JP2004281504A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2004281504A
JP2004281504A JP2003067742A JP2003067742A JP2004281504A JP 2004281504 A JP2004281504 A JP 2004281504A JP 2003067742 A JP2003067742 A JP 2003067742A JP 2003067742 A JP2003067742 A JP 2003067742A JP 2004281504 A JP2004281504 A JP 2004281504A
Authority
JP
Japan
Prior art keywords
region
film
semiconductor substrate
silicon
element region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003067742A
Other languages
Japanese (ja)
Inventor
Toshihiko Higuchi
俊彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003067742A priority Critical patent/JP2004281504A/en
Publication of JP2004281504A publication Critical patent/JP2004281504A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable semiconductor device capable of preventing the occurrence of a phenomenon (hump characteristics) in which a difference is generated in sub-threshold characteristics by removing a parasitic transistor caused by shapes of a border between an STI and a element region, accompanied by micro-processing and to provide a manufacturing method thereof. <P>SOLUTION: An STI 12 which is an element insulation region by trench isolation is formed on a silicon semiconductor substrate 11. For example, a silicon oxide film is embedded in the STI 12. A gate insulating film extending to an element region 13 surrounded by the STI 12, e.g. a gate oxide film 14, and a gate electrode 15 containing polycrystalline silicon are provided on the substrate 11. In this gate oxide film 14, a portion near the border of the STI 12 and the element region 13 is surely thicker than the element region 13 on the substrate 11. The thicker portion is caused by selectively embedding the polycrystalline silicon film on the difference near the border and being thermally oxidized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路を構成する際の素子間分離技術に係り、特に微細化が要求される半導体集積回路における、STI(Shallow Trench Isolation)を有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
半導体集積回路の高集積化を進めていく上で、半導体基板上に形成した素子どうしを互いに分離する方法は、LOCOS分離法(選択酸化分離)からトレンチ・アイソレーション(溝素子分離)に移行してきている。トレンチ・アイソレーションにおいて、微細MOS素子に対応可能な溝の浅い素子分離形態は、STI(Shallow Trench Isolation)とも呼称され、素子形成領域以外の半導体基板に溝(トレンチ)を形成し、溝内部を絶縁物、特に酸化シリコン膜などで充填し、素子間分離を実現する。LOCOS分離法に比べれば基板中に深く分離距離を稼げる。このため、分離幅を著しく縮小することが可能である。
【0003】
図3(a),(b)は、それぞれ従来のSTIを有する半導体装置の製造方法を工程順に示す断面図である。
図3(a)に示すように、シリコン半導体基板31に図示しない酸化膜及びシリコン窒化膜を形成し、フォトリソグラフィ工程を経て素子領域にマスクをする。その後、異方性エッチングを経て素子分離領域に所定深さのトレンチ32をエッチング形成する。次に、素子領域端及びトレンチ底部を丸める酸化工程を経てからCVD(化学気相成長)法によってトレンチ32を埋めるに足りる酸化膜33を形成する。その後、CMP(化学的機械的研磨)技術を利用して上記シリコン窒化膜マスク(図示せず)が露出するまで酸化膜33を平坦化除去する。薬液(熱リン酸等)によるシリコン窒化膜マスクの除去後、薬液洗浄(フッ酸系洗浄)を経て、例えばウェット酸化によってプレ酸化膜34を形成する。このプレ酸化膜34形成後にフォトリソグラフィ工程で所定のマスクを形成し、ウェルやチャネル等、イオン注入を所定数回実施する。
【0004】
その後、図3(b)に示すように、プレ酸化膜34を剥離後にゲート絶縁膜(酸化膜)35を形成する。次に、ゲート電極部材、例えばポリシリコン層を形成し、所定パターンのゲート電極36を形成する。その後は図示しないが、不純物拡散領域の形成等MOS型トランジスタ素子としての構造を実現する。
【0005】
【発明が解決しようとする課題】
