JP2004281873A - Method for manufacturing rare earth magnet - Google Patents

Method for manufacturing rare earth magnet Download PDF

Info

Publication number
JP2004281873A
JP2004281873A JP2003073677A JP2003073677A JP2004281873A JP 2004281873 A JP2004281873 A JP 2004281873A JP 2003073677 A JP2003073677 A JP 2003073677A JP 2003073677 A JP2003073677 A JP 2003073677A JP 2004281873 A JP2004281873 A JP 2004281873A
Authority
JP
Japan
Prior art keywords
rare earth
oil
wet
powder
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073677A
Other languages
Japanese (ja)
Other versions
JP2004281873A5 (en
Inventor
Shigeo Tanigawa
茂穂 谷川
Yuichi Ogawa
雄一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003073677A priority Critical patent/JP2004281873A/en
Publication of JP2004281873A publication Critical patent/JP2004281873A/en
Publication of JP2004281873A5 publication Critical patent/JP2004281873A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize micronization of R-Fe-B magnetic powder in which contamination of C or the like is reduced, to improve the high coercive force and mechanical strength and to obtain high coercive force by micronization even when the contents of inexpensive Dy and Tb are small as compared with conventional methods. <P>SOLUTION: Rare earth magnets are manufactured in process for pulverizing material powder for R-Fe-B rare earth magnets in oil by a wet method without using a pulverization medium, a process for obtaining compacts by wet molding in a magnetic field by using the oil and the pulverized magnetic powder, a process for deoiling the compacts, and a process for sintering the deoiled compacts. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、希土類永久磁石とくにR−Fe−B系希土類焼結磁石の製造方法に関する。
【0002】
【従来の技術】
希土類永久磁石は、エネルギー変換材料として幅広い産業分野において利用されている。特にR−Fe−B系永久磁石は、最大エネルギー績で30MGOe以上の磁気特性の磁石が工業的に大量に製造され、情報家電、産業用モータ、情報処理端末装置等のモータやアクチュエータ構成部材として利用されている。希土類永久磁石は、原料金属を溶解して得られたインゴットを粉砕、成形、焼結、熱処理、加工する工程により製造される。このプロセスは一般的に、粉末冶金プロセスと呼ばれている。
【0003】
R−Fe−B系焼結磁石においても、工業的な製造プロセスとして粉末冶金法が採用されている。しかし、希土類合金粉末、特にR−Fe−B系合金微粉末は酸素に対する親和力が強く大気中において極めて容易に酸化し、磁気特性の劣化を招いてしまうという問題点がある。一方R−Fe−B系永久磁石の磁気特性は、この磁石の磁気特性が単磁区微粒子理論により導かれるために、焼結体の結晶粒径を微細にすればするほど磁気性能は基本的に向上する。焼結体の結晶粒径を微細にするためには、成形前の磁粉の粒径も微細にする必要があるが、微細にすればするほど磁粉の比表面積が増大し、酸化による磁気特性の劣化を招きやすいというジレンマが存在する。したがって、従来R−Fe−B系永久磁石粉末の製造方法としては、インゴットをあらかじめ数10μmまで粗粉砕した後、酸素を500〜2000ppm含むアルゴンあるいは窒素ガスなどの弱酸化雰囲気中でジェットミル等の乾式粉砕機を用いて平均粒径3.5〜5μmに粉砕しつつ、微粉の表面を微量の酸素により酸化させ安定化させることにより、粉砕後のハンドリングを大気中で行なうという手法が一般的に行なわれていた。この場合、得られる微粉の酸素量は4,000ppm以上となり、微粉表面の希土類酸化物は非磁性介在物として焼結体中に残存し磁気特性の低下が避けられない。
【0004】
このような、問題点を解決する手段として、特開昭61−114505号公報においては、無酸素雰囲気中で粉砕した微粉をトルエンやアルコールなどの有機溶媒中で回収し、湿式成形し焼結する製造方法が提案されている。また特開昭61−114505号公報をさらに改良した発明として、特許第2731337号公報においては、溶媒として鉱物油あるいは合成油を使用し、無酸素雰囲気中でジェットミル(乾式粉砕)した微粉を上記油中に回収しスラリーとする。あるいは、上記油を溶媒として湿式粉砕しスラリーとし、このスラリーを脱油しながら磁場中で湿式成形し、成形体を真空中100〜500℃で脱油処理を行ない、焼結する製造方法も開示されている。
【0005】
しかし、これらの改良手段を用いても以下の理由により、3μm以下の微粉を用いて高い磁気特性を有する焼結磁石を得ることは出来なかった。すなわち、無酸素雰囲気中でジェットミルを行ない、微粉を油中に回収する手法においては、ジェットミルの粉砕能力では、R−Fe−B系磁石合金を、3μm以下に微粉砕することが極めて困難なため、この手法で得られる微粉の最小平均粒径は3μmが限界である。一方、ボールミルや、振動ミルにおいては粉砕時間と粉砕メディアの形状を選択することにより、粉砕粒径を3μm以下にすることは可能である。しかしながら、この場合は、粉砕中の溶媒である油とR−Fe−B磁石粉末のメカノケミカル反応により、希土類カーバイト(RC)が粉末表面に生成される。メカノケミカル反応により、形成された希土類カーバイトは熱力学的に安定であるため、湿式成形後の真空中100〜500℃の処理で還元し脱Cを行なうことが出来ないため、焼結後の磁石中に非磁性介在物として残存するため、磁気特性の低下をもたらす。このメカノケミカル反応は、粉砕時間が長くなればなるほど、また磁石粉末の粒径が小さくなればなるほど比表面積が増大し、より磁気特性の低下をもたらすという問題点があった。また、従来のボールミルや振動ミルによる湿式粉砕を行なうと、粉砕メディアからのコンタミも避けられず、このコンタミも磁気特性の低下をもたらす要因となる。
