、電源装置に内蔵するのではなく、本装置に一体に構成されてもよい。また、本装置の一部が電池パック内に設けられてもよい。
【0053】
【発明の効果】
本発明による二次電池の充電装置は、二次電池の充電をより短時間で行うことができる。
【図面の簡単な説明】
【図1】従来の充電制御装置を用いて二次電池を充電した場合の、電池電圧と充電電流の時間変化を示すグラフである。
【図2】従来の、満充電電圧よりも高い電圧まで定電流充電を行う充電制御装置のブロック図である。
【図3】図2の充電制御装置を用いて二次電池を充電した場合の、電池電圧と充電電流の時間変化を示すグラフである。
【図4】本発明の実施の形態1による二次電池の充電装置を示すブロック図である。
【図5】本発明の実施の形態1による二次電池の充電装置の動作を説明するための、電池電圧と充電電流の時間変化を示すグラフである。
【図6】本発明の実施の形態1による二次電池の充電装置の動作を説明するための、電池電圧と装置内各所の電圧の時間変化を示すグラフである。
【図7】本発明の実施の形態2による二次電池の充電装置の動作を説明するための、電池電圧と充電電流の時間変化を示すグラフである。
【図8】本発明の実施の形態3による二次電池の充電装置の動作を説明するための、電池電圧と充電電流の時間変化を示すグラフである。
【符号の説明】
10 電源
30 電圧検出回路
31 サンプル/ホールド回路
40 充電制御回路
41 コンパレータ
42 切替器
43 制御ロジック回路
50 二次電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charging device for a secondary battery, and more particularly to a so-called quick charging device that can complete charging in a short time without imposing a burden on the secondary battery.
[0002]
[Prior art]
At present, lithium-ion batteries are often used as secondary batteries in portable electronic devices such as mobile phones because of their light weight, high capacity, easy detection of remaining battery life, and long cycle life.
[0003]
Generally, a secondary battery such as a lithium ion battery is charged with a constant current and a constant voltage. According to this charging method, as shown in FIG. 1, a constant current is maintained from the start of charging until the voltage (battery voltage) of the secondary battery reaches a predetermined voltage (= constant voltage control voltage, also referred to as full charge voltage). The constant current charging is performed by the control current, and after the battery voltage reaches a predetermined voltage, the constant voltage charging is performed with the constant voltage control voltage.
[0004]
In such a general constant current / constant voltage method, constant current charging is completed in a relatively short time (for example, 40 minutes) (charge rate 90%). However, constant voltage charging requires many times (for example, 3 hours) the time required for constant current charging (charging rate is 99% or more). This is because the charging current flowing to the secondary battery decreases as the secondary battery approaches a fully charged state (charging completed), and it takes a long time to slightly increase the charging rate. Also, charging time by constant voltage charging is set longer in consideration of voltage drop due to the internal resistance of the secondary battery.
[0005]
Therefore, the conventional constant current / constant voltage charging method has a problem that it takes a long time until the secondary battery is fully charged.
[0006]
In order to solve this problem, there has already been proposed a charge control device in which the constant current charging is continued until the battery voltage of the secondary battery reaches a predetermined voltage higher than the constant voltage control voltage (for example, see Patent Reference 1).
[0007]
The charge control device according to this proposal is configured, for example, as shown in FIG. That is, the charging control device includes a constant current circuit 11, a first constant voltage circuit 12, a second constant voltage circuit 13, and a constant current circuit 11 that is connected to the first constant voltage circuit 12 or the second constant voltage circuit. A changeover switch 14 for selectively connecting to the circuit 13, a voltage detection circuit 15 for detecting the voltage of the secondary battery to be charged, and a switching control of the changeover switch 14 based on the detection voltage detected by the voltage detection circuit 15 And a switching circuit 16.
[0008]
The constant current circuit 11 converts the current supplied from the power supply 17 into a constant current.
[0009]
The first constant voltage circuit 12 limits the charging current of the secondary battery 18 so that the battery voltage of the secondary battery 18 does not exceed the constant voltage control voltage Vc (for example, 4.2 V).