酸化膜33のSTI部とゲート電極36下のチャネル領域との境界37上部のゲート絶縁膜35は不十分な厚さになる。これは上記薬液によるシリコン窒化膜マスクの除去やゲート絶縁膜形成以前の薬液洗浄によって段差(depot )DPが生じるためである。これにより、MOS型トランジスタ素子において特性の異なるトランジスタが寄生することになる。すなわち、MOS型トランジスタ素子のサブスレッシホールド特性に段差ができる現象(ハンプ特性)が発生してしまう。これにより、しきい値変動を招く。また、絶縁耐性の不良や長期信頼性不良の原因にもなる。このような問題は、デザインルールが小さくなるにつれてより顕在化される。
【0006】
本発明は上記のような事情を考慮してなされたもので、微細加工に伴うSTIと素子領域の境界の形状に関る寄生トランジスタをなくし、サブスレッシホールド特性に段差ができる現象(ハンプ特性)が発生することを防止する高信頼性の半導体装置及びその製造方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る半導体装置は、トレンチ素子分離による素子分離領域を有する半導体基板と、前記半導体基板上において前記素子分離領域と素子領域の境界近傍が素子領域上より厚く設けられたゲート絶縁膜と、前記ゲート絶縁膜上のゲート電極と、前記ゲート電極を隔てて前記半導体基板上に形成された不純物拡散領域と、を具備したことを特徴とする。
【0008】
上記のような本発明に係る半導体装置によれば、ゲート絶縁膜が半導体基板上において素子分離領域と素子領域の境界近傍で素子領域上より厚く設けられている。これにより、トランジスタ特性に悪影響を及ぼすような薄いゲート絶縁膜の部分が存在しなくなる。
【0009】
本発明に係る半導体装置の製造方法は、半導体基板において素子領域を囲むように溝部を形成する工程と、前記溝部を埋め込むように前記半導体基板全面に絶縁膜を形成する工程と、前記絶縁膜に対し第1の平坦化処理を行うことにより、主に前記溝部内に前記絶縁膜を残し素子分離領域を形成する工程と、複数の薬液処理からなる洗浄工程と、前記洗浄工程のため前記素子領域と前記素子分離領域の境界近傍に発生した段差を埋めるように前記半導体基板全面にシリコンを主成分とする膜を形成する工程と、前記シリコンを主成分とする膜に対し第2の平坦化処理を行うことにより、主に前記素子領域と前記素子分離領域の境界近傍に発生した段差内部に前記シリコンを主成分とする膜を残す工程と、前記半導体基板を熱酸化する工程と、を具備することを特徴とする。
【0010】
上記のような本発明に係る半導体装置の製造方法によれば、複数の薬液処理からなる洗浄工程によって素子領域と素子分離領域の境界近傍に段差が発生する。この段差を、シリコンを主成分とする膜で埋めて再度平坦化し、熱酸化する。これにより、素子領域と素子分離領域の境界近傍の絶縁膜が薄くならない。この結果、ゲート絶縁膜が素子領域と素子分離領域の境界近傍で薄くなるようなことはない。よって、トランジスタ特性に悪影響を及ぼすような薄いゲート絶縁膜の部分が存在しなくなる。
【0011】
なお、上記半導体装置の製造方法に係るより好ましい実施態様として、次のような特徴を少なくとも一つは含む。
前記第1及び第2の平坦化処理の手法として、CMP(化学的機械的研磨)技術を用いることを特徴とする。
前記溝部を形成する工程の前に、前記素子領域の表面を保護するマスク部材が形成され、前記第1の平坦化処理工程の後、前記マスク部材は前記複数の薬液処理からなる洗浄工程によって除去されることを特徴とする。
前記シリコンを主成分とする膜を形成する工程は、多結晶シリコンからなる膜を形成する工程を含むことを特徴とする。
前記シリコンを主成分とする膜を形成する工程は、アモルファスシリコンからなる膜を形成する工程を含むことを特徴とする。
前記半導体基板を熱酸化する工程は、主に前記素子領域と前記素子分離領域の境界近傍に発生した段差内部を埋めるように形成した前記シリコンを主成分とする膜を完全にシリコン酸化膜に酸化することを特徴とする。
【0012】
【発明の実施の形態】
図1(a),(b)はそれぞれ本発明の一実施形態に係る半導体装置の平面図及びB−B断面図であり、MOS型トランジスタの一つを示している。シリコン半導体基板11にトレンチ素子分離による素子分離領域、すなわちSTI部12が形成されている。STI部12は例えば酸化シリコン膜が埋め込まれている。基板11上には、STI部12に囲まれた素子領域13に渡るゲート絶縁膜、例えばゲート酸化膜14と、多結晶シリコンを含むゲート電極15が設けられている。このゲート酸化膜14は、STI部12と素子領域13の境界近傍が素子領域13上より確実に厚くなっている(14B)。
【0013】
ゲート電極15を隔てて基板11上にソース・ドレイン拡散領域15が形成されている。ソース・ドレイン拡散領域16は、LDD(Lightly Doped Drain )構造とするため、スペーサ、いわゆるゲート電極15の絶縁性サイドウォールSWが配された構成であってもよい。また、ゲート電極15の上部がシリサイド化される場合、自己整合シリサイド構造、いわゆるサリサイド構造にも、このようなサイドウォールSWが短絡防止のために不可欠である。
【0014】
上記実施形態によれば、ゲート酸化膜14に関し、基板11上においてSTI部12と素子領域13の境界近傍が素子領域13上より確実に厚く設けられている(14B)。これにより、トランジスタ特性に悪影響を及ぼすような薄いゲート絶縁膜の部分が存在しなくなる。この結果、MOS型トランジスタ素子のサブスレッシホールド特性に段差ができる現象(ハンプ特性)を防止することができる。すなわち、しきい値変動、絶縁耐性の不良や長期信頼性不良を招くことのない高信頼性が得られる。以下、製造方法について説明する。
【0015】
図2(a)〜(f)は、それぞれ本発明の一実施形態に係るSTIを有する半導体装置の製造方法の要部を工程順に示す断面図であり、上記図1の構成を実現する方法について説明するものである。図1(b)と同様の箇所には同一の符号を付す。
図2(a)に示すように、シリコン半導体基板11において、図示しない酸化膜及びシリコン窒化膜を形成し、フォトリソグラフィ工程を経て素子領域にマスクをする。その後、異方性エッチングを経て素子分離領域に所定深さのトレンチ22をエッチング形成する。次に、素子領域13端及びトレンチ22底部を丸める酸化工程を経てからCVD(化学気相成長)法によってトレンチ22を埋めるだけの酸化膜23を形成する。高密度プラズマCVDによる技術を利用することもできる。その後、CMP(化学的機械的研磨)技術を利用して上記シリコン窒化膜マスク(図示せず)が露出するまで酸化膜23を平坦化除去する。薬液(熱リン酸等)によるシリコン窒化膜マスクの除去後、薬液洗浄(フッ酸系洗浄)を経て、STI部12を形成する。素子領域13上には上記マスクの下地酸化膜及び上記酸化工程における酸化膜231が残留している。そして、素子領域13とSTI部12の境界近傍には段差(depot )25が発生する。