【0006】
【特許文献1】
特開昭61−114505号 (第2頁 右上欄18行目〜左下欄10行目)
【特許文献2】
特許第2731337号公報 (第3頁4欄44行目〜第4頁5欄5行目)
【0007】
【発明が解決しようとする課題】
本発明はかかる、従来技術の問題点を解消し従来困難であった、Cなどのコンタミの少ない、R−Fe−B磁石粉末の微粒化を実現し、高保磁力で、機械強度に優れるR−Fe−B焼結磁石を提供するものである。また従来回転機用の用途などでは、使用時の減磁界に十分耐えるように保磁力を高くしておく必要があり、そのためにR−Fe−B磁石のRの一部をDyやTbで置換することが一般的に行なわれてきた。DyやTbは希土類元素の中でもNdに比較し存在量が少なく、分離コストが高いため高価である。本発明の微粒化により、高保磁力が実現されるため、従来のR−Fe−B焼結磁石に比較し、DyやTb量を低減できるという、省資源面での効果もある。
【0008】
【問題を解決するための手段】
本発明においては、粉砕手段としてメディアレスの湿式粉砕を用いることを特徴とする。すなわち、あらかじめ平均粒径100μm以下に粗粉砕したR−Fe−B系磁石粉末を、鉱物油あるいは合成油中に投入し、このR−Fe−B磁石粉末を含む油をコンプレッサにより70〜200MPaに加圧し、加圧した油を2流路に分岐した後、再度合流させ対向衝突させることにより、3μm以下の微粉砕を短時間に行なうことが可能であることを見出した。本発明による高圧対向衝突粉砕によると、従来のボールミルや振動ミルによる湿式粉砕と比較し短時間での粉砕が可能であり、メカノケミカル反応による希土類カーバイトの生成を防止できるばかりでなく、鋼球ボールやセラミックスボールなどの粉砕メディアを使用しないため、メディアからのコンタミがない。そのため焼結磁石の非磁性介在物を最小限に低減することが可能である。
【0009】
本発明で粉砕粒径を3μm以下と規定した理由は、3μm以上の粉砕は従来の特許2731337号に開示されているように、乾式ジェットミル粉砕と湿式成形により、非磁性介在物の比較的少ない焼結磁石がえられるため、本発明による効果が小さいためである。本発明の対向衝突粉砕により得られた、R−Fe−B磁石合金を含むスラリーは、脱油しながら磁場中で湿式成形することにより成形体とし、100〜700℃の温度域で脱油後、真空中1000〜1200℃で焼結し、ほぼ真密度に近い焼結磁石が得られる。脱油雰囲気は、真空中でも水素中でも良いが、焼結体中の残留Cをより少なくするためには、水素雰囲気がより好ましい。また脱油は100〜700℃の温度域を5℃/min以下の昇温速度で加熱することにより可能であるが、場合によっては昇温過程の特定温度で定温保持することは、残留C低減に有効である。定温保持する温度は、使用する鉱物油あるいは合成油の沸点直上が好ましい。この様にして得られた、燒結磁石が従来磁石に比較し高保磁力あるいは,同一保磁力で比較すると高Brで低Dy(Tb)省資源効果が大きい。また本発明による焼結磁石は、組織がち密で機械強度に優れるという付随的効果もあり高速回転機用磁石として適する。
【0010】
本発明に用いる合金粉末について記載する。単に%と記してあるのは質量%を意味するものとする。
本発明に用いる合金粉末はRFe14B系金属間化合物(RはYを含む希土類元素の少なくとも1種であり、TはFe又はFe及びCoである)を主相とするものであり、主要成分のR、T及びBの総計を100%として、R:25.0〜32.5%、B:0.5〜2%、残部Feからなる組成が選択される。
Rとして(Nd、Dy)、(Pr、Dy)、又は(Nd、Pr、Dy)の組合せが実用性が高い。又R量は25〜32.5%が好ましく、さらには27.0〜31.0%が好ましい。Dyの一部をTbで置換しても良い。B量は0.5〜2%が好ましく、0.8〜1.2%がより好ましい。B量が0.5%未満では実用に耐えるiHcを得られず、2%超ではBr、(BH)maxが大きく低下する。Bの一部がCで置換可能な事は公知であり、本発明にも適用可能である。
表面磁束密度や耐食性を向上するために、Nb、Al、Co、Ga及びCuの群から選択される少なくとも1種の元素を適量含有することが好ましい。
Nbの含有量は0.1〜2%が好ましい。Nbの含有により焼結過程でNbのほう化物が生成し、結晶粒の異常粒成長が抑制できる。Nb含有量が0.1%未満では添加効果が認められず、2%超ではNbのほう化物の生成量が多くなりBrの低下が顕著になる。
Alの含有量は0.02〜2%が好ましい。Al含有量が0.02%未満ではHcjや耐食性の向上効果を得られず、2%超ではBr、(BH)maxが顕著に低下する。
Co含有量は0.3〜5%が好ましい。Co含有量が0.3%未満ではキュリー点や耐食性を向上する効果が得られず、5%超ではBr、Hcjが共に大きく低下する。
Ga含有量は0.01〜0.5%が好ましい。Ga含有量が0.01%未満ではHcjの向上効果を得られず、0.5%超ではBr、(BH)maxの低下が顕著になる。
Cu含有量は0.01〜1%が好ましい。Cu含有量が0.01%未満では耐食性やHcjを向上する効果を得られず、1%超ではBrの低下が顕著になる。
Cu及びCoが前記特定量範囲で共に含有されるとき、第2次熱処理の許容温度幅が広がる効果を得られ好ましい。
【0011】
以下本発明の効果を実施例により説明する。
本発明に用いたメディアレスの湿式粉砕装置の要部を図1に示す。湿式粉砕装置10は垂直方向に備えられた主管1と、その主管1の下部に備えられた衝突室が備えられている。また、この衝突室の側面には流入口3aおよび3bが対向して設けられ、その流入口を介して衝突室の側部には流入管8aおよび8bが備えられている。図示はしないがこの主管1の上方と流入管は循環可能なように連結されており、その途中にはこの循環機関内の被粉砕物および循環流体に高圧をかけるための駆動手段が備えられている。
まず、駆動手段により流入管8aおよび8b内の被粉砕物および循環流体が流入口3aおよび3bを介して衝突室に高圧で射出される。図中4aおよび4bの矢印はその流れ方向である。被粉砕物である磁粉6が高速で対向する流入口から入り、衝突室2内でぶつかり合い、その衝撃により磁粉が粉砕されて微粉砕粉7となる。衝突室内に注入された被粉砕物および循環流体は主管1を通って上方に運ばれ、上方で二つに分流されて再度流入管8a,bに流れこみ、磁粉が所望の寸法になるまでこのサイクルが繰り返される。
【0012】
(実施例1)
質量%でNd31%−Febal−B0.95%−Al0.3%(不可避不純物含む)からなる、インゴットを溶製した。本インゴットを図2の湿式粉砕装置にて平均粒径45μmに粗粉砕した。この粗粉を表1に示す3つの条件で微粉砕した。得られた微粉の平均粒径、酸素量、炭素量を表2に示す。
【0013】
【表1】

