JP2004282159A - Variable power supply servo amplifier and method for controlling power supply voltage - Google Patents

Variable power supply servo amplifier and method for controlling power supply voltage Download PDF

Info

Publication number
JP2004282159A
JP2004282159A JP2003067099A JP2003067099A JP2004282159A JP 2004282159 A JP2004282159 A JP 2004282159A JP 2003067099 A JP2003067099 A JP 2003067099A JP 2003067099 A JP2003067099 A JP 2003067099A JP 2004282159 A JP2004282159 A JP 2004282159A
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
variable
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003067099A
Other languages
Japanese (ja)
Other versions
JP4277544B2 (en
JP2004282159A5 (en
Inventor
Takayoshi Nakao
隆義 中尾
Shinobu Sato
忍 佐藤
Toshio Matsumoto
敏雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003067099A priority Critical patent/JP4277544B2/en
Publication of JP2004282159A publication Critical patent/JP2004282159A/en
Publication of JP2004282159A5 publication Critical patent/JP2004282159A5/ja
Application granted granted Critical
Publication of JP4277544B2 publication Critical patent/JP4277544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable power supply servo amplifier in a two power supply switching system which is compact and highly efficient. <P>SOLUTION: The variable power supply servo amplifier has two power supplies which supply the power to a power amplifier, and which are a variable voltage power supply 1 capable of adjusting the voltage within 50 % of a rated voltage and a peak power supply 2 with the short time rating for outputting a voltage of ≥ 150% of the rated voltage; a power supply voltage controller 9 which creates a signal for controlling an output voltage of the variable voltage power supply from a control command of a control system or the input from the power amplifier 8, and a signal for turning on/off the output of the peak voltage power supply; and a PID controller 10 for executing feedback control by detecting a current or a voltage of a load. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電圧あるいは電流を高速・精密に制御するためのサーボアンプ、例えば、力、速度、位置等の高精度・高速応答が要求されるアクチュエータ駆動用コントローラに使用するサーボ増幅器に関する。
【0002】
【従来の技術】
負荷の電流や電圧を制御する電力増幅器には、PWM(パルス幅変調)増幅器やリニア増幅器が用いられているが、出力電流が大きく高速応答が要求される場合には、これらの電力増幅器は高い電源電圧が必要となる。この電源電圧は、特に負荷が誘導性の場合応答特性を支配する。従って、高速応答の電力増幅器は、定常時には不必要に高い電源電圧下で駆動されるため効率は悪くなる。これを改善するため、複数の電源電圧を用意し電源を切り換えて使う。あるいは、指令や出力に連動して電源電圧を変えるなどの手法が適用されてきた。
特許文献1に開示の「電力増幅装置」はその1例であり、高効率を維持しながら複数個の電力増幅器の総合出力電力を大幅に増大させることを可能にするものである。図3はそのブロック図であり、信号入力端1A〜1Eへの入力を複数個の増幅器19A〜19Eに入力するとともに、その利得に反比例して減衰量を調整した信号減衰制御部23を介して、その複数個の入力端の信号のうちから最大値を選択して出力する最大値検出制御部40に印加し、その出力端の信号を増幅する二電源切換信号増幅部41A、41Bの出力によって二電源切換制御部44を制御して、予め決めたしきい値を超えるか否かにより、正負の高電圧電源制御トランジスタ80、82をそれぞれ能動、又は、遮断状態にすることにより複数個の増幅器19A〜19Eに与える電源電圧を高低に切換えるものである。
また、特許文献2に開示の「光受信装置」は、入力される光信号のレベルが高い場合であっても、波形歪みを生じることなく正常に受信できるようにするもので、そのために図4に示すように、入力信号を増幅率の異なる複数のプリアンプ40、50へ入力して複数の電圧出力に変換し、選択回路120により予め設定された電圧しきい値と比較してしきい値を超えない出力を切換え出力することによって飽和領域動作を回避して、波形歪みを生じない、しかも増幅率の高い電圧信号を出力するようにしている。
【0003】
【特許文献1】
特開平8−316739号公報(段落[0016〜0032]、図1)
【特許文献2】
特開平11−298259号公報(段落[0022〜0046]、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、何種類か複数の電源を使うため電源のコストがかかり過ぎ、体積が大きくなるなど課題がある。
また、単一電源で電圧を連続的に変える方法は、電圧可変範囲と電圧の応答が課題となる、等の問題があった。
そこで、本発明は、制御系の指令が急変したとき応答を改善するために電力増幅器へ供給する電源電圧を高電圧にし、制御系が定常状態になったとき、あるいは定常状態に近付いたときは、限定された一定の範囲で調整可能な低電圧電源を用いることによって、電力増幅器の損失を低減して高出力・高精密・高速応答の電力増幅器を有する可変電源サーボ増幅器を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、パルス幅変調あるいはリニア増幅方式による電力増幅器において、電力増幅器へ電力を供給する、定格電圧の50%以内で電圧を調整できる可変電圧電源と定格電圧の150%以上の電圧を出力する短時間定格のピーク電源の2つの電源と、制御系の制御指令または前記電力増幅器の入力から前記可変電圧電源の出力電圧を制御する信号と前記ピーク電圧電源の出力をオンオフする信号を創出する電源電圧制御器と、負荷の電流あるいは電圧を検出しフィードバック制御するPID制御器とを有することを特徴としている。
また、請求項2に記載の発明は、前記可変電圧電源の出力に制御用電力半導体素子を接続し、リニア動作させることにより前記可変電圧電源の電圧リップルおよび電圧のレギュレーション特性を改善することを特徴としている。
また、請求項3に記載の発明は、請求項1又は2のいずれか1項に記載の可変電源サーボ増幅器の電源電圧制御器により、制御指令または操作量の時間変化量が大きいとき制御量を高速応答とするため偏差が一定値より小さくなるまでピーク電圧電源から電力増幅器へ電力を供給し、前記制御指令または操作量の時間変化量が小さい、あるいは前記偏差が小さい時は、前記電力増幅器の損失および出力リップルを軽減するように前記制御指令または操作量に見合った値、すなわち電力増幅器の入力uの絶対値が、
|u|<δ(但し、δは設計仕様によって設定する定数)、