【0016】
次に、図2(b)に示すように、CVD法を用いて基板11全面に多結晶シリコン膜24を形成する。これにより、上記段差(depot )25が確実に多結晶シリコンで埋められる。
次に、図2(c),(d)に示すように、CMP技術を用いて多結晶シリコン膜24を平坦化除去する。CMPは、ある程度エッチング速度が大きく得られる条件で時間制御を伴って行われ(図2(c))、その後、エッチング速度が小さくても酸化膜との選択比がなるべくとれる条件で行われる。そして、STI部12の酸化膜23が露出するところで停止する(図2(d))。これにより、上記段差(depot )25のみに多結晶シリコン膜24が埋設される。
【0017】
次に、図2(e)に示すように、基板全体を熱酸化する。酸化条件としては、酸素または水蒸気を含有する雰囲気で650℃以上の適当な温度の熱処理を行う。これにより、多結晶シリコン膜24も熱酸化膜になる。実施の一例として挙げるならば、段差(depot )25の深さ及び幅が20nm程度とし、この段差を適度に埋めるように多結晶シリコン24を成膜したとする。これを、完全に酸化する条件としては、酸素と水蒸気と窒素をほぼ同比率で混合した酸化雰囲気にて900℃、30分の熱処理を行うことがあげられる。このような熱処理によれば、薄い酸化膜で覆われた素子領域では、酸化膜が増えることを抑えつつ、段差に埋め込まれた多結晶シリコンを酸化できる。結果として、段差(depot )25をシリコン酸化膜で埋め込み、素子領域と素子分離領域の境界近傍における酸化膜の膜厚を素子領域内部よりも大きくすることができる。このような工程を経て形成された酸化膜をプレ酸化膜26とする。すなわち、段差(depot )25は緩和されSTI部12と素子領域13の境界近傍が素子領域13上より確実に厚くなる(26B)。その後、フォトリソグラフィ工程で所定のマスクを形成し、ウェルやチャネル等、イオン注入を所定数回実施するようにしてもよい。
【0018】
次に、図2(f)に示すように、基板11に対する等方性のエッチバックを伴う洗浄工程、例えばフッ酸系の洗浄を行った後、ゲート酸化膜14を形成する。STI部12と素子領域13の境界近傍では素子領域13上より確実に厚いゲート酸化膜14となる(14B)。次に、多結晶シリコンを含むゲート電極15をパターニング形成する。その後は、図示しないがスペーサ(サイドウォールSW)の形成やフォトリソグラフィ工程を伴う不純物イオン注入により、ソース・ドレインの拡散領域を形成する。サイドウォールSWの形成工程を経れば、CoやTi、Moなど高融点金属から選ばれた金属部材をスパッタし、熱処理することによって自己整合的なシリサイド(サリサイド)構造を実現することも可能である。
【0019】
上記実施形態の方法によれば、素子領域13とSTI部12の境界近傍の段差(depot )25には多結晶シリコンが形成され、これを熱酸化することにより、段差(depot )25だった部分は確実に厚い酸化膜が形成できる(14B)。このため、後に続く薬液による複数の洗浄工程を経ても、素子領域と素子分離領域の境界近傍の絶縁膜(酸化膜)が薄くならない。この結果、ゲート絶縁膜が素子領域と素子分離領域の境界近傍で薄くなるようなことはない。
【0020】
上記実施形態の方法を用いれば、素子領域13端及びトレンチ22底部を丸めるというような、制御性に乏しい酸化工程を従来に比べて短くできる利点もある。上記実施形態の方法を利用することによって、トランジスタ特性に悪影響を及ぼすような薄いゲート絶縁膜の部分が存在しなくなる。この結果、MOS型トランジスタ素子のサブスレッシホールド特性に段差ができる現象(ハンプ特性)を防止することができる。すなわち、しきい値変動、絶縁耐性の不良や長期信頼性不良を招くことのない高信頼性が得られる。
【0021】
以上説明したように本発明によれば、従来例で説明したような寄生トランジスタの懸念は解消される。また、実際のトランジスタのサイズ(特にゲート幅)と設計値の誤差の低減に大いに寄与する。この結果、微細加工に伴うSTIと素子領域の境界の形状に関る寄生トランジスタをなくし、サブスレッシホールド特性に段差ができる現象(ハンプ特性)が発生することを防止する高信頼性の半導体装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】各々本発明の一実施形態に係る半導体装置の平面図及び断面図。
【図2】一実施形態で、STIを有する半導体装置の製造方法の断面図。
【図3】従来のSTIを有する半導体装置の製造方法の断面図。
【符号の説明】
11,31…シリコン半導体基板、12…STI部、13…素子領域,14,34…ゲート酸化膜、15…ゲート電極、16…ソース・ドレイン拡散領域、22…トレンチ、23,231…酸化膜、24…多結晶シリコン膜、25…段差(depot )、26,33…プレ酸化膜、SW…サイドウォール。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an element isolation technology when configuring a semiconductor integrated circuit, and more particularly to a semiconductor device having an STI (Shallow Trench Isolation) and a method of manufacturing the same in a semiconductor integrated circuit requiring miniaturization.
[0002]
[Prior art]
In order to increase the degree of integration of semiconductor integrated circuits, the method of separating elements formed on a semiconductor substrate from each other has shifted from LOCOS isolation (selective oxidation isolation) to trench isolation (trench isolation). ing. In the trench isolation, a shallow trench isolation capable of coping with a micro MOS device is also referred to as STI (Shallow Trench Isolation), and a trench (trench) is formed on a semiconductor substrate other than a device formation region, and the inside of the trench is formed. The device is filled with an insulator, particularly a silicon oxide film, to achieve isolation between elements. Compared to the LOCOS separation method, a separation distance can be obtained deeper in the substrate. For this reason, the separation width can be significantly reduced.
