JP2004280904A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2004280904A
JP2004280904A JP2003068718A JP2003068718A JP2004280904A JP 2004280904 A JP2004280904 A JP 2004280904A JP 2003068718 A JP2003068718 A JP 2003068718A JP 2003068718 A JP2003068718 A JP 2003068718A JP 2004280904 A JP2004280904 A JP 2004280904A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
protective layer
layer
square inch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003068718A
Other languages
Japanese (ja)
Inventor
Satoru Matsunuma
悟 松沼
Hideaki Yamanaka
英明 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003068718A priority Critical patent/JP2004280904A/en
Publication of JP2004280904A publication Critical patent/JP2004280904A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium which is excellent in sliding resistance and in corrosion resistance and which is capable of recording and reproducing with a high surface recording density of ≥ 600 Gbits/square inch. <P>SOLUTION: In a disk-shaped magnetic recording medium of a magnetic recording system recorded with the surface recording density of ≥600 Gbits/square inch is provided with a protective layer comprising tetrahedral-based amorphous carbon. The sliding resistance and the corrosion resistance are improved even under the condition of the high surface recording density of ≥ 600 Gbits/square inch. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体に関し、より詳細には、長期的な耐摺動特性が維持でき、600ギガビット/平方インチ以上の高い面記録密度の条件においても記録再生が可能となる磁気記録媒体に関する。
【0002】
【従来の技術】
近年、磁気記録媒体の面記録密度を高めるためにヘッドの低浮上量化が求められており、近い将来極低浮上領域あるいは間欠的なコンタクトレコーティングになると予測される。この点に関する本発明者らの試算では、600ギガビット/平方インチ以上の面記録密度では、ヘッド浮上量は4nm以下とする必要があり、これに伴ない、磁気記録媒体としては、保護層厚は3nm以下望ましくは2nm以下に仕上げる必要があるとの結論を得た。
【0003】
600ギガビット/平方インチ以上の面記録密度を実現するために、本発明者らは、まず記録層の生成過程における結晶成長を制御して、記録層の結晶粒の微細化を図るべく、Tiからなる下地層の直上に形成したRuあるいはRuを主成分とする中間層の上に形成した酸素を含有するCoPtCr合金記録層、とした。
【0004】
この記録層の詳細は本発明者らにより特願2002−224023明細書に記載されている。本発明のTi下地層の膜厚は2〜30nmの範囲、Ru中間層の膜厚は3〜150nmの範囲が好ましい。更に、酸素を含有するCoPtCr合金磁性膜の酸素含有量は5〜20原子%の範囲であることが好ましい。この範囲にすることにより、更に保磁力が向上し、かつ低ノイズの高記録密度の媒体を得ることが出来る。
【0005】
ところで近年,通常のパーソナルコンピュータ以外に磁気記憶装置が使われることが多くなっている。たとえば、車載用ナビゲーションシステムに搭載される磁気記憶装置においては,使用される地域によっては,100℃90%RHに近い高温高湿度下で長時間使用されることも予測される。そのような耐苛酷環境仕様の磁気記録媒体における記録層においては、さらに耐食性に優れた保護膜が必要であることが,その後の本発明者らの更なる探求の結果明らかになった。
【0006】