[0010]
The second constant voltage circuit 13 controls the charging current so that the battery voltage of the secondary battery 18 does not exceed a predetermined voltage Vc ′ (for example, 4.35 V) higher than the constant voltage control voltage Vc by a predetermined voltage V1. Restrict.
[0011]
The voltage detection circuit 15 detects the voltage of the secondary battery 18 and supplies an output signal corresponding to the detected value to the switching circuit 16.
[0012]
The switching circuit 16 selects the second constant voltage circuit 13 until the battery voltage of the secondary battery 18 reaches the predetermined voltage Vc ', and switches the first constant voltage circuit 12 after reaching the predetermined voltage Vc'. The changeover switch 14 is controlled to select.
[0013]
Hereinafter, the operation of the charge control device will be described with reference to FIGS.
[0014]
First, when the charging control device is connected to the power supply 17 and the secondary battery 18 is connected, the voltage detection circuit 15 detects the battery voltage of the secondary battery 18 and outputs a detection signal corresponding thereto.
[0015]
The switching circuit 16 determines whether the battery voltage of the secondary battery 18 has reached the predetermined voltage Vc ′ based on the output signal from the detection circuit 15 and controls the switch 14. When the uncharged or discharged secondary battery 18 is connected to the charge control device, the second constant voltage circuit 13 is connected to the constant current circuit 11 via the switch 14.
[0016]
The constant current circuit 11 supplies a constant current to the secondary battery 18. The second constant voltage circuit 13 connected to the constant current circuit 11 controls the charging current of the secondary battery 18 so that the battery voltage of the secondary battery 18 does not exceed the predetermined voltage Vc '. As a result, the secondary battery 18 is charged at a constant current from the start of charging until the battery voltage of the secondary battery 18 reaches the predetermined voltage Vc '.
[0017]
When the battery voltage of the secondary battery 18 reaches the predetermined voltage Vc ′, the switching circuit 16 controls the changeover switch 14 to cause the first constant voltage circuit 12 to replace the second constant voltage circuit 13 with the constant current. Connect to circuit 11. The first constant voltage circuit 12 limits the charging current of the secondary battery 18 so that the battery voltage of the secondary battery 18 becomes the constant voltage control voltage Vc. Thus, the secondary battery 18 is charged at a constant voltage.
[0018]
FIG. 3 shows a time change of the charging current I and the battery voltage V of the secondary battery 18 from the start of charging to the full charging. In the conventional general charging method, the time T 'was required until the completion of charging as shown by the broken line. However, according to the charging control device of FIG. 2, the charging of the secondary battery is performed at the time T (<T'). Charging can be completed.
[0019]
[Patent Document 1]
JP-A-6-325794 (summary and FIG. 1)
[0020]
[Problems to be solved by the invention]
As described above, the conventional general charging method has a problem that the charging time is long. Although a charging control device for solving this problem has already been proposed, the time required for charging the secondary battery is still long, and further reduction is desired.
[0021]
Therefore, an object of the present invention is to provide a secondary battery charging apparatus and a secondary battery charging method that can charge a secondary battery such as a lithium ion battery in a shorter time.
[0022]
[Means for Solving the Problems]
According to the present invention, in a charging device for a secondary battery having a constant current circuit for charging a secondary battery (50) with a constant current, a voltage detection circuit (30) for detecting a voltage of the secondary battery; According to the detection result of the circuit, the constant current circuit is continuously connected to the secondary battery until the secondary battery reaches the full charge voltage, and when the secondary battery reaches the full charge voltage, the constant current circuit is connected to the secondary battery. Disconnect from the battery, obtain a drop voltage ΔVZ due to a voltage drop based on the internal impedance of the secondary battery, and when the drop voltage ΔVZ is obtained, reconnect the constant current circuit to the secondary battery and reduce the voltage of the secondary battery. A charging control circuit (40) that keeps connecting the constant current circuit to the secondary battery until (the full charging voltage + the drop voltage ΔVZ) is obtained.