[0003]
3A and 3B are cross-sectional views illustrating a method of manufacturing a conventional semiconductor device having STI in the order of steps.
As shown in FIG. 3A, an oxide film and a silicon nitride film (not shown) are formed on the silicon semiconductor substrate 31, and a mask is applied to the element region through a photolithography process. Thereafter, a trench 32 having a predetermined depth is formed in the element isolation region by anisotropic etching. Next, after an oxidation step for rounding the end of the element region and the bottom of the trench, an oxide film 33 sufficient to fill the trench 32 is formed by a CVD (chemical vapor deposition) method. After that, the oxide film 33 is planarized and removed using a CMP (chemical mechanical polishing) technique until the silicon nitride film mask (not shown) is exposed. After removing the silicon nitride film mask with a chemical solution (hot phosphoric acid or the like), a pre-oxide film 34 is formed by, for example, wet oxidation through chemical solution cleaning (hydrofluoric acid-based cleaning). After the pre-oxide film 34 is formed, a predetermined mask is formed by a photolithography process, and ion implantation for a well, a channel, and the like is performed a predetermined number of times.
[0004]
Thereafter, as shown in FIG. 3B, a gate insulating film (oxide film) 35 is formed after removing the pre-oxide film 34. Next, a gate electrode member, for example, a polysilicon layer is formed, and a gate electrode 36 having a predetermined pattern is formed. Thereafter, although not shown, a structure as a MOS transistor element such as formation of an impurity diffusion region is realized.
[0005]
[Problems to be solved by the invention]
The gate insulating film 35 above the boundary 37 between the STI portion of the oxide film 33 and the channel region below the gate electrode 36 has an insufficient thickness. This is because a step DP occurs due to the removal of the silicon nitride film mask by the above-described chemical solution and the cleaning of the chemical solution before the formation of the gate insulating film. As a result, in the MOS transistor element, transistors having different characteristics become parasitic. That is, a phenomenon (a hump characteristic) in which a step occurs in the sub-threshold characteristic of the MOS transistor element occurs. As a result, the threshold value fluctuates. In addition, it also causes insulation failure and long-term reliability failure. Such problems become more apparent as design rules become smaller.