従来より磁気記録媒体の保護層としては、主にグラファイトターゲットのスパッタリングによって形成されるスパッタカーボンが用いられてきた。スパッタカーボンは、化学的に安定で摩擦係数が小さく、摺動時に摩耗粉が残りにくい性質を有する。しかし,保護層内部にグラファイト状の骨格構造を多数含む欠点があり、耐磨耗特性が十分ではなかった。スパッタカーボンに代わる硬質炭素膜としては、たとえば,特許文献1に開示されるようなダイヤモンドライクカーボン,DLC(Diamond like carbon )があげられる。DLCはプラズマCVD法によりイオン衝撃を伴う炭化水素ラジカルの表面反応で作製される水素化炭素膜であり,硬く、被覆性に優れ、薄くても耐摺動性と耐食性に優れることで知られている。これは,炭化水素イオンの表面との衝突でフラグメント化した炭素イオンが、保護層内部に侵入し、内部の大きな圧力下でsp結合を形成するため,硬質の構造が成長するものと推定されている。
【0007】
【特許文献1】
特開平10−172140号公報
【0008】
【発明が解決しようとする課題】
しかし、それでもなお、600ギガビット/平方インチ以上の高面記録密度で想定される2nm以下のような膜厚では、DLCでさえ耐摺動特性や耐食性が十分でなく、ましてや保存環境における腐食に敏感である微細化・規則化された結晶粒をもつ記録層の長期保護にはおのずと限界があった。本発明は、上記課題を解決するためになされたものである。
【0009】
【課題を解決するための手段】
本発明では、上述した微細化・規則化された結晶粒をもつ記録層の保護層としてテトラヘドラル系非結晶カーボンをカソーディック・アーク法により形成するようにしたので、充分な硬度と被覆性を持ち記録層との密着性の良好な保護層の形成が実現できる。
【0010】
ここで,カソーディック・アーク(Cathodic Arc)法とは、カソードをアーク放電により蒸発させることにより,成膜する一種の蒸着法であり、蒸発したカソードは電離してプラズマとなりアノード側に供給される。このときのアーク電流は、電離により生じた電荷が担体であり、イオン化したカソード材料がこれに沿って飛散する。カソーディック・アーク法の成膜装置では、アークチャンバの内部に、磁気記録媒体を保持するための基板ホルダがあり,それに保持された磁気記録媒体に対向する位置にカソードが設置されている。そして,カソードには、パルス発生器を備えたアーク電源が接続されており、電流が流れるとカソード上にアーク放電が発生するようになっている。
【0011】
【発明の実施の形態】
(実施例1)
磁気記録媒体はガラス基板上に、Ti下地層、Ru中間層、酸素を含むCoPtCr合金記録層、C保護層を備える。各層は以下のようにDC/RFマグネトロンスパッタ装置を用いてスパッタリングにより形成した。基板は成膜前に340℃まで加熱した。直径2・5インチ(6.25cm)のガラス基板上にTi下地層をDCスパッタリングによりガス圧0.28Pa、投入電力500Wで形成したあと、Ru中間層をガス圧4.1Pa、投入電力500Wで形成、続けて酸素を含有したCoPtCr合金記録膜をガス圧4.2Pa、投入電力400Wで形成、さらにC保護層をガス圧0.20Pa、投入電力300Wで順次形成した。記録膜のみRFスパッタリングで形成し、他の各層はすべてDCスパッタリングにより形成した。用いたターゲットは軟磁性膜としてCo88Ta10Zr2(原子%)、Ti下地層としてTiターゲット、Ru中間層としてRuターゲット、CoPtCr合金記録膜として、Co64Pt20Cr16(原子%)−O(CoPtCr:O=90:10mol%)を用いた。CoPtCr合金磁性膜形成時にはアルゴンと酸素の混合ガスを用い、膜中の酸素含有率が10.5%となるように混合ガスの酸素濃度を調整した。ここで、膜中の酸素含有率はオージェ電子分光法により測定した。膜厚方向に対する酸素含有率はほぼ均一であった。Ti下地層の膜厚を20nmとした。
【0012】
その後、グラファイトカソードを用いたカソーディック・アーク法によりテトラヘドラル系非晶質炭素保護層を2nmの厚さで形成した。
【0013】
保護層のsp炭素比率は,透過電子顕微鏡に接続した電子線エネルギー損失スペクトルで、エネルギー損失関数によるピークのフィティングを行い、その各ピークの面積比から計算した。本実施例については,sp炭素比率は0.85となり,sp混成軌道であらわされるシグマ結合の三次元ネットワークによる強固なアモルファス構造からなることが明らかになった。
【0014】
本実施例の保護層について,ナノインデンテーションテスターにより硬度測定を行ったところ、その硬度は25Gpaであり,きわめて硬度の高い膜であることが明らかになった。
【0015】
本実施例の磁気記録媒体について、パーフルオロポリエーテル系潤滑剤を1nmの厚さで塗布した後、耐摺動特性の評価をシークテストにより行った。シークテストは、ピコスライダーを用い、500hPaに減圧したチャンバー内で、7200rpmで磁気記録媒体を回転させながら10Hzの周期でシーク動作を実施し,ヘッドスライダーとの間欠接触によるスクラッチ痕や磨耗の有無を観察した。本実施例の磁気記録媒体では、60k回のシーク動作の後でも媒体表面にスクラッチや磨耗が生じることがなく,耐摺動性の優れた磁気記録媒体であることを示した。