[0023]
According to the present invention, the voltage detection circuit (30) acquires the voltage of the secondary battery and samples the first mode in which the voltage is output as the first control voltage and the voltage drop to obtain the drop voltage ΔVZ. And a sample / hold circuit (31) capable of two operation modes of a second mode for outputting (full charge voltage-drop voltage ΔVZ) as a second control voltage, and the charge control circuit (40) Compares the first control voltage or the second control voltage output from the sample / hold circuit with a predetermined reference voltage equal to the full charge voltage of the secondary battery, and compares the first control voltage or the second control voltage A comparator (41) for outputting a control signal when the second control voltage is equal to or higher than a reference voltage; and a constant current circuit and a rechargeable battery when the control signal is input from the comparator. And a control logic circuit (43) for controlling the sample / hold circuit to continuously perform the first mode and the second mode. A charging device for a secondary battery is obtained.
[0024]
According to the present invention, further, the control logic circuit (43) performs a control cycle for continuously performing the first mode and the second mode on the sample / hold circuit (31) a plurality of times. A charging device for the secondary battery to be controlled is obtained.
[0025]
Further, according to the present invention, there is further provided a constant voltage circuit for performing constant voltage charging of the secondary battery, wherein the charge control circuit adjusts the voltage of the secondary battery to a (full) voltage in accordance with a detection result of the voltage detection circuit. At the point of time when the charging voltage + the drop voltage ΔVZ), the constant current circuit is disconnected from the secondary battery, and the constant voltage circuit is connected to the secondary battery, so that the voltage of the secondary battery reaches the full charge voltage for a predetermined time. Thus, the charging device for the secondary battery, which keeps the constant voltage circuit connected to the secondary battery, is obtained.
[0026]
Further, according to the present invention, there is obtained the charging device for the secondary battery, wherein the switch (42) is configured by a semiconductor switch.
[0027]
According to the present invention, in a method of charging a secondary battery capable of performing constant current charging of a secondary battery, a step of performing constant current charging until the secondary battery reaches a full charge voltage; A step of temporarily stopping charging when the battery voltage reaches a full charge voltage, a step of acquiring a voltage drop ΔVZ based on the internal impedance of the secondary battery, and a step of restarting charging when the voltage drop ΔVZ is acquired. Performing a constant current charge until the voltage of the secondary battery becomes (full charge voltage + ΔVZ).
[0028]
It is to be noted that the reference numerals in the parentheses are provided for facilitating the understanding of the present invention, and are merely examples, and it is a matter of course that the present invention is not limited to these.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a charging device for a secondary battery according to an embodiment of the present invention will be described with reference to the drawings.
[0030]
[Embodiment 1]
Referring to FIG. 4, the secondary battery charging device according to the first embodiment of the present invention includes a constant current circuit for performing constant current charging of secondary battery 50, and a voltage detection for detecting the voltage of the secondary battery. It has a circuit 30 and a charge control circuit 40. Note that the constant current circuit is usually included in the power supply 10 configured as an AC adapter.
[0031]
Referring to FIGS. 4 and 5, charging control circuit 40 continues to connect the constant current circuit to secondary battery 50 until secondary battery 50 reaches the full charge voltage in accordance with the detection result of voltage detection circuit 30. When the secondary battery 50 has reached the full charge voltage, the constant current circuit is disconnected from the secondary battery 50, a drop voltage ΔVZ due to a voltage drop based on the internal impedance of the secondary battery 50 is obtained, and a drop voltage ΔVZ is obtained. At this point, the constant current circuit is reconnected to the secondary battery 50 and the constant current circuit is continuously connected to the secondary battery 50 until the voltage of the secondary battery 50 becomes (full charge voltage + drop voltage ΔVZ). .
[0032]
More specifically, the voltage detection circuit 30 acquires the voltage of the secondary battery 50, samples the first mode in which the voltage is output as the first control voltage, and samples the voltage drop to obtain the drop voltage ΔVZ (when the voltage drops). A sample / hold circuit 31 capable of two operation modes of a second mode for outputting a charging voltage-a drop voltage ΔVZ) as a second control voltage is provided.