Figure 2004281873
【0014】
【表2】
Figure 2004281873
【0015】
表1の微粉を含むスラリーを1Tの磁界を印加し、湿式成形し20×20×10mmの成形体を成形した。この成形体を、100〜700℃の温度まで水素を5L/minで流しながら3℃/minにて昇温し脱油を行なった。その後700℃で炉内を真空にし、50℃/minで1060℃まで昇温し、1060℃で2時間定温保持し、室温まで冷却した。得られた焼結体を650℃で2時間Ar雰囲気中で熱処理し、100℃以下に急冷したのち、磁気特性を測定した。結果を表3に示す。
【0016】
【表3】
Figure 2004281873
【0017】
(実施例2)
質量%でNd27%‐Dy5%−Febal−Co1%−B1.0%−Al0.2%(不可避不純物含む)からなるインゴットを溶製し、インゴットを平均粒径45μmに粗粉砕後、図2に記載の湿式粉砕装置により平均粒径2.2μmの微粉を得た、粉砕時の粗粉を含む鉱物油の吐出圧力を100MPとした。
得られた、微粉を実施例1と同様に湿式磁場中成形し、20×20×10mmの成形体を得た。この成形体を表4に示す条件で脱油および焼結を行ない、実施例1と同様の条件で熱処理した。熱処理後の、磁気特性と不純物酸素量,炭素量を表5に示す。
【0018】
【表4】
Figure 2004281873
【0019】
【表5】
Figure 2004281873
【0020】
(実施例3)
質量比で、Nd(31−X)%−DyX%−Febal−B0.95%−Al0.1%(不可避不純物含む)からなるインゴットを溶製し、実施例2と同様の方法で、湿式粉砕し平均粒径で2.1〜2.7μmの微粉を得た。この微分を湿式成形し20×20×10mmの成形体を成形した。この成形体を100〜700℃の温度まで水素を5L/minで流しながら3℃/minにて昇温し脱油を行なった。その後700℃で炉内を真空にし、50℃/minで1060℃まで昇温し、1060℃で2時間定温保持し、室温まで冷却した。得られた焼結体を620℃で2時間熱処理し100℃以下に急冷した。熱処理後の磁気特性と、焼結体中の不純物酸素量と炭素量を表6に示す。
また、比較として前記のインゴットを比較例2に記載したボールミルにより24時間湿式粉砕した。それ以外は実施例3と同様の方法で焼結体を製造した。実施例3およびこの比較例のDy量と保磁力の関係を図1に示す。
【0021】
【表6】
Figure 2004281873
【0022】
【発明の効果】
本発明にしたがって、希土類磁石の粉末をメディアレス高圧湿式粉砕で3μm以下微粉末を出発原料として、脱油焼結行なうことにより従来より高保磁力あるいは、従来材と同一保磁力においては低Dy,低Tbの焼結磁石が得られる。
また本発明による焼結磁石は焼結体組織が微細で機械強度にも優れるという効果もある。
【図面の簡単な説明】
【図1】本発明と比較例でのDy量と保磁力の関係を示す図である。
【図2】本発明に用いた湿式粉砕装置の要部断面図である。
【符号の説明】
1 主管、2 衝突室、3 流入口、6 磁石粗粉、7 磁石微粉、
8 流入管、10 湿式粉砕装置(要部)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a rare earth permanent magnet, particularly an R—Fe—B based rare earth sintered magnet.
[0002]
[Prior art]
Rare earth permanent magnets are used in a wide range of industrial fields as energy conversion materials. In particular, R-Fe-B permanent magnets are manufactured in large quantities industrially with magnets having a magnetic characteristic of 30 MGOe or more in maximum energy performance, and are used as motor and actuator components for information home appliances, industrial motors, information processing terminal devices, and the like. It's being used. The rare-earth permanent magnet is manufactured by a process of pulverizing, forming, sintering, heat-treating, and processing an ingot obtained by melting a raw metal. This process is commonly called a powder metallurgy process.
[0003]
Powder metallurgy is also used as an industrial manufacturing process for R-Fe-B based sintered magnets. However, rare earth alloy powders, particularly R-Fe-B based alloy fine powders have a problem that they have a strong affinity for oxygen and are very easily oxidized in the air, leading to deterioration of magnetic properties. On the other hand, the magnetic properties of the R—Fe—B permanent magnet are basically based on the single domain fine particle theory. improves. In order to reduce the crystal grain size of the sintered body, it is necessary to reduce the particle size of the magnetic powder before molding. However, the finer the particle size, the larger the specific surface area of the magnetic powder, and the better the magnetic properties due to oxidation. There is a dilemma that degradation is likely to occur. Therefore, conventionally, as a method for producing an R-Fe-B-based permanent magnet powder, an ingot is coarsely pulverized to several tens of μm in advance, and then a jet mill or the like is used in a weakly oxidizing atmosphere such as argon or nitrogen gas containing 500 to 2000 ppm of oxygen. In general, a method is used in which the surface of the fine powder is oxidized and stabilized with a small amount of oxygen while being pulverized to an average particle size of 3.5 to 5 μm using a dry pulverizer, and handling after pulverization is performed in the atmosphere. Was being done. In this case, the oxygen content of the obtained fine powder becomes 4,000 ppm or more, and the rare earth oxide on the surface of the fine powder remains in the sintered body as a nonmagnetic inclusion, and a decrease in magnetic properties is inevitable.
[0004]
As means for solving such a problem, Japanese Patent Application Laid-Open No. 61-114505 discloses a method in which fine powder pulverized in an oxygen-free atmosphere is recovered in an organic solvent such as toluene or alcohol, and wet-molded and sintered. Manufacturing methods have been proposed. As a further improved invention of Japanese Patent Application Laid-Open No. 61-114505, Japanese Patent No. 2731337 discloses a method of using a mineral oil or a synthetic oil as a solvent and jet milling (dry grinding) in an oxygen-free atmosphere the fine powder described above. Collect in oil to make slurry. Alternatively, a production method is disclosed in which a slurry is formed by wet grinding using the above oil as a solvent, and the slurry is wet-molded in a magnetic field while deoiling, and the molded body is subjected to a deoiling treatment at 100 to 500 ° C. in a vacuum and sintered. Have been.
[0005]
However, even with these improvement means, it was not possible to obtain a sintered magnet having high magnetic properties using fine powder of 3 μm or less for the following reasons. That is, in the method of performing a jet mill in an oxygen-free atmosphere and collecting fine powder in oil, it is extremely difficult to finely pulverize the R-Fe-B-based magnetic alloy to 3 μm or less with the pulverizing ability of the jet mill. Therefore, the minimum average particle size of the fine powder obtained by this method is limited to 3 μm. On the other hand, in a ball mill or a vibration mill, the pulverized particle size can be reduced to 3 μm or less by selecting the pulverization time and the shape of the pulverization medium. However, in this case, a rare-earth carbide (RC 2 ) is generated on the powder surface by a mechanochemical reaction between the oil as the solvent during the pulverization and the R-Fe-B magnet powder. Since the rare earth carbide formed by the mechanochemical reaction is thermodynamically stable, it cannot be reduced and de-C-treated by a treatment at 100 to 500 ° C. in a vacuum after wet molding. Since it remains as a non-magnetic inclusion in the magnet, the magnetic properties are degraded. This mechanochemical reaction has a problem that the longer the grinding time and the smaller the particle size of the magnet powder, the larger the specific surface area, and the more the magnetic properties are reduced. In addition, when wet grinding is performed using a conventional ball mill or vibration mill, contamination from the grinding media is inevitable, and this contamination also causes a reduction in magnetic characteristics.