【0016】
さらに,硝酸セリウムアンモニウム(Ce(NH(NO)溶液の中に本実施例の磁気記録媒体を5分浸漬した後、媒体表面を光学顕微鏡で観察したところ、腐食点は観察されなかった。これにより,ピンホールのない被覆性に優れた保護層であることが明らかになった。
【0017】
また,恒温恒湿槽にて,本実施例の磁気記録媒体を60℃,90%RHの環境下で2時間放置した後、最表面をX線光電子分光法により観察したところ、腐食の兆候であるCoまたはFe等の磁性膜由来の金属は検出されなかった。これにより,本実施例の磁気記録媒体は、耐侯性に優れた特性をもつことが明らかになった。
【0018】
(比較例1)
膜厚2nmの保護層をプラズマCVD法により形成した点を除いては、実施例1と同様にして磁気記録媒体を作製した。
【0019】
実施例1と同様に,電子線エネルギー損失スペクトルから求めた保護層のsp炭素比率は,40%であった。
【0020】
ナノインデンテーションテスターにより測定した保護層の硬度は、19Gpaであった。
【0021】
パーフルオロポリエーテル系潤滑剤を1nmの厚さで塗布した後、実施例1と同じ条件で耐摺動特性の評価をシークテストにより行うと、60k回のシーク動作の後に媒体表面にスクラッチや磨耗が観測された。
【0022】
硝酸セリウムアンモニウム溶液の中に本比較例の磁気記録媒体を5分浸漬した後、光学顕微鏡で観測すると、腐食点が多数観測された。DLC保護膜の被覆性が十分ではなく、ピンホールから腐食した金属化合物が析出したものと思われる。
【0023】
さらに,実施例1と同条件で、恒温恒湿槽で耐侯試験を行ったところ、60℃,90%RHの環境下で2時間放置後、最表面にCoまたはFeなど記録層由来元素が2at%検出された。高温高湿下の環境により記録が腐食して析出したものと思われる。
【0024】
【発明の効果】
以上,詳述したように、本発明の磁気記録媒体は、保護層としてテトラヘドラル系非結晶カーボンをカソーディック・アーク法により形成するようにしたので、充分な硬度を持ち密着性のよい保護層により,600ギガビット/平方インチ以上の高い面記録密度で記録再生が可能となる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium, and more particularly, to a magnetic recording medium that can maintain long-term sliding resistance and can perform recording and reproduction even under conditions of a high areal recording density of 600 gigabits / square inch or more. .
[0002]
[Prior art]
In recent years, it has been required to reduce the flying height of a head in order to increase the areal recording density of a magnetic recording medium, and it is expected that an extremely low flying area or intermittent contact recording will be performed in the near future. According to the inventors' calculation in this regard, at a surface recording density of 600 gigabits / square inch or more, the flying height of the head must be 4 nm or less. It was concluded that it is necessary to finish to 3 nm or less, preferably 2 nm or less.
[0003]
In order to achieve an areal recording density of 600 gigabits / square inch or more, the present inventors first controlled the crystal growth in the process of forming the recording layer, and in order to make the crystal grains of the recording layer fine, Ru or a CoPtCr alloy recording layer containing oxygen formed on an intermediate layer containing Ru as the main component, which was formed immediately above the underlayer.