[0033]
Further, the charge control circuit 40 compares the first control voltage or the second control voltage output from the sample / hold circuit 31 with a predetermined reference voltage equal to the full charge voltage of the secondary battery 50, and A comparator 41 that outputs a control signal when the control voltage or the second control voltage becomes equal to or higher than the reference voltage, and a circuit between the constant current circuit and the secondary battery 50 when a control signal is input from the comparator 41. A switch 42 for disconnecting and a control logic circuit 43 storing the control logic in advance so as to control the sample / hold circuit 31 to perform the first mode and the second mode successively are provided. .
[0034]
The switch 42 is configured by a semiconductor switch using an FET (field effect transistor).
[0035]
Next, an operation of the present apparatus will be described with reference to FIGS.
[0036]
First, the sample / hold circuit 31 acquires the voltage (point A) of the secondary battery 50 according to the instruction of the control logic circuit 43 and outputs the voltage as a first control voltage (point B) (first mode). Comparator 41 compares the first control voltage output from sample / hold circuit 31 with a predetermined reference voltage (point C) equal to the fully charged voltage of secondary battery 50, and determines that the first control voltage is equal to the reference voltage. Outputs a control signal when voltage is reached. The switch 42 disconnects the constant current circuit and the secondary battery 50 based on the control signal from the comparator 41.
[0037]
The sample / hold circuit 31 samples the voltage drop according to the instruction of the control logic circuit 43 (the drop voltage ΔVZ is charged by the sample / hold circuit 31) to obtain the drop voltage ΔVZ (the drop voltage ΔVZ is reversed in polarity. Is added to the potential at the point A, thereby generating a potential at the point B, that is, (potential at the point A-drop voltage ΔVZ).
[0038]
The control logic circuit restarts charging.
[0039]
The sample / hold circuit 31 outputs (point A voltage−drop voltage ΔVZ), that is, (full charge voltage−drop voltage ΔVZ) as a second control voltage (second mode). Comparator 41 compares the second control voltage output from sample / hold circuit 31 with a predetermined reference voltage (point C) equal to the full charge voltage of secondary battery 50, and determines that the second control voltage is equal to the reference voltage. A control signal is output when the voltage becomes higher than the voltage. The switch 42 disconnects the constant current circuit and the secondary battery 50 based on the control signal from the comparator 41.
[0040]
Thus, the secondary battery 50 is charged until it reaches (full charge voltage + drop voltage ΔVZ), and the charging of the secondary battery 50 is completed.
[0041]
Thereafter, the secondary battery 50 becomes a full charge voltage due to a voltage drop based on its internal impedance.
[0042]
The time required for the sample / hold circuit 31 to sample the voltage drop (the voltage drop ΔVZ is charged by the sample / hold circuit 31) is practically as short as several seconds to several minutes. Since charging is performed, according to the present device, the secondary battery can be charged to a fully charged state in a very short time.
[0043]
In addition, since the internal impedance of the secondary battery is indirectly measured each time charging is performed, charging is performed in accordance with the deterioration of the secondary battery that appears as a change in the internal impedance, and over a long period of time. The secondary battery can be accurately charged to a fully charged state.
[0044]
[Embodiment 2]
The charging device for a secondary battery according to the second embodiment of the present invention includes a constant current circuit for charging the secondary battery with a constant current, similarly to the device according to the first embodiment shown in FIG. And a charge control circuit. The charge control circuit continues to connect the constant current circuit to the secondary battery until the secondary battery reaches the full charge voltage according to the detection result of the voltage detection circuit, and determines when the secondary battery reaches the full charge voltage. The current circuit is disconnected from the secondary battery, a drop voltage ΔVZ due to a voltage drop based on the internal impedance of the secondary battery is obtained, and when the drop voltage ΔVZ is obtained, the constant current circuit is reconnected to the secondary battery and The constant current circuit is continuously connected to the secondary battery until the battery voltage becomes (full charge voltage + drop voltage ΔVZ).
[0045]
In the present embodiment, in particular, as shown in FIG. 7, the control logic circuit controls the sample / hold circuit to perform a control cycle of continuously performing the first mode and the second mode a plurality of times. .
[0046]
Note that, in the present apparatus, each time a control cycle is performed, (full charge voltage + drop voltage ΔVZ) the charge end voltage is renewedly increased.