となるように前記可変電圧電源の電圧を調整して粗調し、更に、制御用電力半導体素子の制御による微調も行うことを特徴としている。
以上のように、制御系の偏差が大きくて高速応答させる電源として、高電圧・短時間定格のピーク電圧電源と、制御系の偏差が小さいか、定常時に使う低電圧の可変電圧電源の2系統で電力増幅器へ電力を供給する電源を構成し、そしてこの2種類の電源は、制御系の指令または操作量(電力増幅器の入力)に基づき、電源電圧制御器によって可変電圧電源の電圧の粗調整と、この電源の出力に直列接続されたトランジスタを動作させて電圧の微調整を行い、更に、ピーク電圧電源の出力に直列に接続されたトランジスタをオン・オフ動作させて電力増幅器へ電力を供給することにより、ピーク電圧と可変電圧電源の切換えによる電源電圧の高低の切換え制御を行うものであり、したがって、電源電圧制御器は、高速応答時にはピーク電源電圧をオンにし、定常時や高速応答が必要で無い時には、ピーク電圧をオフにして、可変電圧電源の粗調と微調を制御して電源効率を改善できるようにしている。
【0006】
【発明の実施の形態】
以下、本発明の第1の実施の形態について図を参照して説明する。
図1は本発明の第1の実施の形態に係る可変電源サーボ増幅器の制御系を示すブロック図である。
図1において、1は可変電圧電源(VVPS)、2および3は±Vのピーク電圧電源(HVPS)で、可変電圧電源1より例えば昇圧DC/DCコンバータ等によって生成される。4および5は電圧調整用トランジスタ(TPD)と(TND)。6および7は逆電圧阻止用ダイオード(D)と(D)である。8は電力増幅器(P.AMP)、9は電源電圧制御器(V.CON)で、10はサーボ制御器(S.CON)、11は負荷Lで、12、13はピーク電圧出力スイッチ用トランジスタT、Tである。
また、各信号系は、xが指令、xはフィードバック信号、Vccは可変電圧制御信号、uは操作量、Vchはピーク電圧出力スイッチ信号、Vcfは電圧微調スイッチ用制御信号である。
【0007】
つぎに動作について説明する。
以上のように図1は、定格電圧の150%以上の電圧のピーク電圧電源(HVPS)2と定格電圧の50%以内で電圧調整する可変電圧電源(VVPS)1の2つの電源と、電力増幅器(P.AMP)8、ピーク電圧電源2の出力をオンオフするトランジスタ(T、T)12、13で構成するピーク電圧出力スイッチ、可変電圧電源(VVPS)1の電圧を微調する電圧調整用トランジスタ(TPD、TND)4、5で構成する電圧微調整スイッチ(電圧レギュレータ)と、ピーク電圧出力スイッチと可変電圧電源の電圧の粗調と電圧微調整スイッチによる微調とを制御する電源電圧制御器(V.CON)9と、逆電圧阻止用ダイオード6、7とによって構成されている。
以上による電源の切換制御は、ピーク電圧電源(HVPS)と、可変電圧電源(VVPS)の2つの電源を切換える高低切換えと、更に、可変電圧電源(VVPS)の粗調整と微調整の切換えによる精密制御を含む。
この切換え制御は、先ず、指令xと、負荷L(モータ)11からの電流あるいは電圧の各種フィードバックxとにより得られる偏差eをPID制御則を用いたサーボ制御器(S.CON)10によって操作量uが演算される。
指令x、操作量uが急激な変化をした時、電源電圧制御器(V.CON)9は操作量uを基にしきい値判断を行い、ピーク電圧出力スイッチ信号vchを出力してピーク電圧出力スイッチ用トランジスタ12、13をオンして、ピーク電圧電源HVPSから電力増幅器(P.AMP)8へ給電する。
また、それ以外の定常時や高速応答が必要では無い時には、ピーク電圧出力スイッチ用トランジスタ12、13をオフして、可変電圧電源(VVPS)1の給電に切換え、可変電圧制御信号Vccにより可変電圧電源(VVPS)1の電圧±Vを粗調整し、必要ならば電圧微調スイッチ用制御信号vcfにより電圧調整用トランジスタ(TPD、TND)4、5のゲート電圧等を制御して、電圧の微調制御を行う。この電圧微調スイッチのトランジスタTPD、TNDの出力には、ピーク電圧電源(HVPS:±V)2、3からの高圧の印加を阻止する逆電圧阻止ダイオード(D、D)6、7が挿入されている。
なお、粗調整された可変電圧電源(VVPS)1の出力電圧でも、電力増幅器(P.AMP)8へ与える影響が無視できる場合は、電圧微調スイッチは不要である。
また、ピーク電圧電源(HVPS)2、3は、可変電圧電源(VVPS)1の出力からDC/DCコンバータにより昇圧して生成しているが、AC電源を入力とすることも可能である。また、ピーク電圧電源2、3の電圧は一定であってもよいし、指令値や要求される整定時間に応じて変えてもよい。
【0008】
次に、本発明の第2の実施の形態について図を参照して説明する。
図2は本発明の第2の実施の形態に係る可変電源サーボ増幅器の電流制御系のブロック図である。
図2において、図1と異なる構成は、ピーク電圧電源(HVPS)±Vが、昇圧トランス、スイッチ、整流ダイオード、充電コンデンサ、等で構成する昇圧部を持つピーク電圧電源(HVPS)14、15の図示に変わり、サーボ制御器(S.CON)が電流制御器(I.CON)17に変わり、電流検出器(I.DET)16が追加され、フィードバック信号xがフィードバック電流i、指令xが電流指令iに変っている。
なお、その他の図1と同一構成には、同一符号を付して重複する説明は省略する。
【0009】
以上の図2のブロックは、誘導性負荷(L)11の電流を高速・精密に制御する電流制御系であり、この制御系は以下の(1)〜(5)の各要素部に制御上分けられ構成されている。
(1)、リニア増幅の電力増幅器(P.AMP)8。
(2)、電力増幅器(P.AMP)8へ電圧±VDDの電力を供給するための可変電圧電源(VVPS)1と、ピーク電圧電源(HVPS)2の2つの電源とこれらの電源の出力電圧を切換えるための各トランジスタ4、5、12´、13´と、逆転阻止ダイオード6、7。
(3)、これらのトランジスタの制御信号Vcc、Vcf、Vchを出力する電源電圧制御器(V.CON)9。
(4)、電流制御を行なうため、負荷の電流フィードバック信号iを得る電流検出器(I.DET)16。
(5)、電流指令iと電流フィードバック信号ifから操作量u(電力増幅器P.AMPの入力)を出力する、電流制御器(I.CON)17によって構成されている。
【0010】
つぎに動作について説明する。
先ず、電源電圧制御器9は、指令iまたは、比例、積分、微分すなわちPIDの演算を行なう電流制御器(I.CON)17の出力であるu、あるいはこれらの信号を併用して、電力増幅器(P,AMP)8へ供給する電圧±VDDを次のように切り換える。
ケース1:指令iまたはuが急激な変化をしたとき、ピーク電圧出力スイツチ・トランジスタ(TPHV、TNHV)12´、13´をオンする。すなわち、ピーク電圧電源(HVPS)から給電する。
ケース2:ケース1以外のとき。可変電源電圧(VVPS)1の出力電圧±Vを、
|u|<δ (ここでδ>0の定数)、
あるいは、iに対応して、
|i|<i (但し、iは設計仕様によって決められる一定の電流値)のときV=VDL(VDLはVVPSの出力電圧の下限の値)とする。
|i|>iのとき、
=VDL+K|i| (ここで、Kは比例定数)に可変電圧電源の出力を粗調し、トランジスタ(TPHV、TNHV)12´、13´をオフにする。更に、必要ならばトランジスタ(TPCV、TNCV)4、5を微調する。
以上によって、負荷Lの電流を効率良く高速・精密に制御できる。
【0011】
【発明の効果】
以上説明したように、本発明によれば、制御系の指令が急変したとき応答を改善するため、電力増幅器へ供給する電源電圧を高電圧にする。そして制御系が定常状態になったとき、あるいは定常状態に近づいたときは、限定された一定の範囲で調整可能な低電圧電源を用いる。以上のことによって、電力増幅器の損失を低減し、コンパクトで省スペースの高出力・精密・高速応答の電力増幅器を実現できる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る可変電源サーボ増幅器の制御系を示すブロック図である。
【図2】本発明の第2の実施の形態に係る可変電源サーボ増幅器の電流制御系のブロック図である。
【図3】従来の電力増幅装置のブロック図である。
【図4】従来の光受信装置のブロック図である。
【符号の説明】
1 可変電圧電源VVPS
2、3、14、15 ピーク電圧電源HVPS
4、5 電圧調整用トランジスタTPD、TND
6、7 逆電圧阻止用ダイオードD、D
8 電力増幅器P.AMP
9 電源電圧制御器V.CON
10 サーボ制御器S.CON
11 負荷L
12、13、12´、13´ ピーク電圧出力スイッチTPHV、TNHV
16 電流検出器I.DET
17 電流制御器I.CON
フィードバック電流
電流指令
L 負荷
u 操作量
CC 可変電圧制御信号
ch ピーク電圧出力スイッチ信号
cf 電圧微調スイッチ用制御信号
指令
フィードバック信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a servo amplifier for controlling a voltage or a current at high speed and precision, for example, a servo amplifier used for an actuator drive controller that requires high precision and high speed response such as force, speed, and position.