[0006]
[Patent Document 1]
JP 61-114505 A (page 2, upper right column, line 18 to lower left column, line 10)
[Patent Document 2]
Japanese Patent No. 2731337 (page 3, column 4, line 44 to page 4, column 5, line 5)
[0007]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art and realizes the atomization of R-Fe-B magnet powder with little contamination such as C, which has been difficult in the past, and achieves a high coercive force and excellent mechanical strength. An object is to provide an Fe-B sintered magnet. Also, in applications such as conventional rotating machines, it is necessary to increase the coercive force so as to sufficiently withstand the demagnetizing field during use. Therefore, a part of R of the R-Fe-B magnet is replaced with Dy or Tb. Has been commonly done. Among rare earth elements, Dy and Tb are less expensive than Nd and are expensive because of high separation cost. Since a high coercive force is realized by the atomization of the present invention, the amount of Dy and Tb can be reduced as compared with the conventional R-Fe-B sintered magnet, and there is also an effect on resource saving.
[0008]
[Means to solve the problem]
The present invention is characterized in that medialess wet pulverization is used as pulverization means. That is, an R-Fe-B magnet powder coarsely pulverized in advance to an average particle diameter of 100 μm or less is put into a mineral oil or a synthetic oil, and the oil containing the R-Fe-B magnet powder is reduced to 70 to 200 MPa by a compressor. It has been found that, after pressurized and pressurized oil is branched into two flow paths, they are joined again and collided against each other, so that the fine pulverization of 3 μm or less can be performed in a short time. According to the high-pressure counter-impact grinding according to the present invention, grinding can be performed in a shorter time than conventional wet grinding using a ball mill or a vibration mill, and not only can rare metal carbide be prevented from being generated by a mechanochemical reaction, but also steel balls can be prevented. Since no grinding media such as balls and ceramic balls are used, there is no contamination from the media. Therefore, it is possible to minimize non-magnetic inclusions in the sintered magnet.
[0009]
The reason that the pulverized particle size is specified to be 3 μm or less in the present invention is that the pulverization of 3 μm or more is relatively small in non-magnetic inclusions by dry jet mill pulverization and wet molding, as disclosed in the conventional Patent No. 2731337. This is because the effect of the present invention is small because a sintered magnet is obtained. The slurry containing the R-Fe-B magnet alloy obtained by the opposed collision pulverization of the present invention is formed into a compact by wet molding in a magnetic field while deoiling, and after deoiling in a temperature range of 100 to 700 ° C. Sintered at 1000 to 1200 ° C. in a vacuum to obtain a sintered magnet having almost a true density. The deoiling atmosphere may be a vacuum or hydrogen, but a hydrogen atmosphere is more preferable in order to further reduce residual C in the sintered body. Deoiling can be performed by heating a temperature range of 100 to 700 ° C. at a temperature rising rate of 5 ° C./min or less, but in some cases, maintaining a constant temperature at a specific temperature in the temperature rising process reduces residual C. It is effective for The temperature for maintaining the constant temperature is preferably just above the boiling point of the mineral oil or synthetic oil used. The sintered magnet thus obtained has a high Br and a low Dy (Tb) resource saving effect when compared with a conventional magnet with a higher coercive force or with the same coercive force. Further, the sintered magnet according to the present invention has an ancillary effect of having a dense structure and excellent mechanical strength, and is suitable as a magnet for a high-speed rotating machine.
[0010]
The alloy powder used in the present invention will be described. The expression “%” simply means “% by mass”.
The alloy powder used in the present invention has a main phase of R 2 Fe 14 B-based intermetallic compound (R is at least one kind of rare earth element including Y, and T is Fe or Fe and Co), Assuming that the total of R, T and B of the main components is 100%, a composition comprising R: 25.0 to 32.5%, B: 0.5 to 2%, and the balance Fe is selected.
A combination of (Nd, Dy), (Pr, Dy), or (Nd, Pr, Dy) as R has high practicality. Further, the R amount is preferably from 25 to 32.5%, more preferably from 27.0 to 31.0%. Part of Dy may be replaced with Tb. B content is preferably 0.5 to 2%, more preferably 0.8 to 1.2%. If the amount of B is less than 0.5%, iHc that can withstand practical use cannot be obtained. If the amount of B exceeds 2%, Br and (BH) max are greatly reduced. It is known that a part of B can be replaced by C, and is applicable to the present invention.
In order to improve the surface magnetic flux density and corrosion resistance, it is preferable to contain an appropriate amount of at least one element selected from the group consisting of Nb, Al, Co, Ga and Cu.
The content of Nb is preferably 0.1 to 2%. By containing Nb, a boride of Nb is generated during the sintering process, and abnormal grain growth of crystal grains can be suppressed. When the Nb content is less than 0.1%, the effect of addition is not observed. When the Nb content is more than 2%, the amount of Nb boride generated increases and the reduction of Br becomes remarkable.
The content of Al is preferably 0.02 to 2%. If the Al content is less than 0.02%, the effect of improving Hcj and corrosion resistance cannot be obtained, and if it exceeds 2%, Br and (BH) max are significantly reduced.
The Co content is preferably from 0.3 to 5%. If the Co content is less than 0.3%, the effect of improving the Curie point and corrosion resistance cannot be obtained, and if it exceeds 5%, both Br and Hcj are greatly reduced.
The Ga content is preferably 0.01 to 0.5%. If the Ga content is less than 0.01%, the effect of improving Hcj cannot be obtained, and if it exceeds 0.5%, the reduction of Br and (BH) max becomes remarkable.