[0047]
By such control, as shown in FIG. 7, the secondary battery can maintain the full charge voltage almost certainly even if the voltage drops based on the internal impedance after the completion of charging.
[0048]
[Embodiment 3]
The charging device for a secondary battery according to the third embodiment of the present invention includes a constant current circuit for charging the secondary battery with a constant current, similarly to the device according to the first embodiment shown in FIG. And a charge control circuit. The charge control circuit continues to connect the constant current circuit to the secondary battery until the secondary battery reaches the full charge voltage according to the detection result of the voltage detection circuit, and determines when the secondary battery reaches the full charge voltage. The current circuit is disconnected from the secondary battery, a drop voltage ΔVZ due to a voltage drop based on the internal impedance of the secondary battery is obtained, and when the drop voltage ΔVZ is obtained, the constant current circuit is reconnected to the secondary battery and The constant current circuit is continuously connected to the secondary battery until the battery voltage becomes (full charge voltage + drop voltage ΔVZ).
[0049]
In particular, the present embodiment further includes a constant voltage circuit that performs constant voltage charging of the secondary battery. As shown in FIG. 8, the charge control circuit switches the constant current circuit from the secondary battery when the voltage of the secondary battery becomes (full charge voltage + drop voltage ΔVZ) according to the detection result of the voltage detection circuit. Disconnect and connect the constant voltage circuit to the secondary battery, and continue to connect the constant voltage circuit to the secondary battery so that the voltage of the secondary battery becomes the full charge voltage for a predetermined time.
[0050]
By such control, as shown in FIG. 8, the secondary battery can almost certainly maintain the full charge voltage even after the charging is completed.
[0051]
As described above, the use of the secondary battery charging device according to the present embodiment makes it possible to complete charging in a shorter time as compared with the related art, as is apparent from the drawing.
[0052]
As described above, the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments. For example, the constant current circuit and / or the constant voltage circuit may not be built in the power supply device but may be integrally formed with the present device. Further, a part of the device may be provided in the battery pack.
[0053]
【The invention's effect】
The charging device for a secondary battery according to the present invention can charge the secondary battery in a shorter time.
[Brief description of the drawings]
FIG. 1 is a graph showing a change over time of a battery voltage and a charging current when a secondary battery is charged using a conventional charge control device.
FIG. 2 is a block diagram of a conventional charge control device that performs constant current charging up to a voltage higher than a full charge voltage.
FIG. 3 is a graph showing a change over time of a battery voltage and a charging current when a secondary battery is charged using the charging control device of FIG. 2;
FIG. 4 is a block diagram showing a charging device for a secondary battery according to Embodiment 1 of the present invention.
FIG. 5 is a graph illustrating a change over time in a battery voltage and a charging current for explaining the operation of the secondary battery charging device according to the first embodiment of the present invention.
FIG. 6 is a graph illustrating the change over time of the battery voltage and the voltage at various points in the device, for explaining the operation of the secondary battery charging device according to the first embodiment of the present invention.
FIG. 7 is a graph showing a change over time of a battery voltage and a charging current for explaining an operation of the secondary battery charging device according to the second embodiment of the present invention.
FIG. 8 is a graph showing a change over time in a battery voltage and a charging current for explaining an operation of the charging device for a secondary battery according to the third embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 10 power supply 30 voltage detection circuit 31 sample / hold circuit 40 charge control circuit 41 comparator 42 switcher 43 control logic circuit 50 secondary battery

Claims (6)

二次電池に定電流充電を行うための定電流回路を有する二次電池の充電装置において、
二次電池の電圧を検出する電圧検出回路と、
前記電圧検出回路の検出結果に応じて、二次電池が満充電電圧になるまで前記定電流回路を二次電池に接続し続け、二次電池が満充電電圧になった時点で該定電流回路を二次電池から切断し、二次電池の内部インピーダンスに基づく電圧降下による降下電圧ΔVZを取得し、降下電圧ΔVZを取得した時点で該定電流回路を二次電池に再接続すると共に二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になるまで前記定電流回路を二次電池に接続し続ける充電制御回路とを有することを特徴とする二次電池の充電装置。
In a charging device for a secondary battery having a constant current circuit for performing constant current charging on the secondary battery,
A voltage detection circuit for detecting the voltage of the secondary battery,
In accordance with the detection result of the voltage detection circuit, the constant current circuit continues to be connected to the secondary battery until the secondary battery reaches a full charge voltage, and when the secondary battery reaches the full charge voltage, the constant current circuit Is disconnected from the secondary battery, a drop voltage ΔVZ due to a voltage drop based on the internal impedance of the secondary battery is obtained, and when the drop voltage ΔVZ is obtained, the constant current circuit is reconnected to the secondary battery and And a charge control circuit that keeps the constant current circuit connected to the secondary battery until the voltage of the secondary battery becomes (full charge voltage + drop voltage ΔVZ).