[0006]
The present invention has been made in view of the above circumstances, and eliminates a parasitic transistor relating to the shape of the boundary between the STI and the element region due to microfabrication, and a phenomenon in which a sub-threshold characteristic has a step (a hump characteristic). It is an object of the present invention to provide a highly-reliable semiconductor device which prevents the occurrence of) and a method of manufacturing the same.
[0007]
[Means for Solving the Problems]
A semiconductor device according to the present invention includes a semiconductor substrate having an element isolation region formed by trench element isolation, a gate insulating film provided near the boundary between the element isolation region and the element region on the semiconductor substrate thicker than the element region, A gate electrode on the gate insulating film; and an impurity diffusion region formed on the semiconductor substrate with the gate electrode interposed therebetween.
[0008]
According to the semiconductor device of the present invention as described above, the gate insulating film is provided on the semiconductor substrate near the boundary between the element isolation region and the element region, thicker than the element region. As a result, there is no thin gate insulating film portion that adversely affects the transistor characteristics.
[0009]
The method of manufacturing a semiconductor device according to the present invention includes a step of forming a groove so as to surround an element region in a semiconductor substrate; a step of forming an insulating film on the entire surface of the semiconductor substrate so as to fill the groove; On the other hand, by performing a first planarization process, a step of forming an element isolation region while leaving the insulating film mainly in the groove, a cleaning step including a plurality of chemical solutions, and the element region for the cleaning step Forming a film containing silicon as a main component on the entire surface of the semiconductor substrate so as to fill a step generated near a boundary between the device isolation region and a second flattening process for the film containing silicon as a main component. By leaving a film containing silicon as a main component inside a step mainly generated near the boundary between the element region and the element isolation region, and a step of thermally oxidizing the semiconductor substrate, Characterized by comprising.
[0010]
According to the method of manufacturing a semiconductor device according to the present invention as described above, a step is generated near the boundary between the element region and the element isolation region due to the cleaning process including a plurality of chemical treatments. This step is filled with a film containing silicon as a main component, flattened again, and thermally oxidized. Thus, the insulating film near the boundary between the element region and the element isolation region does not become thin. As a result, the gate insulating film does not become thin near the boundary between the element region and the element isolation region. Therefore, there is no thin gate insulating film that adversely affects the transistor characteristics.
[0011]
As a more preferred embodiment of the method for manufacturing a semiconductor device, at least one of the following features is included.
The method is characterized in that a CMP (Chemical Mechanical Polishing) technique is used as the first and second planarization processing techniques.
Before the step of forming the groove, a mask member for protecting the surface of the element region is formed, and after the first planarization step, the mask member is removed by a cleaning step including the plurality of chemical solutions. It is characterized by being performed.
The step of forming the film containing silicon as a main component includes a step of forming a film made of polycrystalline silicon.
The step of forming the film containing silicon as a main component includes a step of forming a film made of amorphous silicon.
The step of thermally oxidizing the semiconductor substrate mainly includes completely oxidizing the silicon-based film formed so as to fill the inside of a step generated near the boundary between the element region and the element isolation region to a silicon oxide film. It is characterized by doing.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1A and 1B are a plan view and a BB cross-sectional view of a semiconductor device according to an embodiment of the present invention, respectively, showing one of the MOS transistors. An element isolation region by trench element isolation, that is, an STI portion 12 is formed in a silicon semiconductor substrate 11. The STI section 12 is embedded with, for example, a silicon oxide film. On the substrate 11, a gate insulating film, for example, a gate oxide film 14 extending over the element region 13 surrounded by the STI portion 12, and a gate electrode 15 containing polycrystalline silicon are provided. The thickness of the gate oxide film 14 near the boundary between the STI portion 12 and the element region 13 is surely thicker than that on the element region 13 (14B).
[0013]
Source / drain diffusion regions 15 are formed on substrate 11 with gate electrode 15 therebetween. Since the source / drain diffusion region 16 has an LDD (Lightly Doped Drain) structure, a structure in which a spacer, that is, an insulating sidewall SW of the gate electrode 15 may be provided. Further, when the upper portion of the gate electrode 15 is silicided, such a sidewall SW is indispensable for a self-aligned silicide structure, a so-called salicide structure, in order to prevent a short circuit.