[0002]
[Prior art]
A PWM (Pulse Width Modulation) amplifier or a linear amplifier is used as a power amplifier for controlling the load current and voltage. However, when a high output current is required and a high-speed response is required, these power amplifiers are high. Power supply voltage is required. This power supply voltage governs the response characteristics, especially when the load is inductive. Therefore, the efficiency of the high-speed response power amplifier deteriorates because it is driven under an unnecessarily high power supply voltage in a steady state. In order to improve this, a plurality of power supply voltages are prepared and the power supply is switched and used. Alternatively, a technique of changing a power supply voltage in conjunction with a command or an output has been applied.
The “power amplifying device” disclosed in Patent Document 1 is one example of such a device, and it is possible to greatly increase the total output power of a plurality of power amplifiers while maintaining high efficiency. FIG. 3 is a block diagram of the circuit, in which the inputs to the signal input terminals 1A to 1E are input to a plurality of amplifiers 19A to 19E and the signal attenuation control unit 23 adjusts the attenuation in inverse proportion to the gain. The maximum value is selected from the signals at the plurality of input terminals, applied to the maximum value detection control unit 40 that outputs the selected signal, and amplified by the output of the dual power supply switching signal amplifying units 41A and 41B that amplify the signal at the output terminal. A plurality of amplifiers are controlled by controlling the dual power supply switching control unit 44 to activate or cut off the positive and negative high voltage power supply control transistors 80 and 82, respectively, depending on whether or not a predetermined threshold value is exceeded. The power supply voltage applied to 19A to 19E is switched between high and low.
Further, the “optical receiving apparatus” disclosed in Patent Document 2 is intended to enable normal reception without causing waveform distortion even when the level of an input optical signal is high. As shown in (1), the input signal is input to a plurality of preamplifiers 40 and 50 having different amplification factors and is converted into a plurality of voltage outputs. By switching and outputting an output that does not exceed the output, a saturation region operation is avoided, and a voltage signal that does not cause waveform distortion and has a high amplification factor is output.
[0003]
[Patent Document 1]
JP-A-8-31639 (paragraphs [0016 to 0032], FIG. 1)
[Patent Document 2]
JP-A-11-298259 (paragraphs [0022 to 0046], FIG. 1)
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technology, there are problems such as the cost of the power supply being too high and the increase in volume because several kinds of power supplies are used.
In addition, the method of continuously changing the voltage with a single power supply has a problem in that the voltage variable range and the response of the voltage become problems.
Therefore, the present invention sets the power supply voltage supplied to the power amplifier to a high voltage in order to improve the response when the command of the control system changes suddenly, and when the control system is in a steady state, or when the control system is approaching the steady state. An object of the present invention is to provide a variable power supply servo amplifier having a high power, high precision, and high speed response power amplifier by using a low voltage power supply that can be adjusted within a limited fixed range to reduce the power amplifier loss. And