前記電圧検出回路は、二次電池の電圧を取得して第1の制御電圧として出力する第1のモードならびに電圧降下をサンプリングして降下電圧ΔVZを取得すると共に(満充電電圧−降下電圧ΔVZ)を第2の制御電圧として出力する第2のモードの二つの動作モードが可能なサンプル/ホールド回路を備えており、
前記充電制御回路は、
前記サンプル/ホールド回路から出力される前記第1の制御電圧または前記第2の制御電圧と二次電池の満充電電圧に等しい所定の基準電圧とを比較して該第1の制御電圧または該第2の制御電圧が基準電圧以上となったときに制御信号を出力するコンパレータと、
前記コンパレータから前記制御信号が入力されたときに前記定電流回路と二次電池との間を切断する切替器と、
前記サンプル/ホールド回路が前記第1のモードおよび前記第2のモードを引き続いて行うように制御する制御ロジック回路とを備えている請求項1に記載の二次電池の充電装置。
The voltage detection circuit acquires a voltage of the secondary battery and outputs the first mode as a first control voltage, and also acquires a drop voltage ΔVZ by sampling a voltage drop (full charge voltage−drop voltage ΔVZ). As a second control voltage, and a sample / hold circuit capable of two operation modes of a second mode,
The charge control circuit,
The first control voltage or the second control voltage is compared with the first control voltage or the second control voltage output from the sample / hold circuit and a predetermined reference voltage equal to the full charge voltage of the secondary battery. A comparator which outputs a control signal when the control voltage of the second control voltage becomes equal to or higher than the reference voltage;
A switch that disconnects between the constant current circuit and the secondary battery when the control signal is input from the comparator,
The rechargeable battery charging device according to claim 1, wherein the sample / hold circuit includes a control logic circuit that controls the first mode and the second mode to be sequentially performed.
前記制御ロジック回路は、前記サンプル/ホールド回路に対して前記第1のモードおよび前記第2のモードを引き続いて行う制御サイクルを複数回行うように制御するものである請求項2に記載の二次電池の充電装置。3. The secondary according to claim 2, wherein the control logic circuit controls the sample / hold circuit to perform a control cycle in which the first mode and the second mode are successively performed a plurality of times. Battery charger. 二次電池に定電圧充電を行うための定電圧回路をさらに有し、
前記充電制御回路は、前記電圧検出回路の検出結果に応じて、二次電池の電圧が(満充電電圧+降下電圧ΔVZ)になった時点で前記定電流回路を二次電池から切断すると共に前記定電圧回路を二次電池に接続して二次電池の電圧が所定時間に亘って満充電電圧となるように該定電圧回路を二次電池に接続し続ける請求項2に記載の二次電池の充電装置。
Further comprising a constant voltage circuit for performing constant voltage charging on the secondary battery,
The charge control circuit disconnects the constant current circuit from the secondary battery when the voltage of the secondary battery becomes (full charge voltage + drop voltage ΔVZ) according to the detection result of the voltage detection circuit, and The secondary battery according to claim 2, wherein the constant voltage circuit is connected to the secondary battery, and the constant voltage circuit is continuously connected to the secondary battery so that the voltage of the secondary battery becomes a full charge voltage for a predetermined time. Charging device.