[0004]
Details of this recording layer are described in Japanese Patent Application No. 2002-224033 by the present inventors. The thickness of the Ti underlayer of the present invention is preferably in the range of 2 to 30 nm, and the thickness of the Ru intermediate layer is preferably in the range of 3 to 150 nm. Further, the oxygen content of the oxygen-containing CoPtCr alloy magnetic film is preferably in the range of 5 to 20 atomic%. Within this range, a coercive force can be further improved, and a low-noise, high-recording-density medium can be obtained.
[0005]
In recent years, magnetic storage devices other than ordinary personal computers have been increasingly used. For example, a magnetic storage device mounted on an in-vehicle navigation system is expected to be used for a long time under high temperature and high humidity near 100 ° C. and 90% RH, depending on the region where it is used. As a result of further research by the present inventors, it has become clear that the recording layer of the magnetic recording medium having such a severe environmental specification requires a protective film having even higher corrosion resistance.
[0006]
Conventionally, sputtered carbon formed by sputtering a graphite target has been used as a protective layer of a magnetic recording medium. Sputtered carbon is chemically stable, has a small coefficient of friction, and has a property that abrasion powder hardly remains during sliding. However, the protective layer has a drawback of including a large number of graphite-like skeletal structures, and the wear resistance is not sufficient. As a hard carbon film instead of sputtered carbon, for example, diamond-like carbon and DLC (Diamond like carbon) as disclosed in Patent Document 1 can be cited. DLC is a hydrogenated carbon film produced by the surface reaction of hydrocarbon radicals accompanied by ion bombardment by the plasma CVD method, and is known for being hard, excellent in coating properties, and excellent in sliding resistance and corrosion resistance even when thin. I have. This is presumed to be due to the fact that carbon ions fragmented by collision with hydrocarbon ions penetrate into the protective layer and form sp 3 bonds under a large internal pressure, so that a hard structure grows. ing.
[0007]
[Patent Document 1]
JP-A-10-172140
[Problems to be solved by the invention]
However, even at a film thickness of 2 nm or less, which is assumed at a high areal recording density of 600 gigabits / square inch or more, even DLC does not have sufficient sliding resistance and corrosion resistance, and is even more susceptible to corrosion in a storage environment. However, the long-term protection of a recording layer having fine and ordered crystal grains is naturally limited. The present invention has been made to solve the above problems.
[0009]
[Means for Solving the Problems]
In the present invention, tetrahedral amorphous carbon is formed by the cathodic arc method as a protective layer of the recording layer having the above-described finely-ordered crystal grains, so that it has sufficient hardness and coverage. The formation of a protective layer having good adhesion to the recording layer can be realized.
[0010]
Here, the cathodic arc method is a kind of vapor deposition method of forming a film by evaporating a cathode by arc discharge, and the evaporated cathode is ionized to be plasma and supplied to the anode side. . The electric current generated by ionization is the carrier, and the ionized cathode material is scattered along the arc current. In a cathodic arc film forming apparatus, a substrate holder for holding a magnetic recording medium is provided inside an arc chamber, and a cathode is provided at a position facing the magnetic recording medium held therein. An arc power supply having a pulse generator is connected to the cathode, and an arc discharge is generated on the cathode when a current flows.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
The magnetic recording medium is provided with a Ti underlayer, a Ru intermediate layer, a CoPtCr alloy recording layer containing oxygen, and a C protective layer on a glass substrate. Each layer was formed by sputtering using a DC / RF magnetron sputtering apparatus as follows. The substrate was heated to 340 ° C. before film formation. After a Ti underlayer was formed on a glass substrate having a diameter of 2.5 inches (6.25 cm) by DC sputtering at a gas pressure of 0.28 Pa and a power of 500 W, the Ru intermediate layer was formed at a gas pressure of 4.1 Pa and a power of 500 W. Formation and subsequent formation of a CoPtCr alloy recording film containing oxygen were performed at a gas pressure of 4.2 Pa and an applied power of 400 W, and a C protective layer was sequentially formed at a gas pressure of 0.20 Pa and an applied power of 300 W. Only the recording film was formed by RF sputtering, and all other layers were formed by DC sputtering. The target used was Co88Ta10Zr2 (atomic%) as the soft magnetic film, the Ti target as the Ti underlayer, the Ru target as the Ru intermediate layer, and the CoPtCr alloy recording film as Co64Pt20Cr16 (atomic%)-O (CoPtCr: O = 90: 10 mol%). ) Was used. At the time of forming the CoPtCr alloy magnetic film, a mixed gas of argon and oxygen was used, and the oxygen concentration of the mixed gas was adjusted so that the oxygen content in the film was 10.5%. Here, the oxygen content in the film was measured by Auger electron spectroscopy. The oxygen content in the film thickness direction was almost uniform. The thickness of the Ti underlayer was set to 20 nm.