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is a variable voltage power supply that supplies power to a power amplifier and that can adjust the voltage within 50% of a rated voltage in a power amplifier based on pulse width modulation or linear amplification. And a short-time rated peak power supply that outputs a voltage of 150% or more of the rated voltage, a signal for controlling the output voltage of the variable voltage power supply from a control command of a control system or an input of the power amplifier, and the peak power supply. It has a power supply voltage controller for generating a signal for turning on and off the output of the voltage power supply, and a PID controller for detecting a load current or voltage and performing feedback control.
The invention according to claim 2 is characterized in that a control power semiconductor element is connected to the output of the variable voltage power supply, and the voltage ripple and voltage regulation characteristics of the variable voltage power supply are improved by performing a linear operation. And
According to a third aspect of the present invention, there is provided a power supply voltage controller for a variable power supply servo amplifier according to any one of the first to second aspects, wherein the control amount is controlled when the time variation of the control command or the operation amount is large. Power is supplied from the peak voltage power supply to the power amplifier until the deviation becomes smaller than a certain value in order to provide a high-speed response, and when the time variation of the control command or the operation amount is small or the deviation is small, the power amplifier A value commensurate with the control command or the manipulated variable so as to reduce loss and output ripple, that is, the absolute value of the input u of the power amplifier is
| U | <δ (where δ is a constant set according to design specifications),
The method is characterized in that the voltage of the variable voltage power supply is adjusted so as to perform coarse adjustment, and fine adjustment is also performed by controlling the control power semiconductor element.
As described above, there are two systems, a high-voltage / short-time rated peak voltage power supply and a low-voltage variable voltage power supply with a small control system deviation or a steady-state power supply, as a power supply with a large control system deviation and high-speed response. And a power supply for supplying power to the power amplifier. The two kinds of power supplies are roughly adjusted by a power supply voltage controller based on a control system command or an operation amount (input of the power amplifier). Then, the transistor connected in series with the output of this power supply is operated to fine-tune the voltage, and the transistor connected in series with the output of the peak voltage power supply is turned on and off to supply power to the power amplifier. In this case, the power supply voltage is controlled to switch between high and low by switching between the peak voltage and the variable voltage power supply. It was turned on, when the steady-state and high-speed response not needed, turn off the peak voltage, so that can improve power efficiency by controlling the coarse and fine adjustment of the variable voltage power supply.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a control system of the variable power servo amplifier according to the first embodiment of the present invention.
In Figure 1, 1 is a variable voltage source (VVPS), 2 and 3 at the peak voltage supply ± V p (HVPS), is generated by a variable voltage power supply 1 of, for example, step-up DC / DC converter or the like. 4 and 5 are voltage adjusting transistors (T PD ) and (T ND ). Reference numerals 6 and 7 are reverse voltage blocking diodes (D P ) and (D N ). 8 is a power amplifier (P.AMP), 9 is a power supply voltage controller (V.CON), 10 is a servo controller (S.CON), 11 is a load L, and 12 and 13 are transistors for a peak voltage output switch. TP and TN .
In each signal system, x * is a command, xf is a feedback signal, Vcc is a variable voltage control signal, u is an operation amount, Vch is a peak voltage output switch signal, and Vcf is a control signal for a voltage fine adjustment switch. is there.