[0014]
According to the above embodiment, with respect to the gate oxide film 14, the vicinity of the boundary between the STI portion 12 and the element region 13 on the substrate 11 is surely thicker than on the element region 13 (14B). As a result, there is no thin gate insulating film portion that adversely affects the transistor characteristics. As a result, it is possible to prevent a phenomenon (a hump characteristic) in which a step is formed in the sub-threshold characteristic of the MOS transistor element. That is, high reliability can be obtained without incurring threshold variation, poor insulation resistance, or long-term reliability failure. Hereinafter, the manufacturing method will be described.
[0015]
FIGS. 2A to 2F are cross-sectional views showing a main part of a method of manufacturing a semiconductor device having an STI according to an embodiment of the present invention in the order of steps. It is for explanation. 1 (b) are denoted by the same reference numerals.
As shown in FIG. 2A, an oxide film and a silicon nitride film (not shown) are formed on the silicon semiconductor substrate 11, and a mask is applied to the element region through a photolithography process. Thereafter, a trench 22 having a predetermined depth is formed in the element isolation region by anisotropic etching. Next, after an oxidation process for rounding the end of the element region 13 and the bottom of the trench 22, an oxide film 23 only to fill the trench 22 is formed by a CVD (chemical vapor deposition) method. A technique using high-density plasma CVD can also be used. Thereafter, the oxide film 23 is flattened and removed using a CMP (chemical mechanical polishing) technique until the silicon nitride film mask (not shown) is exposed. After removing the silicon nitride film mask with a chemical solution (hot phosphoric acid or the like), the STI portion 12 is formed through chemical solution cleaning (hydrofluoric acid-based cleaning). On the element region 13, a base oxide film of the mask and an oxide film 231 in the oxidation step remain. Then, a step 25 occurs near the boundary between the element region 13 and the STI portion 12.
[0016]
Next, as shown in FIG. 2B, a polycrystalline silicon film 24 is formed on the entire surface of the substrate 11 by using the CVD method. This ensures that the step 25 is filled with polycrystalline silicon.
Next, as shown in FIGS. 2C and 2D, the polycrystalline silicon film 24 is planarized and removed by using the CMP technique. The CMP is performed with time control under the condition that a high etching rate can be obtained to some extent (FIG. 2C). Thereafter, the CMP is performed under the condition that the selectivity to the oxide film can be obtained as much as possible even when the etching rate is low. Then, the operation is stopped when the oxide film 23 of the STI portion 12 is exposed (FIG. 2D). Thus, the polycrystalline silicon film 24 is buried only in the step (depot) 25.
[0017]
Next, as shown in FIG. 2E, the entire substrate is thermally oxidized. As the oxidation conditions, heat treatment at an appropriate temperature of 650 ° C. or more is performed in an atmosphere containing oxygen or water vapor. Thereby, the polycrystalline silicon film 24 also becomes a thermal oxide film. As an example of implementation, it is assumed that the depth and width of the step (depot) 25 are about 20 nm, and the polycrystalline silicon 24 is formed so as to fill the step appropriately. As a condition for completely oxidizing this, a heat treatment at 900 ° C. for 30 minutes in an oxidizing atmosphere in which oxygen, water vapor and nitrogen are mixed at almost the same ratio can be mentioned. According to such a heat treatment, in an element region covered with a thin oxide film, polycrystalline silicon buried in a step can be oxidized while suppressing an increase in an oxide film. As a result, the step (depot) 25 is filled with the silicon oxide film, and the thickness of the oxide film near the boundary between the element region and the element isolation region can be made larger than that inside the element region. The oxide film formed through such a process is referred to as a pre-oxide film 26. That is, the step (depot) 25 is reduced, and the vicinity of the boundary between the STI portion 12 and the element region 13 is surely thicker than the element region 13 (26B). After that, a predetermined mask may be formed in a photolithography process, and ion implantation for a well, a channel, and the like may be performed a predetermined number of times.
[0018]
Next, as shown in FIG. 2 (f), a gate oxide film 14 is formed after a cleaning step involving isotropic etchback of the substrate 11, for example, a hydrofluoric acid-based cleaning. In the vicinity of the boundary between the STI section 12 and the element region 13, the gate oxide film 14 is surely thicker than the element region 13 (14B). Next, the gate electrode 15 containing polycrystalline silicon is formed by patterning. Thereafter, although not shown, source / drain diffusion regions are formed by impurity ion implantation accompanying formation of a spacer (sidewall SW) and a photolithography step. After the formation process of the sidewall SW, it is possible to realize a self-aligned silicide (salicide) structure by sputtering and heat-treating a metal member selected from a high melting point metal such as Co, Ti, and Mo. is there.