The Cu content is preferably 0.01 to 1%. If the Cu content is less than 0.01%, the effect of improving the corrosion resistance and Hcj cannot be obtained, and if it exceeds 1%, the reduction of Br becomes remarkable.
When both Cu and Co are contained in the specific amount range, the effect that the allowable temperature range of the second heat treatment is expanded is preferably obtained.
[0011]
Hereinafter, the effects of the present invention will be described with reference to examples.
FIG. 1 shows a main part of a media-less wet pulverizer used in the present invention. The wet crushing apparatus 10 includes a main pipe 1 provided in a vertical direction and a collision chamber provided below the main pipe 1. Inflow ports 3a and 3b are provided opposite to the side surface of the collision chamber, and inflow pipes 8a and 8b are provided on the sides of the collision chamber via the flow ports. Although not shown, the upper part of the main pipe 1 and the inflow pipe are connected so as to be able to circulate, and a driving means for applying high pressure to the material to be pulverized and the circulating fluid in the circulating engine is provided in the middle thereof. I have.
First, the objects to be ground and the circulating fluid in the inflow pipes 8a and 8b are injected at high pressure into the collision chamber through the inflow ports 3a and 3b by the driving means. Arrows 4a and 4b in the figure indicate the flow direction. The magnetic powder 6 to be pulverized enters from the inflow port facing at high speed and collides in the collision chamber 2, and the magnetic powder is pulverized by the impact to become the finely pulverized powder 7. The material to be ground and the circulating fluid injected into the collision chamber are conveyed upward through the main pipe 1, are divided into two parts at the upper part, and flow again into the inflow pipes 8a and 8b, until the magnetic particles have a desired size. The cycle repeats.
[0012]
(Example 1)
An ingot consisting of 31% by mass of Nd 31% -Febal-B 0.95% -Al 0.3% (including unavoidable impurities) was melted. This ingot was coarsely pulverized to a mean particle size of 45 μm by the wet pulverizer of FIG. This coarse powder was pulverized under the three conditions shown in Table 1. Table 2 shows the average particle size, oxygen content, and carbon content of the obtained fine powder.
[0013]
[Table 1]
Figure 2004281873
[0014]
[Table 2]
Figure 2004281873
[0015]
A slurry containing the fine powder of Table 1 was applied with a magnetic field of 1 T and wet-molded to form a molded body of 20 × 20 × 10 mm. The molded body was deoiled by heating at a rate of 3 ° C./min while flowing hydrogen at a rate of 5 L / min to a temperature of 100 to 700 ° C. Thereafter, the inside of the furnace was evacuated at 700 ° C., the temperature was raised to 1060 ° C. at 50 ° C./min, kept at a constant temperature of 1060 ° C. for 2 hours, and cooled to room temperature. The obtained sintered body was heat-treated at 650 ° C. for 2 hours in an Ar atmosphere, rapidly cooled to 100 ° C. or lower, and then its magnetic properties were measured. Table 3 shows the results.
[0016]
[Table 3]
Figure 2004281873
[0017]
(Example 2)
An ingot composed of 27% by mass of Nd 27% -Dy 5% -Febal-Co 1% -B 1.0% -Al 0.2% (including unavoidable impurities) was melted, and the ingot was coarsely pulverized to an average particle size of 45 μm. Fine powder having an average particle size of 2.2 μm was obtained by the wet grinding apparatus described above, and the discharge pressure of mineral oil containing coarse powder during grinding was 100 MPa.
The obtained fine powder was molded in a wet magnetic field in the same manner as in Example 1 to obtain a molded body of 20 × 20 × 10 mm. This compact was subjected to deoiling and sintering under the conditions shown in Table 4, and was heat-treated under the same conditions as in Example 1. Table 5 shows the magnetic properties and the amounts of impurity oxygen and carbon after the heat treatment.
[0018]
[Table 4]
Figure 2004281873
[0019]
[Table 5]
Figure 2004281873
[0020]
(Example 3)
A mass ratio, Nd (31-X)% - DyX% -Fe bal -B0.95% -Al0.1% was melted ingots consisting of (unavoidable including impurities), in the same manner as in Example 2, wet It was pulverized to obtain a fine powder having an average particle size of 2.1 to 2.7 μm. This derivative was subjected to wet molding to form a molded body of 20 × 20 × 10 mm. The molded body was deoiled by heating at a rate of 3 ° C./min while flowing hydrogen at a rate of 5 L / min to a temperature of 100 to 700 ° C. Thereafter, the inside of the furnace was evacuated at 700 ° C., the temperature was raised to 1060 ° C. at 50 ° C./min, kept at a constant temperature of 1060 ° C. for 2 hours, and cooled to room temperature. The obtained sintered body was heat-treated at 620 ° C. for 2 hours and rapidly cooled to 100 ° C. or less. Table 6 shows the magnetic properties after the heat treatment and the amounts of impurity oxygen and carbon in the sintered body.
For comparison, the above-mentioned ingot was wet-pulverized by a ball mill described in Comparative Example 2 for 24 hours. Otherwise, a sintered body was manufactured in the same manner as in Example 3. FIG. 1 shows the relationship between the Dy amount and the coercive force of Example 3 and this comparative example.
[0021]
[Table 6]
Figure 2004281873
[0022]
【The invention's effect】
According to the present invention, the rare earth magnet powder is subjected to deoiling and sintering using a fine powder having a particle size of 3 μm or less as a starting material by medialess high-pressure wet pulverization. A sintered magnet of Tb is obtained.
Further, the sintered magnet according to the present invention has an effect that the sintered body structure is fine and the mechanical strength is excellent.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a Dy amount and a coercive force in the present invention and a comparative example.
FIG. 2 is a sectional view of a main part of a wet pulverizer used in the present invention.
[Explanation of symbols]
1 main pipe, 2 collision chambers, 3 inlets, 6 magnet coarse powder, 7 magnet fine powder,
8 Inflow pipe, 10 wet crusher (main part)