[0007]
Next, the operation will be described.
As described above, FIG. 1 shows two power supplies, a peak voltage power supply (HVPS) 2 having a voltage of 150% or more of the rated voltage and a variable voltage power supply (VVPS) 1 for adjusting the voltage within 50% of the rated voltage, and a power amplifier. (P.AMP) 8, the transistor (T P, T N) for turning on and off the output of the peak voltage power source 2 12,13 peak voltage output switches constituting at variable voltage power source (VVPS) voltage adjustment the first voltage to the fine A voltage fine-tuning switch (voltage regulator) composed of transistors ( TPD , TND ) 4, 5; a power supply voltage for controlling the peak voltage output switch and the coarse adjustment of the voltage of the variable voltage power supply and the fine adjustment by the voltage fine adjustment switch It comprises a controller (V.CON) 9 and diodes 6 and 7 for blocking reverse voltage.
Power supply switching control as described above is performed by switching between two power supplies, a peak voltage power supply (HVPS) and a variable voltage power supply (VVPS), and further, by switching between coarse adjustment and fine adjustment of the variable voltage power supply (VVPS). Including control.
The switching control, first, the command x *, load L (motor) servo controller the obtained deviation e with PID control law by the various feedback x f of the current or voltage from 11 (S.CON) 10 The operation amount u is thus calculated.
Command x *, when the operation amount u has a sudden change, performs power supply voltage controller (V.CON) 9 is a threshold determined based on the operation amount u, and outputs a peak voltage output switch signal v ch peak The voltage output switch transistors 12 and 13 are turned on to supply power from the peak voltage power supply HVPS to the power amplifier (P.AMP) 8.
In other cases, such as during normal operation or when high-speed response is not necessary, the peak voltage output switch transistors 12 and 13 are turned off to switch to the power supply of the variable voltage power supply (VVPS) 1 and to be varied by the variable voltage control signal Vcc. coarsely adjusting the voltage ± V D of the voltage source (VVPS) 1, if necessary for voltage regulation transistor by the voltage control signal vcf fine tuning switch (T PD, T ND) by controlling the gate voltage and the like of 4,5, Performs fine voltage control. Reverse voltage blocking diodes (D P , D N ) 6 for blocking the application of high voltage from peak voltage power supplies (HVPS: ± V P ) 2, 3 are provided to the outputs of transistors T PD , T ND of this voltage fine adjustment switch. 7 is inserted.
It should be noted that if the effect on the power amplifier (P.AMP) 8 is negligible even with the roughly adjusted output voltage of the variable voltage power supply (VVPS) 1, the voltage fine adjustment switch is unnecessary.
The peak voltage power supplies (HVPS) 2 and 3 are generated by boosting the output of the variable voltage power supply (VVPS) 1 using a DC / DC converter. However, an AC power supply may be used as an input. Further, the voltages of the peak voltage power supplies 2 and 3 may be constant, or may be changed according to a command value or a required settling time.
[0008]
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a block diagram of a current control system of the variable power servo amplifier according to the second embodiment of the present invention.
2, FIG. 1 and different configurations, a peak voltage power supply (HVPS) ± V P is, the step-up transformer, switch, rectifier diode, the peak voltage power supply with a booster constituted by charging capacitor, etc. (HVPS) 14, 15 , The servo controller (S.CON) is changed to a current controller (I.CON) 17, a current detector (I.DET) 16 is added, and the feedback signal x f is changed to the feedback current if and the command x * has changed to the current command i * .