[0012]
Thereafter, a tetrahedral amorphous carbon protective layer having a thickness of 2 nm was formed by a cathodic arc method using a graphite cathode.
[0013]
The sp 3 carbon ratio of the protective layer was calculated from the area ratio of each peak by performing peak fitting by an energy loss function on an electron beam energy loss spectrum connected to a transmission electron microscope. In this example, the sp 3 carbon ratio was 0.85, and it was clarified that the structure had a strong amorphous structure based on a three-dimensional network of sigma bonds represented by sp 3 hybrid orbitals.
[0014]
When the hardness of the protective layer of this example was measured using a nanoindentation tester, the hardness was found to be 25 Gpa, and the film was extremely hard.
[0015]
After a perfluoropolyether-based lubricant was applied to the magnetic recording medium of this example in a thickness of 1 nm, the sliding resistance was evaluated by a seek test. In the seek test, a seek operation was performed at a cycle of 10 Hz while rotating the magnetic recording medium at 7200 rpm in a chamber decompressed to 500 hPa using a picos slider to check for scratch marks and wear due to intermittent contact with the head slider. Observed. In the magnetic recording medium of this example, no scratch or abrasion occurred on the medium surface even after the seek operation of 60k times, indicating that the magnetic recording medium was excellent in sliding resistance.
[0016]
Further, after immersing the magnetic recording medium of this example in a cerium ammonium nitrate (Ce (NH 4 ) 2 (NO 3 ) 6 ) solution for 5 minutes, the surface of the medium was observed with an optical microscope. Was not done. As a result, it became clear that the protective layer was excellent in coverability without pinholes.
[0017]
After leaving the magnetic recording medium of this example in a constant temperature and humidity chamber at 60 ° C. and 90% RH for 2 hours, the outermost surface was observed by X-ray photoelectron spectroscopy. A metal derived from a magnetic film such as Co or Fe was not detected. As a result, it was clarified that the magnetic recording medium of the present example had characteristics excellent in weather resistance.
[0018]
(Comparative Example 1)
A magnetic recording medium was manufactured in the same manner as in Example 1, except that a protective layer having a thickness of 2 nm was formed by a plasma CVD method.
[0019]
As in Example 1, sp 3 carbon ratio of the protective layer obtained from the electron beam energy loss spectrum, was 40%.
[0020]
The hardness of the protective layer measured by a nanoindentation tester was 19 Gpa.
[0021]
After a perfluoropolyether-based lubricant was applied to a thickness of 1 nm, the sliding resistance was evaluated by a seek test under the same conditions as in Example 1. When the seek operation was performed 60 k times, the surface of the medium was scratched or worn. Was observed.
[0022]
After immersing the magnetic recording medium of this comparative example in a cerium ammonium nitrate solution for 5 minutes, when observed with an optical microscope, many corrosion points were observed. It is considered that the DLC protective film did not have sufficient coverage and that the corroded metal compound was deposited from the pinhole.
[0023]
Further, a weather resistance test was performed in a thermo-hygrostat under the same conditions as in Example 1. After standing for 2 hours in an environment of 60 ° C. and 90% RH, a recording layer-derived element such as Co or Fe was 2 at the outermost surface. %was detected. It is considered that the record was corroded and deposited by the environment under high temperature and high humidity.