Claims (5)

R−Fe−B系希土類磁石用の原料粉末を油中で粉砕メディアを使用せずに湿式粉砕する工程と、前記油と粉砕した磁粉を用いて磁界中で湿式成形による成形体を得る工程と、前記成形体を脱油する工程と、脱油した成形体を焼結する工程と、を有することを特徴とする希土類磁石の製造方法。A step of wet-pulverizing the raw material powder for the R-Fe-B-based rare earth magnet in oil without using a pulverizing medium; and a step of obtaining a compact by wet molding in a magnetic field using the oil and the pulverized magnetic powder. And a step of deoiling the compact and sintering the deoiled compact. 前記湿式粉砕は原料粉末を3μm以下にするものであることを特徴とする請求項1に記載の希土類磁石の製造方法。The method for producing a rare earth magnet according to claim 1, wherein the wet pulverization is to reduce the raw material powder to 3 µm or less. 前記湿式粉砕は原料粉末を含む油を70〜200MPaに加圧し、この加圧した油を複数流路に分岐した後に再度合流させ、油中の原料粉末を対向衝突させるものであることを特徴とする請求項1に記載の希土類磁石の製造方法。The wet pulverization is characterized in that the oil containing the raw material powder is pressurized to 70 to 200 MPa, the pressurized oil is branched again into a plurality of flow paths and then joined again, and the raw material powder in the oil is subjected to opposing collision. The method for producing a rare earth magnet according to claim 1. 前記の脱油する工程は、水素中雰囲気中で100〜700℃の温度域を5℃/min 以下の昇温速度で成形体を加熱するものであることを特徴とする請求項1〜3のいずれかに記載の希土類磁石の製造方法。4. The method according to claim 1, wherein the deoiling step is to heat the molded body in a hydrogen atmosphere at a temperature range of 100 to 700 [deg.] C. at a rate of 5 [deg.] C./min or less. A method for producing a rare earth magnet according to any one of the above. 前記成形体を、水素中で100〜700℃の温度で1時間以上保持することを特徴とする請求項1〜4のいずれかに記載の希土類永久磁石の製造方法。The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein the compact is held at a temperature of 100 to 700 ° C in hydrogen for 1 hour or more.
JP2003073677A 2003-03-18 2003-03-18 Method for manufacturing rare earth magnet Pending JP2004281873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073677A JP2004281873A (en) 2003-03-18 2003-03-18 Method for manufacturing rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073677A JP2004281873A (en) 2003-03-18 2003-03-18 Method for manufacturing rare earth magnet