The same components as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
[0009]
The block in FIG. 2 described above is a current control system for controlling the current of the inductive load (L) 11 at high speed and with high precision. This control system includes the following elements (1) to (5) for control. It is divided and configured.
(1) Power amplifier (P.AMP) 8 for linear amplification.
(2) Two power supplies, a variable voltage power supply (VVPS) 1 for supplying power of voltage ± VDD to the power amplifier (P.AMP) 8, a peak voltage power supply (HVPS) 2, and outputs of these power supplies Transistors 4, 5, 12 ', 13' for switching voltages and reverse blocking diodes 6, 7;
(3) A power supply voltage controller (V.CON) 9 that outputs control signals V cc , V cf , and V ch for these transistors.
(4) A current detector (I.DET) 16 that obtains a load current feedback signal if for performing current control.
(5) A current controller (I.CON) 17 that outputs a manipulated variable u (input of the power amplifier P.AMP) from the current command i * and the current feedback signal if.
[0010]
Next, the operation will be described.
First, the power supply voltage controller 9 outputs a command i * , u which is an output of a current controller (I. CON) 17 for performing a proportional, integral, or differential operation, that is, a PID operation, or a combination of these signals, The voltage ± VDD supplied to the amplifier (P, AMP) 8 is switched as follows.
Case 1: when the command i * or u has a sudden change, to on-peak voltage output switch transistor (T PHV, T NHV) 12' , the 13 '. That is, power is supplied from a peak voltage power supply (HVPS).
Case 2: Other than Case 1. The output voltage ± V D of the variable power supply voltage (VVPS) 1,
| U | <δ (where δ> 0 is a constant),
Or, corresponding to i * ,
When | i * | <i L (where i L is a constant current value determined by design specifications), V D = V DL (V DL is the lower limit value of the output voltage of V VPS ).
| When> i L, | i *
The output of the variable voltage power supply is roughly adjusted to V D = V DL + K | i * | (where K is a proportionality constant), and the transistors (T PHV , T NHV ) 12 ′ and 13 ′ are turned off. Further, if necessary, the transistors (T PCV , T NCV ) 4 and 5 are finely adjusted.
As described above, the current of the load L can be efficiently and quickly and precisely controlled.
[0011]
【The invention's effect】
As described above, according to the present invention, the power supply voltage supplied to the power amplifier is set to a high voltage in order to improve the response when the control system command is suddenly changed. When the control system enters a steady state or approaches a steady state, a low-voltage power supply that can be adjusted within a limited fixed range is used. As described above, there is an effect that the loss of the power amplifier can be reduced and a compact, space-saving power amplifier with high output, precision, and high-speed response can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control system of a variable power servo amplifier according to a first embodiment of the present invention.
FIG. 2 is a block diagram of a current control system of a variable power servo amplifier according to a second embodiment of the present invention.
FIG. 3 is a block diagram of a conventional power amplifier.
FIG. 4 is a block diagram of a conventional optical receiver.
[Explanation of symbols]
1 Variable voltage power supply VVPS
2, 3, 14, 15 Peak voltage power supply HVPS
4, 5 Voltage Adjusting Transistors T PD , T ND
6, 7 Reverse voltage blocking diodes D P , D N
8 Power amplifier AMP
9 Power supply voltage controller CON
10 Servo controller S. CON
11 Load L
12, 13, 12 ', 13' Peak voltage output switches T PHV , T NHV
16 Current detector I. DET
17 Current controller I. CON
if feedback current i * current command L load u manipulated variable V CC variable voltage control signal V ch peak voltage output switch signal V cf voltage fine adjustment switch control signal x * command x f feedback signal