[0024]
【The invention's effect】
As described above in detail, in the magnetic recording medium of the present invention, a tetrahedral amorphous carbon is formed as a protective layer by a cathodic arc method, so that the protective layer having sufficient hardness and good adhesion is used. , And 600 gigabits / square inch or more.

Claims (3)

非磁性基板上に、Tiからなる下地層があり、前記Tiからなる下地層の直上にRuあるいはRuを主成分とする合金からなる中間層を形成し、さらにその上に、酸素を含有するCoPtCr合金記録層を形成し、更にその上に、保護層及び潤滑層を形成した600ギガビット/平方インチ以上の面記録密度で記録される円盤状の磁気記録媒体であって、上記保護層がテトラヘドラル系非晶質カーボンからなることを特徴とする磁気記録媒体。An underlayer made of Ti is provided on the non-magnetic substrate, and an intermediate layer made of Ru or an alloy containing Ru as a main component is formed directly on the underlayer made of Ti, and CoPtCr containing oxygen is further formed thereon. A disc-shaped magnetic recording medium on which an alloy recording layer is formed and a protective layer and a lubricating layer are further formed thereon and which are recorded at a surface recording density of 600 gigabits / square inch or more, wherein the protective layer is a tetrahedral-based A magnetic recording medium comprising amorphous carbon. 上記保護層は、カソーディック・アーク法により形成されたものであることを特徴とする請求項1記載の磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein the protective layer is formed by a cathodic arc method. 上記保護層の硬度が20Gpa以上であることを特徴とする請求項1記載の磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein the hardness of the protective layer is 20 Gpa or more.
JP2003068718A 2003-03-13 2003-03-13 Magnetic recording medium Withdrawn JP2004280904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068718A JP2004280904A (en) 2003-03-13 2003-03-13 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068718A JP2004280904A (en) 2003-03-13 2003-03-13 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2004280904A true JP2004280904A (en) 2004-10-07

Family

ID=33285974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068718A Withdrawn JP2004280904A (en) 2003-03-13 2003-03-13 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2004280904A (en)

Similar Documents

Publication Publication Date Title
US5567512A (en) Thin carbon overcoat and method of its making
EP0293662B1 (en) A process for making a thin film metal alloy magnetic recording disk with a hydrogenated carbon overcoat
US8865269B2 (en) Method of forming a protective film for a magnetic recording medium, a protective film formed by the method and a magnetic recording medium having the protective film
US6875492B1 (en) Carbon overcoat for magnetic recording medium
US20080176108A1 (en) Magnetic recording head and media comprising aluminum oxynitride underlayer and a diamond-like carbon overcoat
WO2007111245A1 (en) Method for manufacturing magnetic disc, and magnetic disc
JP2002063717A (en) Magnetic disk comprising first carbon coating film having high sp3 content and second carbon coating film having low sp3 content
KR20080073258A (en) Magnetic recording head and media overcoat
JP2005158092A (en) Magnetic recording medium, magnetic storage device, and manufacturing method for magnetic recording medium
US6312798B1 (en) Magnetic recording medium having a nitrogen-doped hydrogenated carbon protective overcoat
US7175926B2 (en) Dual-layer carbon-based protective overcoats for recording media by filtered cathodic ARC deposition
US6613422B1 (en) Nitrogen -implanted, high carbon density overcoats for recording media
US20060029806A1 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
US7045175B2 (en) Magnetic recording medium and method for manufacturing the same
JP3333156B2 (en) Thin-film magnetic disk manufacturing method
US6974642B2 (en) Carbonaceous protective layer, magnetic recording medium, production method thereof, and magnetic disk apparatus
JP2004280904A (en) Magnetic recording medium
JP2004280905A (en) Magnetic recording medium
JP2004280900A (en) Magnetic recording medium
JP2004280902A (en) Magnetic recording medium
JP2004280903A (en) Magnetic recording medium
WO2015122847A1 (en) An improved magnetic recording medium
JP2004280954A (en) Magnetic recording medium
JP2004280901A (en) Magnetic recording medium
JP2623785B2 (en) Magnetic disk

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606