Publications (2)

Publication Number Publication Date
JP2004281873A true JP2004281873A (en) 2004-10-07
JP2004281873A5 JP2004281873A5 (en) 2006-04-06

Family

ID=33289515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073677A Pending JP2004281873A (en) 2003-03-18 2003-03-18 Method for manufacturing rare earth magnet

Country Status (1)

Country Link
JP (1) JP2004281873A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274571A1 (en) * 2008-05-04 2009-11-05 Byd Company Limited Nd-Fe-B Permanent Magnetic Material
US20110012700A1 (en) * 2008-03-18 2011-01-20 Ntto Denko Corporation Permanent magnet and method for manufacturing the same
US20110018664A1 (en) * 2008-03-18 2011-01-27 Nitto Denko Corporation Permanent magnet and method for manufacturing the same
US20110043311A1 (en) * 2008-04-15 2011-02-24 Nitto Denko Corporation Permanent magnet and process for producing permanent magnet
WO2011125593A1 (en) * 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
JP2011228667A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and method of manufacturing permanent magnet
US20120091844A1 (en) * 2009-03-31 2012-04-19 Showa Denko K.K. Alloy material for r-t-b type rare earth permanent magnet, method for producing r-t-b type rare earth permanent magnet, and motor
US20120182109A1 (en) * 2010-03-31 2012-07-19 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
WO2013047470A1 (en) * 2011-09-30 2013-04-04 日東電工株式会社 Permanent magnet and production method for permanent magnet
US20130154424A1 (en) * 2010-09-03 2013-06-20 Showa Denko K.K. Alloy material for r-t-b-based rare earth permanent magnet, method for producing r-t-b-based rare earth permanent magnet, and motor
WO2013137134A1 (en) * 2012-03-12 2013-09-19 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
US20140301885A1 (en) * 2011-09-30 2014-10-09 Nitto Denko Corporation Permanent magnet and method for manufacturing permanent magnet
US20160023276A1 (en) * 2010-03-31 2016-01-28 Hitachi Metals, Ltd. Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
EP2869319A4 (en) * 2012-06-29 2016-04-06 Hitachi Metals Ltd Method for producing rare earth sintered magnets

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012700A1 (en) * 2008-03-18 2011-01-20 Ntto Denko Corporation Permanent magnet and method for manufacturing the same
US20110018664A1 (en) * 2008-03-18 2011-01-27 Nitto Denko Corporation Permanent magnet and method for manufacturing the same
US9275778B2 (en) * 2008-03-18 2016-03-01 Nitto Denko Corporation Permanent magnet and method for manufacturing the same
US20110043311A1 (en) * 2008-04-15 2011-02-24 Nitto Denko Corporation Permanent magnet and process for producing permanent magnet
CN102007548A (en) * 2008-04-15 2011-04-06 日东电工株式会社 Permanent magnet and process for producing permanent magnet
KR101479373B1 (en) * 2008-04-15 2015-01-05 닛토덴코 가부시키가이샤 Permanent magnet and process for producing permanent magnet
US20090274571A1 (en) * 2008-05-04 2009-11-05 Byd Company Limited Nd-Fe-B Permanent Magnetic Material
US20120091844A1 (en) * 2009-03-31 2012-04-19 Showa Denko K.K. Alloy material for r-t-b type rare earth permanent magnet, method for producing r-t-b type rare earth permanent magnet, and motor
US9039920B2 (en) 2010-03-31 2015-05-26 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
JP2011228662A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and manufacturing method of the same
CN102549686A (en) * 2010-03-31 2012-07-04 日东电工株式会社 Permanent magnet and manufacturing method for permanent magnet
US20120182109A1 (en) * 2010-03-31 2012-07-19 Nitto Denko Corporation Permanent magnet and manufacturing method thereof
US10807167B2 (en) * 2010-03-31 2020-10-20 Hitachi Metals, Ltd. Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
WO2011125593A1 (en) * 2010-03-31 2011-10-13 日東電工株式会社 Permanent magnet and manufacturing method for permanent magnet
JP2012124496A (en) * 2010-03-31 2012-06-28 Nitto Denko Corp Permanent magnet and method for manufacturing permanent magnet
US20160023276A1 (en) * 2010-03-31 2016-01-28 Hitachi Metals, Ltd. Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
JP2011228667A (en) * 2010-03-31 2011-11-10 Nitto Denko Corp Permanent magnet and method of manufacturing permanent magnet
US20130154424A1 (en) * 2010-09-03 2013-06-20 Showa Denko K.K. Alloy material for r-t-b-based rare earth permanent magnet, method for producing r-t-b-based rare earth permanent magnet, and motor
US20140301885A1 (en) * 2011-09-30 2014-10-09 Nitto Denko Corporation Permanent magnet and method for manufacturing permanent magnet
EP2763145A4 (en) * 2011-09-30 2015-05-06 Nitto Denko Corp Permanent magnet and production method for permanent magnet
CN103843082A (en) * 2011-09-30 2014-06-04 日东电工株式会社 Permanent magnet and production method for permanent magnet
JP2013080740A (en) * 2011-09-30 2013-05-02 Nitto Denko Corp Permanent magnet and method of manufacturing permanent magnet
WO2013047470A1 (en) * 2011-09-30 2013-04-04 日東電工株式会社 Permanent magnet and production method for permanent magnet
CN103959412A (en) * 2012-03-12 2014-07-30 日东电工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
WO2013137134A1 (en) * 2012-03-12 2013-09-19 日東電工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet
TWI578343B (en) * 2012-03-12 2017-04-11 日東電工股份有限公司 Manufacture method of rare earth permanent magnet and rare earth permanent magnet
US10770207B2 (en) 2012-03-12 2020-09-08 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
EP2869319A4 (en) * 2012-06-29 2016-04-06 Hitachi Metals Ltd Method for producing rare earth sintered magnets
US10020113B2 (en) 2012-06-29 2018-07-10 Hitachi Metals, Ltd. Method for producing rare earth sintered magnet

Similar Documents

Publication Publication Date Title
JP6419869B2 (en) Cerium-containing neodymium iron boron magnet and method for producing the same
JP5767788B2 (en) R-T-B rare earth permanent magnet, motor, automobile, generator, wind power generator
EP2388350B1 (en) Method for producing r-t-b sintered magnet
JP3891307B2 (en) Nd-Fe-B rare earth permanent sintered magnet material
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP6334754B2 (en) Neodymium iron boron permanent magnet having nitride phase and manufacturing method thereof
JP2021533557A (en) Ce-containing sintered rare earth permanent magnet with high durability and high coercive force, and its preparation method
US6984271B2 (en) Rare earth magnet, process for producing same, and motor using rare earth magnet
CN103839652A (en) Permanent magnet, and motor and power generator using the same
JP2011021269A (en) Alloy material for r-t-b-based rare-earth permanent magnet, method for manufacturing r-t-b-based rare-earth permanent magnet, and motor
JP2010045068A (en) Permanent magnet and method of manufacturing the same
JP2004281873A (en) Method for manufacturing rare earth magnet
JPH0216368B2 (en)
JP2009302262A (en) Permanent magnet and production process of the same
JP3724513B2 (en) Method for manufacturing permanent magnet
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP6691666B2 (en) Method for manufacturing RTB magnet
WO2012029527A1 (en) Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor
Kuhrt Processing of permanent magnet materials based on rare earth-transition metal intermetallics
JP6691667B2 (en) Method for manufacturing RTB magnet
KR102045402B1 (en) Manufacturing method of rare earth sintered magnet
JP4438371B2 (en) NdFeB-based anisotropic exchange spring magnet and manufacturing method thereof
WO2018181580A1 (en) Permanent magnet and rotating machine
JP3941418B2 (en) Alloy for anisotropic exchange spring magnet and method for producing anisotropic exchange spring magnet

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A621 Written request for application examination

Effective date: 20060203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090109