Claims (3)

パルス幅変調あるいはリニア増幅方式による電力増幅器において、
電力増幅器へ電力を供給する、定格電圧の50%以内で電圧を調整できる可変電圧電源と定格電圧の150%以上の電圧を出力する短時間定格のピーク電源の2つの電源と、
制御系の制御指令または前記電力増幅器の入力から前記可変電圧電源の出力電圧を制御する信号と前記ピーク電圧電源の出力をオンオフする信号を創出する電源電圧制御器と、
負荷の電流あるいは電圧を検出しフィードバック制御するPID制御器とを有することを特徴とする可変電源サーボ増幅器。
In power amplifiers using pulse width modulation or linear amplification,
Two power supplies, a variable voltage power supply that supplies power to the power amplifier and can adjust the voltage within 50% of the rated voltage and a short-time rated peak power supply that outputs a voltage of 150% or more of the rated voltage;
A power supply voltage controller that creates a signal for controlling an output voltage of the variable voltage power supply and a signal for turning on and off the output of the peak voltage power supply from a control command of a control system or an input of the power amplifier,
A variable power servo amplifier comprising: a PID controller for detecting a load current or voltage and performing feedback control.
前記可変電圧電源の出力に制御用電力半導体素子を接続し、リニア動作させることにより前記可変電圧電源の電圧リップルおよび電圧のレギュレーション特性を改善することを特徴とする請求項1記載の可変電源サーボ増幅器。2. The variable power supply servo amplifier according to claim 1, wherein a control power semiconductor element is connected to an output of the variable voltage power supply, and a voltage ripple and a voltage regulation characteristic of the variable voltage power supply are improved by performing a linear operation. . 請求項1又は2のいずれか1項に記載の可変電源サーボ増幅器の電源電圧制御器により、制御指令または操作量の時間変化量が大きい時、制御量を高速応答とするため偏差が一定値より小さくなるまでピーク電圧電源から電力増幅器へ電力を供給し、前記制御指令または操作量の時間変化量が小さい、あるいは前記偏差が小さい時は、前記電力増幅器の損失および出力リップルを軽減するように前記制御指令または操作量に見合った値、すなわち電力増幅器の入力uの絶対値が、
|u|<δ(但し、δは設計仕様によって設定する定数)、
となるように前記可変電圧電源の電圧を調整して粗調し、更に、制御用電力半導体素子の制御による微調も行うことを特徴とする可変電源サーボ増幅器の電源電圧制御方法。
The power supply voltage controller of the variable power supply servo amplifier according to any one of claims 1 and 2, wherein when the time variation of the control command or the operation amount is large, the deviation is smaller than a fixed value to make the control amount a high-speed response. The power is supplied from the peak voltage power supply to the power amplifier until it becomes smaller, and the time variation of the control command or the manipulated variable is small, or when the deviation is small, the loss and the output ripple of the power amplifier are reduced. The value corresponding to the control command or the operation amount, that is, the absolute value of the input u of the power amplifier is
| U | <δ (where δ is a constant set according to design specifications),
A method of controlling a power supply voltage of a variable power supply servo amplifier, wherein the voltage of the variable voltage power supply is adjusted so as to make coarse adjustment, and fine adjustment is further performed by controlling a control power semiconductor element.
JP2003067099A 2003-03-12 2003-03-12 Variable power supply servo amplifier and power supply voltage control method Expired - Fee Related JP4277544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067099A JP4277544B2 (en) 2003-03-12 2003-03-12 Variable power supply servo amplifier and power supply voltage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067099A JP4277544B2 (en) 2003-03-12 2003-03-12 Variable power supply servo amplifier and power supply voltage control method