前記切替器は、半導体スイッチにより構成されている請求項2乃至4のいずれかに記載の二次電池の充電装置。The charging device for a secondary battery according to claim 2, wherein the switch is configured by a semiconductor switch. 二次電池に定電流充電を行うことが可能な二次電池の充電方法において、
二次電池が満充電電圧になるまで定電流充電を行う工程と、
二次電池が満充電電圧になった時点で充電を一旦停止する工程と、
二次電池の内部インピーダンスに基づく電圧降下ΔVZを取得する工程と、
電圧降下ΔVZを取得した時点で充電を再開する工程と、
二次電池の電圧が(満充電電圧+ΔVZ)になるまで定電流充電を行う工程とを有することを特徴とする二次電池の充電方法。
In a method of charging a secondary battery capable of performing constant current charging of the secondary battery,
Performing a constant current charge until the secondary battery reaches a full charge voltage;
Temporarily stopping charging when the secondary battery reaches a full charge voltage,
Obtaining a voltage drop ΔVZ based on the internal impedance of the secondary battery;
A step of restarting charging when the voltage drop ΔVZ is obtained;
Performing a constant current charge until the voltage of the secondary battery becomes (full charge voltage + ΔVZ).
JP2003069779A 2003-03-14 2003-03-14 Apparatus and method for charging secondary battery Withdrawn JP2004282881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069779A JP2004282881A (en) 2003-03-14 2003-03-14 Apparatus and method for charging secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069779A JP2004282881A (en) 2003-03-14 2003-03-14 Apparatus and method for charging secondary battery

Publications (1)

Publication Number Publication Date
JP2004282881A true JP2004282881A (en) 2004-10-07

Family

ID=33286709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069779A Withdrawn JP2004282881A (en) 2003-03-14 2003-03-14 Apparatus and method for charging secondary battery

Country Status (1)

Country Link
JP (1) JP2004282881A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069293A1 (en) * 2005-12-12 2007-06-21 Matsushita Electric Industrial Co., Ltd. Contactless charging-type battery system, charging device, and battery pack
JP2012503277A (en) * 2008-09-28 2012-02-02 広州豊江電池新技術股▲ふん▼有限公司 Quick charging method
EP1881580A4 (en) * 2005-05-12 2015-08-26 Shindengen Electric Mfg Dc/dc converter
CN105609890A (en) * 2015-12-31 2016-05-25 广州丰江电池新技术股份有限公司 Non-constant-voltage charging method for lithium ion battery capable of correcting and compensating voltage
CN108235791A (en) * 2017-12-07 2018-06-29 广州丰江电池新技术股份有限公司 Correct the method for charging lithium-ion battery for making up voltage
CN108390091A (en) * 2017-11-20 2018-08-10 保定风帆新能源有限公司 A kind of formation of Li-ion batteries aging partial volume technique
WO2018166768A1 (en) * 2017-03-14 2018-09-20 Robert Bosch Gmbh Charging an accumulator
JP2019506829A (en) * 2016-01-29 2019-03-07 トヨタ・モーター・ヨーロッパToyota Motor Europe Control device for charging storage battery and method for charging storage battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1881580A4 (en) * 2005-05-12 2015-08-26 Shindengen Electric Mfg Dc/dc converter
WO2007069293A1 (en) * 2005-12-12 2007-06-21 Matsushita Electric Industrial Co., Ltd. Contactless charging-type battery system, charging device, and battery pack
JP2012503277A (en) * 2008-09-28 2012-02-02 広州豊江電池新技術股▲ふん▼有限公司 Quick charging method
CN105609890A (en) * 2015-12-31 2016-05-25 广州丰江电池新技术股份有限公司 Non-constant-voltage charging method for lithium ion battery capable of correcting and compensating voltage
WO2017113994A1 (en) * 2015-12-31 2017-07-06 广州丰江电池新技术股份有限公司 Lithium-ion battery non-constant-voltage charging method for correcting and compensating voltage
CN105609890B (en) * 2015-12-31 2018-07-24 广州丰江电池新技术股份有限公司 Correct the non-constant voltage charging method of lithium ion battery for making up voltage
KR20180090242A (en) * 2015-12-31 2018-08-10 광저우 풀리버 배터리 뉴 테크놀로지 씨오 엘티디 Lithium-ion battery non-constant voltage charging method for voltage compensation and compensation
US10707541B2 (en) 2015-12-31 2020-07-07 Guangzhou Fullriver Battery New Technology Co., Ltd. Lithium-ion battery charging method for correcting and compensating voltage
KR101980495B1 (en) 2015-12-31 2019-05-20 광저우 풀리버 배터리 뉴 테크놀로지 씨오 엘티디 Lithium-ion battery non-constant voltage charging method for voltage compensation and compensation
EP3370299A4 (en) * 2015-12-31 2018-12-26 Guangzhou Fullriver Battery New Technology Co., Ltd. Lithium-ion battery non-constant-voltage charging method for correcting and compensating voltage
JP2019501619A (en) * 2015-12-31 2019-01-17 広州豊江電池新技術股▲ふん▼有限公司Guangzhou Fullriver Battery New Technology Co.,Ltd. Non-constant voltage charging method for lithium-ion battery that corrects and compensates for voltage
US10903669B2 (en) 2016-01-29 2021-01-26 Toyota Motor Europe Control device and method for charging a rechargeable battery
JP2019506829A (en) * 2016-01-29 2019-03-07 トヨタ・モーター・ヨーロッパToyota Motor Europe Control device for charging storage battery and method for charging storage battery
CN110622385A (en) * 2017-03-14 2019-12-27 罗伯特·博世有限公司 Charging of accumulators
WO2018166768A1 (en) * 2017-03-14 2018-09-20 Robert Bosch Gmbh Charging an accumulator
JP2020510394A (en) * 2017-03-14 2020-04-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Accumulator charging
US11336108B2 (en) 2017-03-14 2022-05-17 Robert Bosch Gmbh Charging an accumulator
JP7075411B2 (en) 2017-03-14 2022-05-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング How to charge the accumulator, programs, and equipment
CN110622385B (en) * 2017-03-14 2024-02-06 罗伯特·博世有限公司 Charging of a battery
CN108390091A (en) * 2017-11-20 2018-08-10 保定风帆新能源有限公司 A kind of formation of Li-ion batteries aging partial volume technique
WO2019109283A1 (en) * 2017-12-07 2019-06-13 广州丰江电池新技术股份有限公司 Lithium ion battery charging method for correcting compensation voltage
CN108235791A (en) * 2017-12-07 2018-06-29 广州丰江电池新技术股份有限公司 Correct the method for charging lithium-ion battery for making up voltage

Similar Documents

Publication Publication Date Title
JP2004064915A (en) Charging device for secondary battery and charging method thereof
JP5638779B2 (en) Secondary battery characteristic detection method and secondary battery device
JP4499966B2 (en) Secondary battery charging circuit
JP3823503B2 (en) Secondary battery charging control method and charging device therefor
JP2007288982A (en) Charging circuit and charging method for the same
JP2003235172A (en) Apparatus and method for charging battery pack
JP2011211846A (en) Apparatus and method of charging secondary battery
JP2009033843A (en) Apparatus and method for charging
CN100520646C (en) Portable photographing apparatus and power switching control method
JP6824295B2 (en) Electrical equipment
JP2004282881A (en) Apparatus and method for charging secondary battery
JP2023527515A (en) Battery management system, battery management method, battery pack and electric vehicle
CN102769323A (en) Ultra-fast charge equipment for mobile phone batteries
JP4108339B2 (en) Lithium ion secondary battery charging method and apparatus
JP5541682B2 (en) Lithium-ion battery charging system and charging method
JP2014010005A (en) Relative residual capacity calculation method for secondary battery, and pack battery
JP2013172551A (en) Battery pack charge system and battery pack charge method
JP2010148277A (en) Charging device
JP2005261020A (en) Charging controller
JPH09233727A (en) Battery charger
JP2905581B2 (en) Charging device
JP2003169424A (en) Secondary battery charging method and charging device
JP3369858B2 (en) Rechargeable battery charging method
JP4041763B2 (en) Charge control device and charge control method
JP4400594B2 (en) Charger

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606