[0019]
According to the method of the above embodiment, polycrystalline silicon is formed at the step (depot) 25 near the boundary between the element region 13 and the STI portion 12, and the polycrystalline silicon is thermally oxidized to form the portion having the step (depot) 25. Can surely form a thick oxide film (14B). Therefore, the insulating film (oxide film) near the boundary between the element region and the element isolation region does not become thin even after a plurality of subsequent cleaning steps using a chemical solution. As a result, the gate insulating film does not become thin near the boundary between the element region and the element isolation region.
[0020]
The use of the method of the above embodiment also has an advantage that an oxidation step with poor controllability, such as rounding the end of the element region 13 and the bottom of the trench 22, can be shortened as compared with the conventional method. By utilizing the method of the above embodiment, there is no thin gate insulating film portion that adversely affects the transistor characteristics. As a result, it is possible to prevent a phenomenon (a hump characteristic) in which a step is formed in the sub-threshold characteristic of the MOS transistor element. That is, high reliability can be obtained without incurring threshold variation, poor insulation resistance, or long-term reliability failure.
[0021]
As described above, according to the present invention, the concern about the parasitic transistor as described in the conventional example is solved. Also, it greatly contributes to the reduction of the error between the actual transistor size (particularly the gate width) and the design value. As a result, a highly reliable semiconductor device that eliminates a parasitic transistor relating to the shape of the boundary between the STI and the element region due to microfabrication and prevents the occurrence of a phenomenon in which a sub-threshold characteristic has a step (a hump characteristic) is generated. And a method for producing the same.
[Brief description of the drawings]
FIG. 1 is a plan view and a cross-sectional view of a semiconductor device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a method of manufacturing a semiconductor device having STI according to one embodiment.
FIG. 3 is a sectional view of a conventional method for manufacturing a semiconductor device having STI.
[Explanation of symbols]
11, 31 silicon semiconductor substrate, 12 STI portion, 13 element region, 14, 34 gate oxide film, 15 gate electrode, 16 source / drain diffusion region, 22 trench, 23, 231 oxide film, 24: polycrystalline silicon film, 25: step (depot), 26, 33: pre-oxide film, SW: sidewall.

Claims (7)

トレンチ素子分離による素子分離領域を有する半導体基板と、
前記半導体基板上において前記素子分離領域と素子領域の境界近傍が素子領域上より厚く設けられたゲート絶縁膜と、
前記ゲート絶縁膜上のゲート電極と、
前記ゲート電極を隔てて前記半導体基板上に形成された不純物拡散領域と、
を具備したことを特徴とする半導体装置。
A semiconductor substrate having an element isolation region by trench element isolation,
A gate insulating film provided near the boundary between the element isolation region and the element region on the semiconductor substrate so as to be thicker than the element region;
A gate electrode on the gate insulating film;
An impurity diffusion region formed on the semiconductor substrate with the gate electrode interposed therebetween;
A semiconductor device comprising:
半導体基板において素子領域を囲むように溝部を形成する工程と、
前記溝部を埋め込むように前記半導体基板全面に絶縁膜を形成する工程と、
前記絶縁膜に対し第1の平坦化処理を行うことにより、主に前記溝部内に前記絶縁膜を残し素子分離領域を形成する工程と、
複数の薬液処理からなる洗浄工程と、
前記洗浄工程のため前記素子領域と前記素子分離領域の境界近傍に発生した段差を埋めるように前記半導体基板全面にシリコンを主成分とする膜を形成する工程と、
前記シリコンを主成分とする膜に対し第2の平坦化処理を行うことにより、主に前記素子領域と前記素子分離領域の境界近傍に発生した段差内部に前記シリコンを主成分とする膜を残す工程と、
前記半導体基板を熱酸化する工程と、
を具備することを特徴とした半導体装置の製造方法。
Forming a groove so as to surround the element region in the semiconductor substrate;
Forming an insulating film on the entire surface of the semiconductor substrate so as to fill the groove,
Performing a first planarization process on the insulating film to form an element isolation region while leaving the insulating film mainly in the trench;
A cleaning process comprising a plurality of chemical treatments;
Forming a film mainly composed of silicon on the entire surface of the semiconductor substrate so as to fill a step generated near a boundary between the element region and the element isolation region for the cleaning step;
By performing a second planarization process on the film containing silicon as a main component, the film containing silicon as a main component is mainly left inside a step generated near a boundary between the element region and the element isolation region. Process and
Thermally oxidizing the semiconductor substrate;
A method for manufacturing a semiconductor device, comprising:
前記第1及び第2の平坦化処理の手法として、CMP(化学的機械的研磨)技術を用いることを特徴とする請求項2記載の半導体装置の製造方法。3. The method according to claim 2, wherein a CMP (Chemical Mechanical Polishing) technique is used as the first and second planarization processes. 前記溝部を形成する工程の前に、前記素子領域の表面を保護するマスク部材が形成され、前記第1の平坦化処理工程の後、前記マスク部材は前記複数の薬液処理からなる洗浄工程によって除去されることを特徴とする請求項2または3記載の半導体装置の製造方法。Before the step of forming the groove, a mask member for protecting the surface of the element region is formed, and after the first planarization step, the mask member is removed by a cleaning step including the plurality of chemical solutions. 4. The method of manufacturing a semiconductor device according to claim 2, wherein the method is performed. 前記シリコンを主成分とする膜を形成する工程は、多結晶シリコンからなる膜を形成する工程を含むことを特徴とする請求項2〜4いずれか一つに記載の半導体装置の製造方法。5. The method according to claim 2, wherein the step of forming the film containing silicon as a main component includes the step of forming a film made of polycrystalline silicon. 前記シリコンを主成分とする膜を形成する工程は、アモルファスシリコンからなる膜を形成する工程を含むことを特徴とする請求項2〜4いずれか一つに記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 2, wherein the step of forming the film containing silicon as a main component includes a step of forming a film made of amorphous silicon. 前記半導体基板を熱酸化する工程は、主に前記素子領域と前記素子分離領域の境界近傍に発生した段差内部を埋めるように形成した前記シリコンを主成分とする膜を完全にシリコン酸化膜に酸化することを特徴とする請求項2〜6いずれか一つに記載の半導体装置の製造方法。The step of thermally oxidizing the semiconductor substrate mainly includes completely oxidizing the silicon-based film formed so as to fill the inside of a step generated near the boundary between the element region and the element isolation region to a silicon oxide film. The method for manufacturing a semiconductor device according to claim 2, wherein the method comprises:
JP2003067742A 2003-03-13 2003-03-13 Semiconductor device and method of manufacturing the same Withdrawn JP2004281504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067742A JP2004281504A (en) 2003-03-13 2003-03-13 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067742A JP2004281504A (en) 2003-03-13 2003-03-13 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004281504A true JP2004281504A (en) 2004-10-07

Family

ID=33285268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067742A Withdrawn JP2004281504A (en) 2003-03-13 2003-03-13 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004281504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774788B1 (en) 2006-10-10 2007-11-07 동부일렉트로닉스 주식회사 Manufacturing method of mos field effect transistor and structure thereof
WO2016124110A1 (en) * 2015-02-02 2016-08-11 无锡华润上华半导体有限公司 Semiconductor device and manufacturing method therefor, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774788B1 (en) 2006-10-10 2007-11-07 동부일렉트로닉스 주식회사 Manufacturing method of mos field effect transistor and structure thereof
WO2016124110A1 (en) * 2015-02-02 2016-08-11 无锡华润上华半导体有限公司 Semiconductor device and manufacturing method therefor, and electronic device

Similar Documents

Publication Publication Date Title
US6693013B2 (en) Semiconductor transistor using L-shaped spacer and method of fabricating the same
JP4551795B2 (en) Manufacturing method of semiconductor device
JP2007027738A (en) Semiconductor device and its manufacture method
US7176110B2 (en) Technique for forming transistors having raised drain and source regions with different heights
US7144786B2 (en) Technique for forming a transistor having raised drain and source regions with a reduced number of process steps
JP4181537B2 (en) Semiconductor device and manufacturing method thereof
US6784073B1 (en) Method of making semiconductor-on-insulator device with thermoelectric cooler
US6417056B1 (en) Method to form low-overlap-capacitance transistors by forming microtrench at the gate edge
JP4086099B2 (en) Method for forming semiconductor device
JP2006294800A (en) Manufacturing method of semiconductor device
US6653201B2 (en) Method for forming an isolation region in a semiconductor device
JP2003158180A (en) Semiconductor device having trench isolation and its fabricating method
JP2001237427A (en) Protuberant silicide source/drain type mos transistor with expanded source/drain contact region and method
JP2005332993A (en) Semiconductor device and method for manufacturing the same
JP2005353892A (en) Semiconductor substrate, semiconductor device and its manufacturing method
JP4031677B2 (en) Manufacturing method of semiconductor device
JP2004281504A (en) Semiconductor device and method of manufacturing the same
JP4945910B2 (en) Semiconductor device and manufacturing method thereof
JP5130677B2 (en) Manufacturing method of semiconductor devices
KR20010107707A (en) Method for manufacturing semiconductor device having a sti structure
KR101180976B1 (en) Field effect transistor having a doped gate electrode with reduced gate depletion and method of forming the transistor
KR100766270B1 (en) Method of manufacturing a semiconductor device
JP3601334B2 (en) Method of manufacturing semiconductor device having trench element isolation region
JP2000200830A (en) Manufacture of semiconductor device having trench element isolation region
JP3966102B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606