Publications (3)

Publication Number Publication Date
JP2004282159A true JP2004282159A (en) 2004-10-07
JP2004282159A5 JP2004282159A5 (en) 2006-03-16
JP4277544B2 JP4277544B2 (en) 2009-06-10

Family

ID=33284811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067099A Expired - Fee Related JP4277544B2 (en) 2003-03-12 2003-03-12 Variable power supply servo amplifier and power supply voltage control method

Country Status (1)

Country Link
JP (1) JP4277544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530996A (en) * 2006-03-21 2009-08-27 リーディス・テクノロジー・インコーポレーテッド Class L amplifier
US8081777B2 (en) 2006-03-21 2011-12-20 Fairchild Semiconductor Corporation Volume-based adaptive biasing
US8081785B2 (en) 2006-03-21 2011-12-20 Fairchild Semiconductor Corporation High efficiency converter providing switching amplifier bias
JP2012124865A (en) * 2010-12-10 2012-06-28 Fujitsu Telecom Networks Ltd Power amplifier circuit and charge/discharge control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009530996A (en) * 2006-03-21 2009-08-27 リーディス・テクノロジー・インコーポレーテッド Class L amplifier
US8081777B2 (en) 2006-03-21 2011-12-20 Fairchild Semiconductor Corporation Volume-based adaptive biasing
US8081785B2 (en) 2006-03-21 2011-12-20 Fairchild Semiconductor Corporation High efficiency converter providing switching amplifier bias
JP2012124865A (en) * 2010-12-10 2012-06-28 Fujitsu Telecom Networks Ltd Power amplifier circuit and charge/discharge control device

Also Published As

Publication number Publication date
JP4277544B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
KR101182932B1 (en) Dual mode buck regulator with improved transition between ldo and pwm operation
CN100514813C (en) DC-DC converter and dc-dc converter control method
US6850044B2 (en) Hybrid regulator with switching and linear sections
JP3787785B2 (en) DC-DC converter
EP0577367B1 (en) Slew rate circuit for high side driver for a polyphase DC motor
US20080218134A1 (en) Power supply apparatus
CN106716806B (en) Switched power stage and method for controlling a switched power stage
US10326362B2 (en) Switching regulator
CN102624232A (en) Precharging circuit and method for DC-DC boost converter
US11664734B2 (en) Flyback converter for controlling on time variation
CN110778437A (en) Circuit and method for soft turn-off of a coil
CN111313843A (en) Flying capacitor voltage control in an amplifier
JP6205596B2 (en) Soft start circuit and power supply device
US9377801B2 (en) Low-dropout regulator and method for regulating voltage
CN110868054A (en) Soft start device and method for DC-DC converter
JP2004282159A (en) Variable power supply servo amplifier and method for controlling power supply voltage
US20040046527A1 (en) Apparatus and method for charging and discharging a capacitor to a predetermined setpoint
US7932779B2 (en) D-class amplifier
US20120280669A1 (en) Dynamic control of frequency compensation for improved over-voltage protection in a switching regulator
JP4049332B1 (en) Charge control device
US8198879B2 (en) Booster circuit and PWM signal generator
JP2005027392A (en) High speed comparator and dc/dc converter using it
US20100066447A1 (en) Filter compensation for switching amplifiers
KR101903478B1 (en) Soft start apparatus and converter apparatus using thereof
US20050135121A1 (en) Power converter with dynamic current limiting

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Effective date: 20080702

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080718

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees