JP2004281450A - Method of manufacturing semiconductor device and electronic equipment - Google Patents

Method of manufacturing semiconductor device and electronic equipment Download PDF

Info

Publication number
JP2004281450A
JP2004281450A JP2003066893A JP2003066893A JP2004281450A JP 2004281450 A JP2004281450 A JP 2004281450A JP 2003066893 A JP2003066893 A JP 2003066893A JP 2003066893 A JP2003066893 A JP 2003066893A JP 2004281450 A JP2004281450 A JP 2004281450A
Authority
JP
Japan
Prior art keywords
film substrate
temperature
bonding
mounting
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066893A
Other languages
Japanese (ja)
Other versions
JP4184838B2 (en
Inventor
Tsutomu Matsudaira
努 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003066893A priority Critical patent/JP4184838B2/en
Publication of JP2004281450A publication Critical patent/JP2004281450A/en
Application granted granted Critical
Publication of JP4184838B2 publication Critical patent/JP4184838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To mount a driver IC on a film substrate with a stable quality by absorbing the dimensional variations of the film substrate under the mounting conditions by solving the problem that the dimensional variations become large and defective mounting occurs frequently when the pitch is 30 μm. <P>SOLUTION: After the dimension of an FPC is measured through the alignment of bonding and an IC is sucked to a bonding head preset to a temperature which is sufficiently lower than the bonding temperature, the insufficient dimension of the bonding head from the required dimension is corrected by raising the temperature of the head. After the dimensional correction is performed, the bonding head is pressurized under the same condition and joining is completed by again raising the temperature of the bonding head to a joining temperature under the same condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話や情報端末、ハンディーターミナルなどの電子機器の製造方法に関し、例えば、表示装置等に用いられる半導体装置の製造方法に関する。詳しくは、ドライバーIC等の半導体素子の実装に関し、例えば、ポリイミド等の絶縁基板上に配線が形成されたフィルム基板と、バンプ付きICとの接続に関する。
【0002】
【従来の技術】
従来の技術では、例えば表示装置を駆動するためのICのフェイスダウン実装は、ポリイミドをベースとしたフィルム基板に、接着を用いて接続を保持する工法を用いて接続する場合は、ICのパットにAuからなるバンプをメッキで形成したメッキバンプやワイヤーボンディングを応用したスタッドバンプを用いて、フィルム基板に異方性導電膜で圧着するか(例えば、特許文献1参照)、または銀ペーストをバンプに転写してフィルム基板と接続し、その間にアンダーフィルを充填し接続していた。異方性導電膜で圧着する場合には、圧着の熱により発生するフィルムの伸びをフィルム側で補正していた(特許文献2参照)。また、金属拡散接続を用いた場合、ICのバンプに半田を用いてフィルム基板の電極に半田付けし、アンダーフィルを充填する工法と、ICのバンプにAuを、フィルム基板側の電極にSnメッキを設けて、Au−Sn共晶接続を行い、アンダーフィルを充填する工法がある。
【0003】
近年表示パネルを駆動するICのバンプピッチは45μmピッチと電極数は900のICを用いた表示装置が量産されている。通常45μmピッチを実装するためには、Au−Sn共晶接続が最も適した接続工法である。フィルム基板は、ポリイミドフィルムに銅を密着するためのニッケルなどからなるシード層を30Åスパッタし、続けて銅を2000Åスパッタリングする。電極の総厚が約8μmになるように電解メッキをする。フォトリソ法を用いてパターニングをし、無電解スズメッキを行い、純スズを約0.15〜0.25μm形成する。ソルダーレジストを形成してフィルム基板は完成する。このフィルム基板を約50℃にしたステージにセットする。ICはボンディングヘッドに吸着し、450℃に加熱する。ボンディングヘッドは、予め加熱しておいてICを受け渡してもよい。ICとフィルム基板を対向した間に上下2視野カメラで、ICの対角2ヶ所のマークとフィルム基板の2ヶ所のマークを認識し、それぞれの座標を算出し、フィルム基板のステージによりX軸とY軸とθ軸をICと対向する所定の位置に補正をし、ICを450℃に加熱した状態のまま2秒間加圧して、金スズ共晶接続が完了する。
【0004】
【特許文献1】
特開平05−249479公報(第3頁、第1図)
【0005】
【特許文献2】
特開2000−312070公報(第4頁、第2図)
【0006】
【発明が解決しようとする課題】
ICは年々小型化が進み、40μmピッチのICとフィルム基板の実装の量産が開始されている。ICは価格を下げるためにシュリンクと更に微細ピッチの検討を進められている。ストレートバンプの形成はスペース13μmが限界で、バンプの幅も、15〜17μmが現状では安定して量産できる限界である。そのため、現在量産可能なICのピッチは30μmピッチである。30μmピッチのバンプ配置で、電極数も1000ピンを超えるICでは、フィルム基板との実装位置ズレが発生した。ズレは、ICとフィルム基板の累積ピッチが合わない現象であり、中央部の端子で合わせると端部の端子が大きくズレる現象であった。
【0007】
その原因の一つは、実装時の熱でフィルム基板が熱変形を起こすためである。特にAu−Sn共晶接続では、接続部温度を350〜380℃に加熱するため、耐熱性の高いポリイミドを用いたとしてもズレが生ずる。ズレの対策として、フィルム基板のパターンに全体もしくは、IC実装部のみに伸び分を補正するためのパターンの縮小を一定倍率でおこなった。補正を行ったパターンでは、ズレの程度は小さくなったが、伸びのバラツキが生ずるため、これだけでは原因解決には至らなかった。
【0008】
他の原因として、フィルム基板の製造方法にある。一般に、フィルム基板はロール方式で製造される。その際、200〜500幅の原反を用いるため、製品をより多く取るためのマスクレイアウトは、製品を0°,90°,180°270°と自在に配置し、製品同士を抱き合わせるようにして、最も取り個数が多くなるように製造していた。フィルム基板の原反はポリイミドを一軸延伸しているため、流れ方向(MD:Machine Direction)と幅方向(TD:Transfer Direction)では特性が異なる。フィルムメーカーの公開する物性特性では、強度,伸度,ヤング率,熱収縮率,熱膨張係数,湿度膨張係数の特性がMDとTDで同一の特性値であっても、実際のMDとTD方向で寸法変化の特性が異なる。また、フィルム基板のマスクレイアウトによって、ICの接続するある辺が、MD方向であったりTDであったりすることもある。しかし、このマスクレイアウトに関しては、設計上の問題であり、ICのデザインとフィルムの方向を合わせた設計ルールを設定することができる。
【0009】
また、フィルム基板の初期寸法バラツキも大きな原因の一つである。通常、ポリイミドフィルムに金属薄膜をスパッタし電気メッキで銅を形成した材料を用いたフィルム基板の初期寸法バラツキは、±0.06%のバラツキがある。フィルム基板のパターンマスクは一定条件であるため、バラツキはほとんどなく安定しているにもかかわらず、製品の寸法が安定していない。この原因は、フィルム基板のポリイミドフィルムの特性で、温度で寸法変化が起こることと、吸水及び乾燥した状態で、寸法変化が起こるためである。例えば、東レデュポン株式会社のカプトン100ENでは、熱膨張係数はMDおよびTDともに16ppm/℃,湿度膨張係数はMDおよびTDともに15ppm/%RHである。この影響がフィルム基板の寸法バラツキの原因になっている。
【0010】
現状のフィルム基板の累積ピッチ寸法バラツキは、寸法精度のよいTD方向でも、実装前で、±0.06%であり、金スズ共晶接続後では、±0.10%のバラツキを生じる。30μmピッチの実装をするためには、例えば17mmの長尺ICチップの場合、実装後のバンプとフィルム基板のパターンの許容ずれ量は、±10μmである。
【0011】
しかし、実装装置によるズレのバラツキで約±5μmであり、現状のフィルム基板では、実装前の累積ピッチバラツキが約±10μm,実装後では±17μmになる。例えば金スズ共晶接続の実装の方法は、フィルム基板を50〜80℃にし、ICを450℃に加熱したヘッドに吸着し、カメラでアライメントをおこない位置補正を行った後、その温度の状態のまま1〜2秒間、加圧し接続した。実装後のICとフィルム基板の位置ズレ量は、実装後のフィルムの寸法バラツキはセンター基準で両端に割り振るため、バラツキは半分の±8.5μmとなり、実装装置のバラツキと合わせ最大合計±13.5μmとなってしまう。そのため17mmの長尺ICチップの30μmピッチ実装は、不良が多発し高価なものとなってしまった。この、17mmのICを用いた30μmピッチの実装を達成するには、フィルム基板に要求する精度は、初期で累積ピッチバラツキ±3μmである。この精度があれば、実装装置の実装位置バラツキがあっても、実装後の累積ピッチバラツキを電極の接続許容値のバラツキ±10μm以内にすることができる。そのためにフィルム基板の初期寸法バラツキは従来のバラツキの半分以下である約±0.02%にする必要があり、金スズ共晶実装後での精度は、約±0.05%にする必要がある。
【0012】
本発明は、ICとフィルム基板の高密度実装を実現するために、フィルム基板の累積パターンピッチとICの寸法を個々にマッチングすることとした。これにより、安定した接合品質が実現できる。
【0013】
【課題を解決するための手段】
このような従来の実装の課題を解決するために、本発明は、フィルム基板と半導体素子の位置合わせズレの補正を、温度制御による熱膨張を利用して行うこととした。これにより、フィルム基板の寸法バラツキが解消できる。すなわち、本発明の半導体装置の製造方法は、半導体素子とフィルム基板を位置合わせすると共に、フィルム基板の寸法測定を行う工程と、測定されたフィルム基板の寸法に応じて、半導体素子とフィルム基板の少なくとも一方の温度を調整して、フィルム基板を熱膨張させることにより寸法補正を行う工程と、寸法補正された状態で半導体素子とフィルム基板を接合する工程と、を備えることとした。
【0014】
また、本発明の電子機器の製造方法は、半導体素子とフィルム基板を位置合わせすると共に、フィルム基板の寸法測定を行う工程と、測定されたフィルム基板の寸法に応じて、半導体素子とフィルム基板の少なくとも一方の温度を調整してフィルム基板を熱膨張させることにより寸法補正を行う工程と、寸法補正された状態で半導体素子とフィルム基板を接合する工程と、を備えることとした。
【0015】
【発明の実施の形態】
本発明の実装方法は、金などのバンプを形成した半導体素子とポリイミド等の絶縁フィルム上に金属配線を形成したフィルム基板との実装方法において、半導体素子とフィルム基板はカメラによるアライメントと共に、位置補正と半導体素子とフィルム基板の寸法測定を行う、このとき、フィルム基板と半導体素子にかかる温度は、十分接合するときにかける温度よりも低くしておく。カメラアライメントにより位置座標を検出するが、通常は、外形近辺にある対角の2点のマークを認識し、座標計算し、装置のX,Y,θ軸により位置を合わせる。このときカメラで認識したマーク間の寸法を測定し、半導体素子とフィルム基板の寸法が合わない場合は、半導体素子もしくはフィルム基板の温度を調整して、熱膨張によりマーク間の寸法を合わせこむ。このとき合わせる寸法は、実際にICチップと基板が接触したときに一方の温度が下がり、また熱収縮する場合があるので、その分を補正してもよい。その状態のまま加圧を行い半導体素子のバンプとフィルム基板のリードを押しつけてずれないように保持し、加圧と共に半導体を吸着したヘッドやフィルム基板のステージを昇温し、接合部を加熱して接合する実装方法にすることで、高精度の実装精度で接合が可能となった。
このようにして、電子機器に
【0016】
【実施例】
以下、本発明の実施例を図面に基づいて詳細に説明する。
【0017】
(実施例1)
本実施例による実装の工程フローを図1に示す。フィルム基板2は、25μm厚みのポリイミドフィルム21に8μmの厚みの銅からなるパターン22には、スズメッキが純スズ層0.15〜0.25μmしてあり、ソルダーレジスト23が形成してある。このフィルム基板2は、ステージ4に吸着固定してあり、a工程でFPCセットをする。ステージ4の温度は50℃に設定してある。次にb工程でIC1をボンディングヘッド3に吸着する。ボンディングヘッド3は、セラミックヒーター方式で200℃に設定してある。ICは、17×4mmのサイズで単結晶シリコン11表面に回路を形成してあり、金からなる突起電極として、バンプ12が形成してある。バンプ12は、30μmピッチでIC1の外周部に形成してある。次にc工程で、上下2視野カメラ5でIC1とフィルム基板2のマークを確認する。この工程の模式図を図2に示す。上下2視野カメラ5は、矢印の方向にそれぞれカメラを搭載し、IC1のコナー近辺にあるマークを対角で認識する。また、フィルム基板2もほぼ同様な位置を認識する。上下2視野カメラ5は、独立系のX,Y,Z軸で稼動する。パターン認識したデーターにより、d工程でIC1とフィルム基板2の位置を補正する。補正は、フィルム基板2をセットしたステージ4にX,Y,θ軸があり、ステージ4が補正値分移動する。それと同時に、フィルム基板2とIC1が所定の寸法か確認する。ICの対角での寸法バラツキは1μm以下であり問題にはならないが、フィルム基板2の寸法バラツキは、長辺で±10μmあるため、次のe工程で、カメラでの測定結果に応じてICを吸着しているボンディングヘッド3の温度を昇温する。ICの熱膨張係数は5ppmである。共晶接続時に必要なヘッド3の温度は、450℃であり、フィルム基板の寸法バラツキのレンジが約20μmあるため、IC吸着時のボンディングヘッド3の温度200℃から共晶接続温度450℃のレンジが250℃あり、この範囲のICの熱膨張量が、計算上21.25μmとなり、フィルム基板のバラツキ分をカバーできる。
【0018】
本実施例では、フィルム基板2は所定の寸法に対し「−5μm」であったためボンディングヘッド3を260℃昇温する。次にf工程で、確認のため上下2視野カメラ5でIC1とフィルム基板2の位置と寸法を確認する。この確認でNGの場合は、再度フィルム基板2の位置補正やIC1の寸法補正を行う。また、この上下2視野カメラ5の認識工程は、必要無ければ、削除しても良い。IC1のフィルム基板2が所定の位置と寸法になった状態で、次のg工程でボンディングヘッド3を加圧し、IC1のバンプ12とフィルム基板2のリード22が加圧される。この後、加圧部で金スズ共晶接合するために、次の工程でボンディングヘッド3を450℃に昇温する。2秒で温度が450℃に昇温し、ボンディングヘッド3が上昇し接合が完了する。完了した状態の模式図を図3に示す。
【0019】
寸法の補正の加熱は、IC側にこだわるものではなく、フィルム基板側でも良い。また、カメラ認識時のボンディングヘッド3の温度は200℃にこだわるものではなく、任意の温度で良い。
【図面の簡単な説明】
【図1】本発明の工程フローである。
【図2】本発明の実装のプロセスを示す模式図である。
【図3】実装が完成した状態を示す模式図である。
【符号の説明】
1 IC
2 フィルム基板
3 ボンディングヘッド
4 ステージ
5 上下2視野カメラ
11 単結晶Si
12 Auバンプ
21 ポリイミドフィルム
22 パターン
23 ソルダーレジスト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electronic device such as a mobile phone, an information terminal, and a handy terminal, and for example, relates to a method for manufacturing a semiconductor device used for a display device or the like. More specifically, the present invention relates to mounting of a semiconductor element such as a driver IC, for example, to connection between a film substrate in which wiring is formed on an insulating substrate such as polyimide and an IC with bumps.
[0002]
[Prior art]
According to the conventional technology, for example, face-down mounting of an IC for driving a display device is performed by bonding to a polyimide-based film substrate using a method of holding a connection using an adhesive. Using a plated bump formed by plating a bump made of Au or a stud bump to which wire bonding is applied, the film substrate is press-bonded with an anisotropic conductive film (for example, see Patent Document 1), or a silver paste is used as the bump. The image was transferred and connected to a film substrate, and an underfill was filled and connected between them. In the case of pressure bonding with an anisotropic conductive film, elongation of the film caused by the heat of pressure bonding is corrected on the film side (see Patent Document 2). When metal diffusion connection is used, a method of soldering to the electrodes of the film substrate using solder for the bumps of the IC and filling the underfill, Au plating on the bumps of the IC, and Sn plating on the electrodes on the film substrate side. And a method of performing Au-Sn eutectic connection and filling an underfill.
[0003]
In recent years, display devices using ICs that drive a display panel and have a bump pitch of 45 μm and 900 electrodes have been mass-produced. For mounting a pitch of 45 μm, Au—Sn eutectic connection is the most suitable connection method. On the film substrate, a seed layer made of nickel or the like for adhering copper to the polyimide film is sputtered at 30 °, and subsequently, copper is sputtered at 2000 °. Electroplating is performed so that the total thickness of the electrodes is about 8 μm. Patterning is performed using a photolithographic method, and electroless tin plating is performed to form pure tin of about 0.15 to 0.25 μm. After forming the solder resist, the film substrate is completed. The film substrate is set on a stage at about 50 ° C. The IC is attracted to the bonding head and heated to 450 ° C. The bonding head may be heated beforehand to deliver the IC. While the IC and the film substrate are opposed to each other, two diagonal marks of the IC and two marks of the film substrate are recognized by the upper and lower two-view camera, and respective coordinates are calculated. The Y axis and the θ axis are corrected to predetermined positions facing the IC, and the IC is heated to 450 ° C. and pressed for 2 seconds to complete the gold-tin eutectic connection.
[0004]
[Patent Document 1]
JP 05-249479 A (Page 3, FIG. 1)
[0005]
[Patent Document 2]
JP-A-2000-312070 (page 4, FIG. 2)
[0006]
[Problems to be solved by the invention]
The size of ICs has been reduced year by year, and mass production of mounting ICs having a pitch of 40 μm and film substrates has begun. As for ICs, studies are underway on shrinking and finer pitch to reduce the price. The formation of a straight bump is limited to a space of 13 μm, and the width of the bump is 15 to 17 μm at present, which is the limit for stable mass production. Therefore, the pitch of ICs that can be mass-produced at present is 30 μm pitch. In the case of an IC having a bump arrangement of 30 μm pitch and the number of electrodes exceeding 1000 pins, a mounting position deviation from the film substrate occurred. The displacement is a phenomenon in which the accumulated pitches of the IC and the film substrate do not match, and the terminals at the ends are largely displaced when they are matched at the center terminal.
[0007]
One of the causes is that the film substrate is thermally deformed by heat at the time of mounting. Particularly, in the case of Au-Sn eutectic connection, since the temperature of the connection portion is heated to 350 to 380 ° C, deviation occurs even when polyimide having high heat resistance is used. As a countermeasure against the displacement, the pattern for correcting the extension of the entire pattern of the film substrate or only the IC mounting portion was reduced at a constant magnification. In the corrected pattern, the degree of deviation was small, but variation in elongation occurred, so that this alone did not solve the cause.
[0008]
Another cause is a method of manufacturing a film substrate. Generally, a film substrate is manufactured by a roll method. At this time, since a raw material having a width of 200 to 500 is used, a mask layout for obtaining more products is to arrange the products freely at 0 °, 90 °, 180 ° and 270 ° so that the products are tied together. Therefore, it was manufactured so as to obtain the largest number of pieces. Since the raw material of the film substrate is obtained by uniaxially stretching the polyimide, the characteristics are different between a machine direction (MD) and a transfer direction (TD). In the physical properties published by film manufacturers, even if the properties of strength, elongation, Young's modulus, heat shrinkage, thermal expansion coefficient, and humidity expansion coefficient are the same in MD and TD, the actual MD and TD directions The characteristics of dimensional change are different. Further, depending on the mask layout of the film substrate, a certain side connected to the IC may be in the MD direction or TD. However, this mask layout is a design problem, and it is possible to set design rules that match the design of the IC and the direction of the film.
[0009]
Also, the initial dimensional variation of the film substrate is one of the major causes. Normally, the initial dimensional variation of a film substrate using a material in which a metal thin film is sputtered on a polyimide film and copper is formed by electroplating has a variation of ± 0.06%. Since the pattern mask of the film substrate is under a constant condition, the dimensions of the product are not stable despite the fact that there is almost no variation and the pattern mask is stable. This is because, due to the characteristics of the polyimide film of the film substrate, a dimensional change occurs at a temperature and a dimensional change occurs in a state of water absorption and drying. For example, in the case of Kapton 100EN manufactured by Toray DuPont, the coefficient of thermal expansion is 16 ppm / ° C. for both MD and TD, and the coefficient of humidity expansion is 15 ppm /% RH for both MD and TD. This influence causes the dimensional variation of the film substrate.
[0010]
The current variation in the cumulative pitch dimension of the film substrate is ± 0.06% before mounting even in the TD direction with good dimensional accuracy, and ± 0.10% after gold-tin eutectic connection. In order to mount at a pitch of 30 μm, for example, in the case of a long IC chip of 17 mm, the allowable deviation amount between the mounted bump and the pattern of the film substrate is ± 10 μm.
[0011]
However, the deviation due to the mounting apparatus is about ± 5 μm, and in the current film substrate, the cumulative pitch fluctuation before mounting is about ± 10 μm, and after mounting, it is ± 17 μm. For example, the mounting method of gold-tin eutectic connection is as follows: the film substrate is heated to 50 to 80 ° C, the IC is attracted to a head heated to 450 ° C, alignment is performed by a camera, and position correction is performed. Pressurized for 1 to 2 seconds and connected. Regarding the amount of positional deviation between the IC after mounting and the film substrate, the dimensional variation of the mounted film is divided to both ends on the basis of the center, so that the variation is half of ± 8.5 μm, and the maximum total is ± 13. It becomes 5 μm. Therefore, mounting a long IC chip of 17 mm at a pitch of 30 μm caused many failures and became expensive. In order to achieve the mounting at a pitch of 30 μm using a 17 mm IC, the accuracy required for the film substrate is ± 3 μm at the initial stage of the accumulated pitch variation. With this accuracy, even if there is a variation in the mounting position of the mounting apparatus, the accumulated pitch variation after the mounting can be made within ± 10 μm of the allowable connection value of the electrodes. For this purpose, the initial size variation of the film substrate needs to be about ± 0.02%, which is less than half of the conventional variation, and the accuracy after gold-tin eutectic mounting needs to be about ± 0.05%. is there.
[0012]
According to the present invention, in order to realize high-density mounting of the IC and the film substrate, the cumulative pattern pitch of the film substrate and the dimensions of the IC are individually matched. Thereby, stable joining quality can be realized.
[0013]
[Means for Solving the Problems]
In order to solve such a problem of conventional mounting, the present invention corrects misalignment between a film substrate and a semiconductor element by utilizing thermal expansion by temperature control. Thereby, the dimensional variation of the film substrate can be eliminated. That is, the method for manufacturing a semiconductor device according to the present invention includes the steps of aligning the semiconductor element and the film substrate, measuring the dimensions of the film substrate, and, according to the measured dimensions of the film substrate, The method includes the steps of adjusting at least one temperature to thermally expand the film substrate to perform dimensional correction, and joining the semiconductor element and the film substrate in the dimensional corrected state.
[0014]
In addition, the method for manufacturing an electronic device of the present invention includes a step of aligning the semiconductor element and the film substrate, measuring the dimensions of the film substrate, and, according to the measured dimensions of the film substrate, forming the semiconductor element and the film substrate. The method includes a step of adjusting a temperature by adjusting at least one temperature to thermally expand the film substrate, and a step of joining the semiconductor element and the film substrate with the dimension corrected.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The mounting method of the present invention is a method of mounting a semiconductor element having bumps made of gold or the like and a film substrate having metal wiring formed on an insulating film made of polyimide or the like. Then, the dimensions of the semiconductor element and the film substrate are measured. At this time, the temperature applied to the film substrate and the semiconductor element is set to be lower than the temperature applied at the time of sufficient bonding. The position coordinates are detected by camera alignment. Usually, two diagonal marks near the outer shape are recognized, the coordinates are calculated, and the position is adjusted using the X, Y, and θ axes of the apparatus. At this time, the dimension between the marks recognized by the camera is measured, and when the dimensions of the semiconductor element and the film substrate do not match, the temperature of the semiconductor element or the film substrate is adjusted, and the dimension between the marks is adjusted by thermal expansion. The dimensions to be adjusted at this time may be corrected because the temperature of one of the IC chips and the substrate may decrease when the IC chip and the substrate actually come into contact with each other, and the thermal contraction may occur. In this state, pressurization is performed to press the bumps of the semiconductor element and the lead of the film substrate so that they do not shift, and the pressure is applied to the head and the stage of the film substrate, which has absorbed the semiconductor, and the junction is heated. By adopting a mounting method in which the bonding is performed, bonding can be performed with high mounting accuracy.
In this way, the electronic device
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
(Example 1)
FIG. 1 shows a mounting process flow according to this embodiment. The film substrate 2 has a pattern 22 made of copper having a thickness of 8 μm on a polyimide film 21 having a thickness of 25 μm, a tin plating of 0.15 to 0.25 μm on a pure tin layer, and a solder resist 23 is formed. The film substrate 2 is fixed to the stage 4 by suction, and the FPC is set in step a. The temperature of the stage 4 is set to 50 ° C. Next, the IC 1 is attracted to the bonding head 3 in step b. The bonding head 3 is set at 200 ° C. by a ceramic heater method. In the IC, a circuit is formed on the surface of the single crystal silicon 11 with a size of 17 × 4 mm, and a bump 12 is formed as a protruding electrode made of gold. The bumps 12 are formed on the outer periphery of the IC 1 at a pitch of 30 μm. Next, in step c, the marks on the IC 1 and the film substrate 2 are confirmed by the upper and lower two-view camera 5. FIG. 2 shows a schematic diagram of this step. The upper and lower two-view camera 5 has cameras mounted in the directions of the arrows, and recognizes a mark near the corner of the IC 1 diagonally. Further, the film substrate 2 recognizes substantially the same position. The upper and lower two-view camera 5 operates on independent X, Y, and Z axes. In step d, the positions of the IC 1 and the film substrate 2 are corrected based on the data on which the pattern has been recognized. For correction, the stage 4 on which the film substrate 2 is set has X, Y, and θ axes, and the stage 4 moves by the correction value. At the same time, it is checked whether the film substrate 2 and the IC 1 have predetermined dimensions. The dimensional variation at the diagonal of the IC is 1 μm or less, which is not a problem. However, since the dimensional variation of the film substrate 2 is ± 10 μm on the long side, in the next step e, the IC varies depending on the measurement result by the camera. The temperature of the bonding head 3 that is adsorbing is raised. The thermal expansion coefficient of the IC is 5 ppm. The temperature of the head 3 required for the eutectic connection is 450 ° C., and the range of the dimensional variation of the film substrate is about 20 μm. Is 250 ° C., and the thermal expansion amount of the IC in this range is calculated to be 21.25 μm, which can cover the variation of the film substrate.
[0018]
In this embodiment, since the film substrate 2 has a predetermined size of “−5 μm”, the bonding head 3 is heated to 260 ° C. Next, in step f, the positions and dimensions of the IC 1 and the film substrate 2 are confirmed by the upper and lower two-view camera 5 for confirmation. If the confirmation is NG, the position correction of the film substrate 2 and the dimensional correction of the IC 1 are performed again. In addition, the recognition process of the upper and lower two-view camera 5 may be deleted if unnecessary. With the film substrate 2 of the IC 1 at a predetermined position and dimensions, the bonding head 3 is pressed in the next step g, and the bumps 12 of the IC 1 and the leads 22 of the film substrate 2 are pressed. Thereafter, the bonding head 3 is heated to 450 ° C. in the next step in order to perform gold-tin eutectic bonding at the pressurized portion. In 2 seconds, the temperature rises to 450 ° C., the bonding head 3 rises, and the bonding is completed. FIG. 3 shows a schematic diagram of the completed state.
[0019]
Heating for dimensional correction is not limited to the IC side, but may be on the film substrate side. The temperature of the bonding head 3 at the time of camera recognition is not limited to 200 ° C., but may be any temperature.
[Brief description of the drawings]
FIG. 1 is a process flow of the present invention.
FIG. 2 is a schematic view showing a process of mounting the present invention.
FIG. 3 is a schematic diagram showing a state in which mounting is completed.
[Explanation of symbols]
1 IC
2 Film substrate 3 Bonding head 4 Stage 5 Vertical two-view camera 11 Monocrystalline Si
12 Au bump 21 Polyimide film 22 Pattern 23 Solder resist

Claims (2)

バンプを有する半導体素子がフィルム基板に実装された半導体装置の製造方法において、
前記半導体素子と前記フィルム基板を位置合わせすると共に、前記フィルム基板の寸法測定を行う工程と、
前記測定されたフィルム基板の寸法に応じて、前記半導体素子と前記フィルム基板の少なくとも一方の温度を調整して、前記フィルム基板を熱膨張させることにより寸法補正を行う工程と、
寸法補正された状態で前記半導体素子と前記フィルム基板を接合する工程と、を備えることを特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device in which a semiconductor element having a bump is mounted on a film substrate,
A step of aligning the semiconductor element and the film substrate, and measuring the dimensions of the film substrate,
According to the measured dimensions of the film substrate, adjusting the temperature of at least one of the semiconductor element and the film substrate, performing a dimensional correction by thermally expanding the film substrate,
Bonding the semiconductor element and the film substrate in a state where the dimensions have been corrected.
半導体素子が実装されたフィルム基板を有する電子機器の製造方法において、
前記半導体素子と前記フィルム基板を位置合わせすると共に、前記フィルム基板の寸法測定を行う工程と、
前記測定されたフィルム基板の寸法に応じて、前記半導体素子と前記フィルム基板の少なくとも一方の温度を調整して、前記フィルム基板を熱膨張させることにより寸法補正を行う工程と、
寸法補正された状態で前記半導体素子と前記フィルム基板を接合する工程と、を備えることを特徴とする電子機器の製造方法。
In a method for manufacturing an electronic device having a film substrate on which a semiconductor element is mounted,
A step of aligning the semiconductor element and the film substrate, and measuring the dimensions of the film substrate,
According to the measured dimensions of the film substrate, adjusting the temperature of at least one of the semiconductor element and the film substrate, performing a dimensional correction by thermally expanding the film substrate,
Bonding the semiconductor element and the film substrate in a state in which the dimensions have been corrected.
JP2003066893A 2003-03-12 2003-03-12 Semiconductor device manufacturing method and electronic device manufacturing method Expired - Fee Related JP4184838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066893A JP4184838B2 (en) 2003-03-12 2003-03-12 Semiconductor device manufacturing method and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066893A JP4184838B2 (en) 2003-03-12 2003-03-12 Semiconductor device manufacturing method and electronic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2004281450A true JP2004281450A (en) 2004-10-07
JP4184838B2 JP4184838B2 (en) 2008-11-19

Family

ID=33284662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066893A Expired - Fee Related JP4184838B2 (en) 2003-03-12 2003-03-12 Semiconductor device manufacturing method and electronic device manufacturing method

Country Status (1)

Country Link
JP (1) JP4184838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200263A1 (en) * 2020-03-30 2021-10-07 東レエンジニアリング株式会社 Mounting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200263A1 (en) * 2020-03-30 2021-10-07 東レエンジニアリング株式会社 Mounting device
JP7428570B2 (en) 2020-03-30 2024-02-06 東レエンジニアリング株式会社 mounting equipment

Also Published As

Publication number Publication date
JP4184838B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US10083931B2 (en) Packaged microelectronic devices having stacked interconnect elements and methods for manufacturing the same
JP3565086B2 (en) Probe card and method for testing semiconductor device
US7928556B2 (en) Semiconductor device and manufacturing method thereof
JP5198265B2 (en) Apparatus and method for forming a flat surface of a thin flexible substrate
JP3967263B2 (en) Semiconductor device and display device
JP2007158200A (en) Exposure method for manufacture of laminated semiconductor device
JP3000975B2 (en) Semiconductor element mounting structure
EP1301945A1 (en) Multi-metal layer circuit
JP4214357B2 (en) Manufacturing method of electronic device
JP3645511B2 (en) Manufacturing method of semiconductor device
JP4443324B2 (en) Flexible wiring board and manufacturing method thereof, semiconductor chip mounting flexible wiring board, electronic device
US6953991B2 (en) Semiconductor device
JP4162530B2 (en) Electronic device, film substrate, semiconductor device, and display device manufacturing method
JP4184838B2 (en) Semiconductor device manufacturing method and electronic device manufacturing method
JP3875569B2 (en) Manufacturing method of display device
JP3573104B2 (en) Apparatus and method for mounting conductive ball
TWI813341B (en) Flip chip bonding method
JPH10189660A (en) Flip chip connection circuit device
US7303943B2 (en) Method of manufacturing electric device
JP2006237164A (en) Method for manufacturing electronic equipment
JP4053507B2 (en) Manufacturing method of semiconductor device
JP2000323508A (en) Bump transfer sheet
US7157362B2 (en) Electronic circuit unit and method of fabricating the same
JPH11293132A (en) Insulating material used for electronic device, semiconductor device using the same, and production of the semiconductor device
JP4705070B2 (en) Semiconductor device, manufacturing method thereof, and display device manufacturing method,

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees