JP2004280753A - In-storage cooling device for vending machine - Google Patents

In-storage cooling device for vending machine Download PDF

Info

Publication number
JP2004280753A
JP2004280753A JP2003074953A JP2003074953A JP2004280753A JP 2004280753 A JP2004280753 A JP 2004280753A JP 2003074953 A JP2003074953 A JP 2003074953A JP 2003074953 A JP2003074953 A JP 2003074953A JP 2004280753 A JP2004280753 A JP 2004280753A
Authority
JP
Japan
Prior art keywords
product storage
refrigerator
evaporator
accumulator
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003074953A
Other languages
Japanese (ja)
Inventor
Kimimichi Kuboyama
公道 久保山
Shinichi Nakayama
伸一 中山
Toshiaki Tsuchiya
敏章 土屋
Hisanori Ishita
尚紀 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2003074953A priority Critical patent/JP2004280753A/en
Publication of JP2004280753A publication Critical patent/JP2004280753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise efficiency in operating a freezing apparatus in conjunction with preventing the return of liquid by performing gas/liquid separation fo a liquid refrigerant flowing out from evaporators in a non-evaporation state, collecting them, and, then, consuming a heat quantity possessed in the liquid refrigerant for cooling a merchandise storage chamber, so as to reduce energy loss. <P>SOLUTION: The merchandise storage 1 is divided into a plurality of merchandise storage chambers 4A-4C, the evaporators 8A-8C are arranged in the respective chambers, and then, the inner part of the storage is cooled in the in-storage cooling device of a vending machine. Each evaporators are connected in parallel to a condensing unit so as to constitute a freezing cycle. Then control is performed to supply the refrigerant to the evaporators from the condensing unit in response to a hot/cold sale mode in each chamber. Suction accumulators 19A-19C inserted to an intake duct 17 between the evaporator of each chamber and a compressor are arranged inside the storage as a liquid return preventing means with respect to the compressor 11 of the condensing unit. Thus, a non-evaporation refrigerant by gas-liquid separation is heat-exchanged with in-storage air, so as to cool the inner part of the storage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は缶,びん商品などを販売する自動販売機を実施対象とした自動販売機の庫内冷却装置に関する。
【0002】
【従来の技術】
良く知られているように、頭記の自動販売機は、商品貯蔵庫の庫内を複数の商品収納室に仕切り、その商品収納室内には冷凍機の蒸発器と庫内ファンを組み合わせた冷却ユニット、もしくは蒸発器,庫内ファンにヒータ追加した冷却・加熱ユニットを配備し、販売モードに合わせて各室内の商品収納ラックに収納した商品を保冷,ないし加温してホット商品,コールド商品を販売するホット・アンド・コールド自動販売機が一般的である(例えば、特許文献1参照。)。
次に、自動販売機およびその庫内冷却装置の従来構成を図9,図10に示す。まず、図9において、1は断熱筐体になる自動販売機の商品貯蔵庫、2は前面外扉、3は断熱内扉であり、商品貯蔵庫1はその庫内を仕切壁で左右に並ぶ複数(図示例では3室)の商品収納室4A,4B,4Cに仕切った上で、各商品収納室内には商品収納ラック5(例えばサーペンタイン式商品収納ラック)を搭載し、販売指令に基づき商品収納ラック5から払出した商品を、シュータ6を経て外扉2に備えた商品取出口7に搬出するようにしている。
【0003】
ここで、前記の商品収納室4A,4B,4Cについて、例えば商品収納室4Aをコールド専用,商品収納室4B,4Cをコールド/ホット用として、商品収納4Aの室内底部に冷凍機の蒸発器8,ファン9を組み合わせた冷却ユニット10を、商品収納室4B,4Cには前記冷却ユニットにヒータを追加した冷却・加熱ユニットを配備し、また商品貯蔵庫1の庫外底部には圧縮機11,凝縮器12,庫外ファン13を組み合わせた冷凍機のコンデンシングユニット14を搭載しており、後記のようにコールド商品,ホット商品の販売モードに合わせて商品収納室の庫内に循環送風する空気を冷却,ないし加熱して商品収納ラック5に収納した商品を販売適温に保冷,ないし加温するようにしている。
【0004】
次に、前記した庫内冷却装置の冷凍サイクル図を図10に示す。図において、8A,8B,8Cは商品収納室4A,4B,4Cの庫内に配置した蒸発器であり、それぞれの蒸発器が電磁弁15A.15B,15C,およびキャピラリチューブ16を介してコンデンシングユニットの冷媒配管路に並列接続して冷凍サイクルを構成している。なお、コンデンシングユニットの圧縮機11,凝縮器12は、商品収納室4A,4B,4Cの最大冷凍負荷に対応した能力を持つように設計されている。
また、圧縮機11を液バックから保護する目的で、蒸発器8A,8B,8Cから圧縮機11に戻る吸入管路17にサクションアキュームレータ18を接続し、図9のようにコンデンシングユニット14と一緒に庫外側に配置している。なお、サクションアキュームレータの機能は周知あり、蒸発器から未蒸発の状態で吸入管路に戻ってきた液冷媒はアキュームレータのシェル内で気液分離され、冷媒ガスのみが吸入管路17を通じて圧縮機11に吸入される。また、アキュームレータでの気液分離によりシェル内に溜まった液冷媒は周囲空気との熱交換により気化し、ガスとなって圧縮機11に吸入される。
【0005】
ここで、各商品収納室4A,4B,4Cに備えた冷却ユニット,冷却・加熱ユニットの運転モードについて、コールド運転をC,ホット運転をHとして、C−C−C運転モードでは電磁弁15A.15B,15Cを開き(ON)、コンデンシングユニット12から冷媒を各蒸発器8A,8B,8Cに供給する。この運転状態で、各個の商品収納室の庫内温度が設定温度以下に低下すると、庫内温度センサの検出信号を基に電磁弁を閉じて(OFF)その商品収納室の蒸発器への冷媒供給を停止し、全ての商品収納室の庫内温度が設定温度以下になれば、圧縮機11の運転を停止する。また、商品収納室4A(コールド専用室)および4Bをコールド運転,商品収納室4Cをホット運転とするC−C−H運転モードでは、電磁弁15A,15Bを開,電磁弁15Cは閉として圧縮機11を運転制御し、商品収納室4Cでは冷却・加熱ユニットのヒータに通電して庫内を加温する。
【0006】
【特許文献1】
特開2000−310451号公報
【0007】
【発明が解決しようとする課題】
前記のように商品貯蔵庫を複数の商品収納室4A 34Cに仕切った上で、各室に配置した蒸発器15A〜15Cを1基のコンデンシングユニットに並列接続して冷却運転を行う自動販売機の庫内冷却装置では、各商品収納室での販売モードの切換え,庫内温度の変動などの運転条件により冷凍負荷が変化し、特にC−H−H運転モードのように1室のみのールド運転するモードでは冷凍負荷に対して圧縮機11の能力が過剰となり、蒸発器から冷媒の一部は未蒸発のまま冷媒液の状態でコンデンシングユニットに戻るようになる。また、C−C−C運転モードでは、左右の商品収納室4Aと4Cの間に挟まれた中央の商品収納室(中室)4B(図9(a) 参照)は、仕切壁を介して左右の室4A,4Cからも冷却されることから冷凍負荷が低くなり、そのために中室に配置した蒸発器15Bから未蒸発の冷媒液が戻り易くなる。
【0008】
かかる点、図10で述べたように従来の庫内冷却装置では、圧縮機11の吸入側にサクションアキュームレータ18を設け、蒸発器から戻る未蒸発冷媒をアキュームレータ18により気液分離して圧縮機11を液バックから保護するようにしているものの、冷凍機の運転効率面では次記のような課題が残る。
すなわち、従来の構成では、サクションアキュームレータ18を庫外側に配置している。このために、アキュームレータで気液分離され、そのシェル内に寝込んだ液冷媒の持つ熱量(冷熱)は庫内の冷却には全く利用されずに周囲に捨てられてしまい、これがエネルギーロスとなって冷凍機の運転効率が低下する。
【0009】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、蒸発器から未蒸発の状態で流出する液冷媒を庫内側で気液分離して回収した上で、その液冷媒の保有する熱量(冷熱)を商品収納室の冷却に消費し、これにより液バックの防止と併せて冷凍機の運転効率の向上化が図れるように改良した自動販売機の庫内冷却装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、商品貯蔵庫の庫内を複数の商品収納室に仕切り、各商品収納室ごとに冷凍機の蒸発器とファンを組み合わせた冷却ユニットを配備して室内の収納商品を保冷する自動販売機の庫内冷却装置であり、各商品収納室に配した蒸発器を庫外側に配置した冷凍機のコンデンシングユニットに並列接続して冷凍サイクルを構成し、各商品収納室の販売モードに合わせてコンデンシングユニットから電磁弁,キャピラリチューブを経て蒸発器に冷媒を供給するようにしたものにおいて、
第1の発明では、前記コンデンシングユニットの圧縮機に対する液バック防止手段として、各商品収納室の蒸発器と圧縮機との間に配管した冷媒吸入管路にサクションアキュームレータを介挿接続した上で、該アキュームレータを商品貯蔵庫の庫内側に配置し、ここで気液分離した液冷媒の保有熱(冷熱)を庫内空気との熱交換により回収してエネルギーロスを低減し、併せて未蒸発の液冷媒が圧縮機に吸入される液バックを防止するものとし(請求項1)、具体的な態様として次記のような構成で実現できる。
【0011】
(1) 商品貯蔵庫の各商品収納室ごとに、その室内にサクションアキュームレータを配置して蒸発器に接続する(請求項2)。
(2) 1基のサクションアキュームレータをコールド専用の商品収納室内に配置した上で、各商品収納室の蒸発器から引出した冷媒吸入管を一括して前記アキュームレータに接続する(請求項3)
また、本発明の第2の発明では、前記コンデンシングユニットの圧縮機に対する液バック防止手段として、庫外側に配置して圧縮機の吸入管路に接続した第1のサクションアキュームレータと、該アキュームレータとは別に前記商品収納室のいずれかの室内に配置してその室内の蒸発器に接続した第2のサクションアキュームレータを備え、この第2のサクションアキュームレータでエネルギーの回収を行って冷凍機の運転効率の向上を図るようにする(請求項4)。
【0012】
この場合に、コスト面から少数のアキュームレータを有効に使って運転効率を高めるために、前記した第2のサクションアキュームレータは、販売モードの切換えに伴う負荷変動が大きな商品収納室、つまり圧縮機の能力過剰から未蒸発の冷媒が生じ易い特定の商品収納室に配置する(請求項5)ものとし、具体的には商品貯蔵庫内で左右両隣の商品収納室の間に挟まれて仕切られた中室を特定の商品収納室として、その室内に第2のサクションアキュームレータを配置する(請求項6)がよい。
また、庫内側に配置した前記のサクションアキュームレータについて、庫内側での熱回収を効率よく行うために、サクションアキュームレータのシェル外周面にフィンを設け(請求項7)、庫内空気との熱交換を促進させるようにするがよい。さらに、庫内におけるサクションアキュームレータの設置箇所については、商品収納室内の冷却ユニットと組み合わせて庫内空気の通風路に配置するようにし(請求項8)、ここでサクションアキュームレータを冷却ユニットの風胴内に組み込んで蒸発器の空気流入側(商品収納室内を循環し昇温した空気が還流する)に配置するのが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図8に示す実施例に基づいて説明する。なお、各実施例の図中で図9,図10に対応する部材には同じ符号を付してその説明は省略する。
〔実施例1〕
図1,図2は本発明の請求項1,2に対応する実施例の庫内冷却装置の冷凍サイクル,および自動販売機の構成図である。
この実施例において、自動販売機の構成および庫内冷却装置は基本的に図9,図10に示したものと同様であるが、従来の構成で庫外のコンデンシングユニット14に装備したサクションアキュームレータ18を排除し、その代わりに商品貯蔵庫1の庫内に画成した商品収納室4A,4B,4Cの各室内に分けてサクションアキュームレータ19A,19B,19Cを配置し、このアキュームレータをそれぞれ室内の冷却ユニット10に備えた蒸発器8A,8B,8Cから引出した下流側の吸入管に介挿接続している。
【0014】
上記構成において、運転モードをC−C−CからC−H−Hに切換えるなどした冷凍機の運転条件によって先記のように蒸発器から未蒸発の液冷媒が戻るようになっても、その冷媒液は蒸発器に後続したサクションアキュームレータ19で気液分離され、ガス冷媒のみが吸入管路17を通じて圧縮機11に吸入されるので、図10のサクションアキュームレータ18と同様に液バックを防止できる。しかも、この実施例ではサクションアキュームレータ19を商品収納室の室内に配置したことにより、アキュームレータで気液分離された液冷媒はシェル壁を通じて庫内空気と熱交換して蒸発し、その気化潜熱で庫内を冷却するとともに、気化したガス冷媒は圧縮機11に吸入される。
【0015】
これにより、圧縮機11への液バックを防止するサクションアキュームレータ本来の機能を確保しつつ、しかも従来装置では庫外に配置していたアキュームレータから周囲に捨てていた未蒸発冷媒の持つ熱量(冷熱)を回収して、庫内を冷却することができて冷凍機の運転効率が向上する。
〔実施例2〕
図3は本発明の請求項3に対応する応用実施例を示すものである。この実施例においては、商品貯蔵庫1の庫内に画成した3室の商品収納室4A,4B,4Cのうち、コールド専用室である商品収納室4Aにのみその室内にサクションアキュームレータ19Aを配置した上で、各商品収納室の蒸発器8A,8B,8Cから引出した吸入管を一括してアキュームレータ19Aに接続し、該アキュームレータを介して圧縮機11の吸入管路17に配管するようにしている。
【0016】
すなわち、コールド専用の商品収納室4Aに配した蒸発器8Aは、他の商品収納室4B,4Cとは異なり、販売モードの変更に関係なく冷凍機の保冷運転中は冷媒を供給している。したがって、このコールド専用室にサクションアキュームレータ19Aを設置することで、他の商品収納室でホット商品を販売している場合でも、他の室に熱的な影響を及ぼすことなく液バック防止と未蒸発冷媒の熱回収を行うことができる。
〔実施例3〕
図4は本発明の請求項4〜6に対応する実施例を示すものである。この実施例においては、図9,図10の従来装置と同様に庫外側に配置したコンデンシングユニットに搭載して圧縮機11の吸入管路17に接続した第1のサクションアキュームレータ18と、該アキュームレータ18とは別に、商品貯蔵庫1の中央に仕切られた商品収納室4Bの室内に配置して蒸発器8Bに接続した第2のサクションアキュームレータ19Bを備え、商品収納室4Bの保冷運転状態で蒸発器8Bから流出する未蒸発冷媒をアキュームレータ19Bにて気液分離し、その液冷媒の持つ熱量を回収して商品収納室8Bを冷却するようにしている。
【0017】
すなわち、左右の商品収納室4Bと4Cの間に挟まれた中室の商品収納室4Bは、C−C−H運転モードでは庫内がヒータ加温される商品収納室4C側から仕切壁を伝熱して熱が侵入するが、逆にC−C−Cの運転モードでは仕切壁を通して左右の室から冷却されるために冷凍負荷が低下するなど、販売モードの切換えに伴う負荷変動が大きくなり、特にC−C−Cの運転モードでは冷凍負荷の低下に伴い商品収納室4Bの蒸発器8Bには未蒸発の冷媒が生じ易くなる。
そこで、中央の商品収納室4Bを特定の商品収納室に指定して、ここに第2のサクションアキュームレータ19Bを配置することにより、冷凍機の保冷運転中に蒸発器から流出する未蒸発冷媒を気液分離し、かつ庫内空気と熱交換させることでエネルギー回収を有効に行うことができる。なお、商品貯蔵室1の左右端に画成した商品収納室4A,4Cは、中央の商品収納室4Bに比べて冷凍負荷の変動が小さく、定常の保冷運転では未蒸発冷媒は殆ど生じなく、また未蒸発の冷媒が流出しても、第1のサクションアキュームレータ18に取り込まれて気液分離されるので液バックのおそれはなく圧縮機11を保護できる。
【0018】
次に、実施例1,実施例2で商品貯蔵庫1の庫内に配置したサクションアキュームレータについての具体的な構造,および配置例を図5〜図8で説明する。
まず、図5は本発明の請求項6に対応するサクションアキュームレータの構成図であり、図示例のサクションアキュームレータ19では、気液分離した液冷媒と庫内空気との熱交換を促進させるために、アキュームレータのシェル外周面にフィン19aを設けている。なお、9bは取付脚である。
また、前記のサクションアキュームレータ19を商品収納室内に設置するに当たっては、図2(a),(b) のように商品収納室の庫内底部に配備した冷却ユニット10に組み合わせ、該冷却ユニット10を経由して庫内に循環送風される庫内空気の通風路に配置して熱交換を効果的に行うようにしている。
【0019】
ここで、図6は本発明の請求項8に対応する実施例を示し、サクションアキュームレータ19は、冷却ユニット10の風胴内で庫内空気の流入口10aに近い蒸発器8(フィンチューブ形蒸発器)の上流側(空気吸込側)の空間10bに収容されている。なお、20は冷却・加熱ユニットに適用する庫内加熱用のヒータであり、該ヒータ20は通常は蒸発器8と風胴の出口側に設けた庫内ファン9との間の空間に配置されている。この配置によりサクションアキュームレータ19には、庫内を循環通風して昇温した状態で冷却ユニット10に戻ってきた庫内空気が流れるので、アキュームレータのシェル内に溜まっている液冷媒と効率よく熱交換を行うことができる。また、蒸発器8への冷媒供給を停止し、ヒータ20に通電しているホット運転の状態でも、アキュームレータはヒータ20から離れていて直接加熱されることがないので、シェル,フィンのろう付け箇所が加熱されて剥離するようなおそれもない。
【0020】
なお、冷却ユニット10の風胴内で、蒸発器10の上流側に設置スペースが確保できない場合には、図7のように蒸発器8と庫内ファン9との間の空間(但し、ヒータ20(図6参照)はない)に配置するか、あるいは図8(a),(b) で示すように冷却ユニット10の風胴外に並置して庫内ファン9の吐出側に配置するようにしてよい。なお、アキュームレータ19からの熱回収効率面では、図7のように蒸発器8の上流側に配置するのが図7,図8に比べて効率がよい。
【0021】
【発明の効果】
以上述べたように、本発明によれば、商品貯蔵庫の庫内を複数の商品収納室に仕切り、各商品収納室ごとに冷凍機の蒸発器とファンを組み合わせた冷却ユニットを配備して室内の収納商品を保冷する自動販売機の庫内冷却装置であり、各商品収納室に配した蒸発器を庫外側に配置した冷凍機のコンデンシングユニットに並列接続して冷凍サイクルを構成し、各商品収納室の販売モードに合わせてコンデンシングユニットから電磁弁,キャピラリチューブを経て蒸発器に冷媒を供給するようにしたものにおいて、液バック防止手段として圧縮機の吸入管路に接続するサクションアキュームレータを商品貯蔵庫の庫内側に配置し、アキュームレータで気液分離した未蒸発冷媒の保有する熱量(冷熱)を庫内空気との熱交換により回収して庫内を冷却するようにしたことにより、
圧縮機への液バックを防止するサクションアキュームレータ本来の機能を確保しつつ、従来の庫内冷却装置のようにサクションアキュームレータを庫外側に配置し、ここで気液分離した液冷媒の保有する熱量を周囲に捨てていた方式と比べて、エネルギーロスを低減して冷凍機の運転効率を向上できる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る庫内冷却装置の冷凍サイクル図
【図2】図1の庫内冷却装置を搭載した自動販売機の構成図で、(a),(b) はそれぞれ正面図,および側視断面図
【図3】本発明の実施例2に係る庫内冷却装置の冷凍サイクル図
【図4】本発明の実施例3に係る庫内冷却装置の冷凍サイクル図
【図5】商品貯蔵庫の庫内側に配置するサクションアキュームレータの構成図
【図6】図5のサクションアキュームレータを冷却ユニットの風胴内部に組み込んだ実施例の略示構成図
【図7】図6の応用実施例の略示構成図
【図8】図7と異なる応用実施例の構成図で、(a),(b) はそれぞれ側視図,および外観斜視図
【図9】従来の庫内冷却装置を搭載した自動販売機の構成図で、(a),(b) はそれぞれ正面図,および側視断面図
【図10】図9における庫内冷却装置の冷凍サイクル図
【符号の説明】
1 自動販売機の商品貯蔵庫
4A 商品収納室(コールド専用室)
4B 商品収納室(中室)
4C 商品収納室
5 商品収納ラック
8,8A,8B,8C 蒸発器
9 庫内ファン
10 冷却ユニット
11 圧縮機
12 凝縮器
13 庫内ファン
14 コンデンシングユニット
15A,15B.15C 電磁弁
16 キャピラリチューブ
17 吸入管路
18 サクションアキュームレータ
19,19A,19B,19C 庫内側のサクションアキュームレータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vending machine interior cooling device for vending machines that sell cans, bottle products, and the like.
[0002]
[Prior art]
As is well known, the vending machine mentioned above divides the interior of a product storage into a plurality of product storage rooms, and in the product storage room, a cooling unit combining an evaporator of a refrigerator and a fan in the storage. Alternatively, a cooling / heating unit with a heater added to the evaporator and the internal fan is installed, and the products stored in the product storage racks in each room are kept cool or heated to sell hot products and cold products according to the sales mode. Hot and cold vending machines are common (for example, see Patent Document 1).
Next, FIGS. 9 and 10 show a conventional structure of a vending machine and a cooling device in the refrigerator. First, in FIG. 9, reference numeral 1 denotes a product storage of a vending machine which becomes an insulated housing, reference numeral 2 denotes a front outer door, reference numeral 3 denotes an insulated inner door, and a plurality of product storages 1 are arranged side by side with partition walls in the storage. In the illustrated example, three product storage rooms 4A, 4B, and 4C are partitioned, and a product storage rack 5 (for example, a serpentine-type product storage rack) is mounted in each product storage room. The goods paid out from 5 are carried out through a shooter 6 to a goods outlet 7 provided in the outer door 2.
[0003]
Here, as for the product storage rooms 4A, 4B and 4C, for example, the product storage room 4A is dedicated to cold use, and the product storage rooms 4B and 4C are used for cold / hot use. And a cooling unit 10 in which a heater is added to the product storage chambers 4B and 4C. A compressor 11 and a condensing unit are provided on the outer bottom of the product storage 1. A condensing unit 14 of a refrigerator in which a vessel 12 and an outside fan 13 are combined is mounted, and air to be circulated and blown into the compartment of the product storage room in accordance with a sales mode of cold products and hot products as described later. The products stored in the product storage rack 5 by cooling or heating are kept cool or heated to a suitable selling temperature.
[0004]
Next, FIG. 10 shows a refrigeration cycle diagram of the above-described refrigerator. In the figure, reference numerals 8A, 8B, 8C denote evaporators arranged in the storages of the product storage rooms 4A, 4B, 4C, and each evaporator is a solenoid valve 15A. A refrigeration cycle is configured by connecting in parallel to the refrigerant piping of the condensing unit via 15B, 15C and the capillary tube 16. The compressor 11 and the condenser 12 of the condensing unit are designed to have a capacity corresponding to the maximum refrigeration load of the product storage chambers 4A, 4B, 4C.
Further, for the purpose of protecting the compressor 11 from the liquid back, a suction accumulator 18 is connected to a suction line 17 returning from the evaporators 8A, 8B, 8C to the compressor 11, and is connected to the condensing unit 14 as shown in FIG. Is located outside the warehouse. The function of the suction accumulator is well known, and the liquid refrigerant returning from the evaporator to the suction line in a non-evaporated state is separated into gas and liquid in the shell of the accumulator, and only the refrigerant gas passes through the suction line 17 to the compressor 11. Is inhaled. Further, the liquid refrigerant accumulated in the shell by gas-liquid separation in the accumulator is vaporized by heat exchange with the surrounding air, becomes gas, and is sucked into the compressor 11.
[0005]
Here, regarding the operation modes of the cooling unit and the cooling / heating unit provided in each of the product storage rooms 4A, 4B, and 4C, the cold operation is set to C, the hot operation is set to H, and the solenoid valves 15A. 15B and 15C are opened (ON), and the refrigerant is supplied from the condensing unit 12 to each of the evaporators 8A, 8B and 8C. In this operating state, when the internal temperature of each product storage room drops below the set temperature, the solenoid valve is closed (OFF) based on the detection signal of the internal temperature sensor, and the refrigerant flows to the evaporator of the product storage room. When the supply is stopped and the temperatures in all the storage compartments become lower than the set temperature, the operation of the compressor 11 is stopped. Further, in the CCH operation mode in which the product storage rooms 4A (only cold room) and 4B are operated in the cold mode and the product storage room 4C is operated in the hot mode, the solenoid valves 15A and 15B are opened and the solenoid valves 15C are closed and compressed. The operation of the machine 11 is controlled, and in the product storage room 4C, the heater of the cooling / heating unit is energized to heat the inside of the storage.
[0006]
[Patent Document 1]
JP 2000-310451 A
[Problems to be solved by the invention]
After partitioning the merchandise storage into a plurality of merchandise storage rooms 4A and 34C as described above, a vending machine that performs a cooling operation by connecting the evaporators 15A to 15C arranged in each room in parallel to one condensing unit is provided. In the refrigerator in the refrigerator, the refrigeration load changes depending on operating conditions such as switching of the sales mode in each product storage room and fluctuations in the temperature of the refrigerator. In this mode, the capacity of the compressor 11 becomes excessive with respect to the refrigeration load, and a part of the refrigerant from the evaporator returns to the condensing unit in a state of the refrigerant liquid without being evaporated. Further, in the CCCC operation mode, the central product storage room (intermediate room) 4B (see FIG. 9A) sandwiched between the left and right product storage rooms 4A and 4C passes through a partition wall. Since the cooling is also performed from the left and right chambers 4A and 4C, the refrigeration load is reduced, so that the unevaporated refrigerant liquid is easily returned from the evaporator 15B disposed in the middle chamber.
[0008]
In this regard, as described in FIG. 10, in the conventional in-compartment cooling device, the suction accumulator 18 is provided on the suction side of the compressor 11, and the un-evaporated refrigerant returning from the evaporator is separated into gas and liquid by the accumulator 18 so that the compressor 11 However, the following problems remain in the operation efficiency of the refrigerator.
That is, in the conventional configuration, the suction accumulator 18 is arranged outside the storage. Therefore, the amount of heat (cold heat) of the liquid refrigerant that has been separated into gas and liquid by the accumulator and laid in the shell is not used for cooling the inside of the refrigerator at all and is discarded to the surroundings, resulting in energy loss. The operating efficiency of the refrigerator decreases.
[0009]
The present invention has been made in view of the above points, and its object is to solve the above-mentioned problem, and to recover the liquid refrigerant flowing out of the evaporator in an unevaporated state by gas-liquid separation inside the refrigerator and recovering the liquid refrigerant. Cooling equipment for vending machines improved so that the amount of heat (cold heat) possessed by the liquid refrigerant is consumed for cooling the product storage room, thereby preventing liquid backing and improving the operating efficiency of the refrigerator. Is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the inside of a product storage is partitioned into a plurality of product storage rooms, and a cooling unit combining a evaporator and a fan of a refrigerator is provided for each product storage room. It is a refrigerator inside the vending machine that keeps the products stored in the room, and the evaporator arranged in each product storage room is connected in parallel to the condensing unit of the refrigerator arranged outside the refrigerator to constitute a refrigeration cycle, In the one in which the refrigerant is supplied from the condensing unit to the evaporator via the solenoid valve and the capillary tube according to the sales mode of each product storage room,
In the first invention, as a means for preventing liquid back of the condensing unit with respect to the compressor, a suction accumulator is inserted and connected to a refrigerant suction pipe provided between the evaporator and the compressor in each product storage room. The accumulator is arranged inside the product storage, where the heat (cold heat) of the liquid refrigerant separated by gas and liquid is recovered by heat exchange with the air in the storage to reduce energy loss, and also reduce the energy loss. It is assumed that the liquid back is prevented from being sucked into the compressor by the liquid refrigerant (claim 1), and can be realized by the following configuration as a specific embodiment.
[0011]
(1) A suction accumulator is arranged in each product storage room of a product storage and connected to an evaporator (claim 2).
(2) After placing one suction accumulator in a cold-dedicated product storage room, refrigerant suction pipes drawn out from the evaporators of each product storage room are collectively connected to the accumulator (claim 3).
Further, in the second invention of the present invention, the first condensing unit has a first suction accumulator disposed outside the refrigerator and connected to a suction pipe of the compressor as a liquid back prevention means for the compressor, Separately provided with a second suction accumulator arranged in any one of the product storage rooms and connected to an evaporator in the room, and the second suction accumulator recovers energy to reduce the operating efficiency of the refrigerator. An improvement is made (claim 4).
[0012]
In this case, in order to effectively use a small number of accumulators in terms of cost and to improve the operation efficiency, the second suction accumulator is provided with a product storage room in which the load fluctuation accompanying the change of the sales mode is large, that is, the capacity of the compressor. It is arranged in a specific product storage room in which excess to unevaporated refrigerant is likely to be generated (Claim 5). Specifically, a middle room partitioned by being sandwiched between left and right adjacent product storage rooms in the product storage. Is a specific product storage room, and a second suction accumulator is preferably disposed in the room (claim 6).
Further, with respect to the suction accumulator disposed inside the refrigerator, fins are provided on the outer peripheral surface of the shell of the suction accumulator to efficiently perform heat recovery inside the refrigerator (claim 7), and heat exchange with air in the refrigerator is performed. It should be promoted. Further, the installation location of the suction accumulator in the refrigerator is arranged in the ventilation path of the air in the refrigerator in combination with the cooling unit in the product storage room (claim 8), and the suction accumulator is installed in the wind tunnel of the cooling unit. And it is preferably arranged on the air inflow side of the evaporator (the heated air circulates in the product storage room and recirculates).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in FIGS. In the drawings of the embodiments, members corresponding to those in FIGS. 9 and 10 are denoted by the same reference numerals, and description thereof will be omitted.
[Example 1]
FIG. 1 and FIG. 2 are configuration diagrams of a refrigeration cycle of an in-compartment cooling device and a vending machine according to the first and second embodiments of the present invention.
In this embodiment, the configuration of the vending machine and the cooling device in the refrigerator are basically the same as those shown in FIGS. 9 and 10, but the suction accumulator provided in the condensing unit 14 outside the refrigerator in the conventional configuration. The suction accumulators 19A, 19B, and 19C are arranged separately in each of the product storage rooms 4A, 4B, and 4C defined in the storage of the product storage 1, and the accumulators are individually cooled. It is inserted and connected to a downstream suction pipe drawn from the evaporators 8A, 8B, 8C provided in the unit 10.
[0014]
In the above configuration, even if the unevaporated liquid refrigerant returns from the evaporator as described above due to the operating conditions of the refrigerator such as switching the operation mode from CCC to C-H-H, The refrigerant liquid is separated into gas and liquid by a suction accumulator 19 following the evaporator, and only the gas refrigerant is sucked into the compressor 11 through the suction line 17, so that the liquid back can be prevented similarly to the suction accumulator 18 in FIG. In addition, in this embodiment, the suction accumulator 19 is disposed in the product storage room, so that the liquid refrigerant gas-liquid separated by the accumulator exchanges heat with the air in the refrigerator through the shell wall and evaporates, and the vaporization latent heat causes the refrigerant to evaporate. While cooling the inside, the vaporized gas refrigerant is sucked into the compressor 11.
[0015]
As a result, while maintaining the original function of the suction accumulator for preventing liquid back to the compressor 11, the calorie (cold heat) of the unevaporated refrigerant that has been thrown away from the accumulator disposed outside the refrigerator in the conventional apparatus to the surroundings. And the inside of the refrigerator can be cooled, thereby improving the operation efficiency of the refrigerator.
[Example 2]
FIG. 3 shows an application example corresponding to claim 3 of the present invention. In this embodiment, the suction accumulator 19A is arranged only in the product storage room 4A which is a cold dedicated room among the three product storage rooms 4A, 4B and 4C defined in the storage of the product storage 1. Above, the suction pipes drawn out from the evaporators 8A, 8B, 8C of each product storage room are connected collectively to the accumulator 19A, and are connected to the suction pipe 17 of the compressor 11 via the accumulator. .
[0016]
That is, unlike the other product storage rooms 4B and 4C, the evaporator 8A arranged in the cold-dedicated product storage room 4A supplies the refrigerant during the cool-keeping operation of the refrigerator regardless of the change of the sales mode. Therefore, by installing the suction accumulator 19A in this cold dedicated room, even if hot products are sold in another product storage room, the liquid back prevention and non-evaporation can be performed without thermally affecting other rooms. Heat recovery of the refrigerant can be performed.
[Example 3]
FIG. 4 shows an embodiment corresponding to claims 4 to 6 of the present invention. In this embodiment, a first suction accumulator 18 mounted on a condensing unit disposed on the outside of the refrigerator and connected to a suction line 17 of a compressor 11 as in the conventional apparatus of FIGS. 18 is provided with a second suction accumulator 19B which is arranged in the product storage room 4B partitioned at the center of the product storage 1 and connected to the evaporator 8B, and the evaporator is operated in the cold storage operation state of the product storage room 4B. The unevaporated refrigerant flowing out of the refrigerant 8B is separated into gas and liquid by the accumulator 19B, and the heat of the liquid refrigerant is recovered to cool the product storage room 8B.
[0017]
That is, the middle product storage room 4B sandwiched between the left and right product storage rooms 4B and 4C has a partition wall from the product storage room 4C side where the inside of the refrigerator is heated by the heater in the C-CH operation mode. Heat is transmitted and heat enters, but conversely, in the CCC operating mode, load fluctuations due to switching of the sales mode increase, such as a decrease in the refrigeration load due to cooling from the left and right rooms through the partition wall. In particular, in the CCC operating mode, unevaporated refrigerant is more likely to be generated in the evaporator 8B of the product storage room 4B as the refrigeration load decreases.
Therefore, the central product storage room 4B is designated as a specific product storage room, and by arranging the second suction accumulator 19B here, the unevaporated refrigerant flowing out of the evaporator during the cooling operation of the refrigerator is reduced. Energy separation can be effectively performed by liquid separation and heat exchange with the air in the refrigerator. The product storage rooms 4A and 4C defined at the left and right ends of the product storage room 1 have smaller fluctuations in the refrigerating load than the central product storage room 4B, and almost no unevaporated refrigerant is generated in a steady cooling operation. Also, even if the unevaporated refrigerant flows out, it is taken into the first suction accumulator 18 and separated into gas and liquid, so that there is no danger of liquid back and the compressor 11 can be protected.
[0018]
Next, a specific structure and an arrangement example of the suction accumulator arranged in the storage of the commodity storage 1 in the first and second embodiments will be described with reference to FIGS.
First, FIG. 5 is a configuration diagram of a suction accumulator according to claim 6 of the present invention. In the illustrated suction accumulator 19, in order to promote heat exchange between the liquid refrigerant separated into gas and liquid and the air in the refrigerator, Fins 19a are provided on the outer peripheral surface of the shell of the accumulator. 9b is a mounting leg.
In installing the suction accumulator 19 in the product storage room, the cooling unit 10 is combined with a cooling unit 10 arranged at the bottom of the product storage room as shown in FIGS. 2 (a) and 2 (b). It is arranged in a ventilation path of the air inside the refrigerator which is circulated and blown into the refrigerator via the air passage so that heat exchange is effectively performed.
[0019]
Here, FIG. 6 shows an embodiment corresponding to claim 8 of the present invention, in which a suction accumulator 19 is provided with an evaporator 8 (fin tube type evaporator) close to the air inlet 10a in the refrigerator in the wind tunnel of the cooling unit 10. Is accommodated in a space 10b on the upstream side (air suction side) of the container. Reference numeral 20 denotes a heater for heating the inside of the refrigerator applied to the cooling / heating unit. The heater 20 is usually arranged in a space between the evaporator 8 and the inside fan 9 provided on the outlet side of the wind tunnel. ing. With this arrangement, the air inside the refrigerator returned to the cooling unit 10 in a state where the temperature inside the refrigerator has been circulated and heated by the circulation accumulator 19 flows, so that heat exchange with the liquid refrigerant accumulated in the shell of the accumulator can be efficiently performed. It can be performed. Also, even in a hot operation state in which the supply of the refrigerant to the evaporator 8 is stopped and the heater 20 is energized, the accumulator is away from the heater 20 and is not directly heated. Is not likely to be peeled off when heated.
[0020]
In the case where the installation space cannot be secured on the upstream side of the evaporator 10 in the wind tunnel of the cooling unit 10, the space between the evaporator 8 and the internal fan 9 as shown in FIG. (See FIG. 6). Alternatively, as shown in FIGS. 8A and 8B, the cooling unit 10 is arranged on the discharge side of the fan 9 in a juxtaposition outside the wind tunnel. May be. In terms of the efficiency of heat recovery from the accumulator 19, the arrangement at the upstream side of the evaporator 8 as shown in FIG. 7 is more efficient than that of FIGS.
[0021]
【The invention's effect】
As described above, according to the present invention, the interior of the product storage is partitioned into a plurality of product storage rooms, and a cooling unit combining a evaporator and a fan of a refrigerator is provided for each product storage room, and the interior of the room is provided. This is a refrigerator inside a vending machine that keeps stored products cool.Evaporators arranged in each product storage room are connected in parallel to a condensing unit of a refrigerator arranged outside the refrigerator to form a refrigeration cycle. A suction accumulator connected to the suction line of the compressor as a means for preventing liquid back, in which refrigerant is supplied from the condensing unit to the evaporator via a solenoid valve and a capillary tube in accordance with the sales mode of the storage room. It is placed inside the storage, and the heat (cold heat) of the unevaporated refrigerant separated by gas and liquid by the accumulator is recovered by heat exchange with the air inside the storage to cool the inside of the storage. By which is adapted to,
While maintaining the original function of the suction accumulator to prevent liquid back to the compressor, the suction accumulator is arranged outside the refrigerator like a conventional cooling device inside the refrigerator, where the amount of heat held by the liquid refrigerant separated by gas and liquid is reduced. Energy loss can be reduced and the operation efficiency of the refrigerator can be improved as compared with the method in which the refrigerator is disposed around.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram of an in-compartment cooling device according to Embodiment 1 of the present invention. FIG. 2 is a configuration diagram of a vending machine equipped with the in-compartment cooling device of FIG. FIG. 3 is a refrigeration cycle diagram of an in-compartment cooling device according to Embodiment 2 of the present invention. FIG. 4 is a refrigeration cycle diagram of an in-compartment cooling device according to Embodiment 3 of the present invention. FIG. 5 is a configuration diagram of a suction accumulator arranged inside a product storage; FIG. 6 is a schematic configuration diagram of an embodiment in which the suction accumulator of FIG. 5 is incorporated inside a wind tunnel of a cooling unit; FIG. FIG. 8 is a block diagram of an applied embodiment different from FIG. 7, wherein (a) and (b) are side views and an external perspective view, respectively. (A) and (b) are front views and vending machines, respectively. Refrigeration cycle diagram of the internal cooling device in the side sectional view [10] Figure 9 [Description of symbols]
1 Vending machine storage 4A Product storage room (cold only room)
4B Product storage room (middle room)
4C Product storage room 5 Product storage racks 8, 8A, 8B, 8C Evaporator 9 Inside fan 10 Cooling unit 11 Compressor 12 Condenser 13 Inside fan 14 Condensing units 15A, 15B. 15C Solenoid valve 16 Capillary tube 17 Suction line 18 Suction accumulator 19, 19A, 19B, 19C Suction accumulator inside storage

Claims (9)

商品貯蔵庫の庫内を複数の商品収納室に仕切り、各商品収納室ごとに冷凍機の蒸発器とファンを組み合わせた冷却ユニットを配備して室内の収納商品を保冷する自動販売機の庫内冷却装置であり、各商品収納室に配した蒸発器を庫外側に配置した冷凍機のコンデンシングユニットに並列接続して冷凍サイクルを構成し、各商品収納室の販売モードに合わせてコンデンシングユニットから電磁弁,キャピラリチューブを経て蒸発器に冷媒を供給するようにしたものにおいて、
前記コンデンシングユニットの圧縮機に対する液バック防止手段として、各商品収納室の蒸発器と圧縮機との間に配管した冷媒吸入管路にサクションアキュームレータを介挿接続した上で、該アキュームレータを商品貯蔵庫の庫内側に配置したことを特徴とする自動販売機の庫内冷却装置。
The interior of the product storage compartment is divided into a plurality of product storage rooms, and a cooling unit that combines a refrigerator evaporator and a fan is installed in each product storage room to keep the products stored in the room cool inside the vending machine. A refrigeration cycle is configured by connecting an evaporator arranged in each product storage room in parallel with a condensing unit of a refrigerator arranged outside the refrigerator, and a condensing unit is set according to the sales mode of each product storage room. In a system in which refrigerant is supplied to an evaporator via an electromagnetic valve and a capillary tube,
As a means for preventing liquid back to the compressor of the condensing unit, a suction accumulator is inserted and connected to a refrigerant suction pipe provided between the evaporator and the compressor in each product storage chamber, and then the accumulator is stored in the product storage. A cooling device for a vending machine, wherein the cooling device is arranged inside a refrigerator.
請求項1に記載の庫内冷却装置において、商品貯蔵庫の各商品収納室ごとに、その室内にサクションアキュームレータを配置して蒸発器に接続したことを特徴とする自動販売機の庫内冷却装置。2. The refrigerator according to claim 1, wherein a suction accumulator is arranged in each of the commodity storage rooms of the commodity storage and connected to an evaporator. 請求項1に記載の庫内冷却装置において、1基のサクションアキュームレータをコールド専用の商品収納室内に配置した上で、各商品収納室の蒸発器から引出した冷媒吸入管を一括して前記アキュームレータに接続したことを特徴とする自動販売機の庫内冷却装置。2. The in-compartment cooling device according to claim 1, wherein one suction accumulator is arranged in a cold-dedicated product storage room, and refrigerant suction pipes drawn out from evaporators of the respective product storage rooms are collectively supplied to the accumulator. A refrigerator inside the vending machine, which is connected to the vending machine. 商品貯蔵庫の庫内を複数の商品収納室に仕切り、各商品収納室ごとに冷凍機の蒸発器とファンを組み合わせた冷却ユニットを配備して室内の収納商品を保冷する自動販売機の庫内冷却装置であり、各商品収納室に配した蒸発器を庫外側に配置した冷凍機のコンデンシングユニットに並列接続して冷凍サイクルを構成し、各商品収納室の販売モードに合わせてコンデンシングユニットから電磁弁,キャピラリチューブを経て蒸発器に冷媒を供給するようにしたものにおいて、
前記コンデンシングユニットの圧縮機に対する液バック防止手段として、庫外側に配置して圧縮機の吸入管路に接続した第1のサクションアキュームレータと、該アキュームレータとは別に前記商品収納室のいずれかの室内に配置してその室内の蒸発器に接続した第2のサクションアキュームレータを備えたことを特徴とする自動販売機の庫内冷却装置。
The interior of the product storage compartment is divided into a plurality of product storage rooms, and a cooling unit that combines a refrigerator evaporator and a fan is installed in each product storage room to keep the products stored in the room cool inside the vending machine. A refrigeration cycle is configured by connecting an evaporator arranged in each product storage room in parallel with a condensing unit of a refrigerator arranged outside the refrigerator, and a condensing unit is set according to the sales mode of each product storage room. In a system in which refrigerant is supplied to an evaporator via an electromagnetic valve and a capillary tube,
A first suction accumulator disposed outside the refrigerator and connected to a suction line of the compressor as a means for preventing a liquid back of the condensing unit with respect to the compressor, and any one of the product storage rooms separately from the accumulator. And a second suction accumulator connected to an evaporator in the room.
請求項4に記載の庫内冷却装置において、第2のサクションアキュームレータを、販売モードの切換えに伴う負荷変動が大きい特定の商品収納室に配置したことを特徴とする自動販売機の庫内冷却装置。5. The refrigerator according to claim 4, wherein the second suction accumulator is arranged in a specific product storage room where a load change accompanying the switching of the sales mode is large. . 請求項5に記載の庫内冷却装置において、第2のサクションアキュームレータを配置した特定の商品収納室が、左右両隣の商品収納室の間に挟まれて仕切られた中室であることを特徴とする自動販売機の庫内冷却装置。6. The in-compartment cooling device according to claim 5, wherein the specific product storage room in which the second suction accumulator is disposed is a middle room partitioned by being sandwiched between the left and right adjacent product storage rooms. Vending machine refrigerator. 請求項1ないし6のいずれかの項に記載の庫内冷却装置において、庫内側に配置したサクションアキュームレータのシェル外周面に熱交換を促進するフィンを設けたことを特徴とする自動販売機の庫内冷却装置。7. The refrigerator according to claim 1, wherein a fin for promoting heat exchange is provided on an outer peripheral surface of a shell of the suction accumulator disposed inside the refrigerator. Internal cooling device. 請求項1ないし6のいずれかの項に記載の庫内冷却装置において、庫内側のサクションアキュームレータを、商品収納室内の冷却ユニットと組み合わせて庫内空気の通風路に配置したことを特徴とする自動販売機の庫内冷却装置。7. The internal cooling device according to claim 1, wherein the suction accumulator inside the refrigerator is arranged in a ventilation path of the air in the refrigerator in combination with a cooling unit in the product storage room. Cooling system inside the vending machine. 請求項8に記載の庫内冷却装置において、サクションアキュームレータを冷却ユニットの風胴内に組み込んで蒸発器の空気流入側に配置したことを特徴とする自動販売機の庫内冷却装置。9. The cooling device according to claim 8, wherein the suction accumulator is incorporated in the wind tunnel of the cooling unit and is arranged on the air inflow side of the evaporator.
JP2003074953A 2003-03-19 2003-03-19 In-storage cooling device for vending machine Pending JP2004280753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074953A JP2004280753A (en) 2003-03-19 2003-03-19 In-storage cooling device for vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074953A JP2004280753A (en) 2003-03-19 2003-03-19 In-storage cooling device for vending machine

Publications (1)

Publication Number Publication Date
JP2004280753A true JP2004280753A (en) 2004-10-07

Family

ID=33290388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074953A Pending JP2004280753A (en) 2003-03-19 2003-03-19 In-storage cooling device for vending machine

Country Status (1)

Country Link
JP (1) JP2004280753A (en)

Similar Documents

Publication Publication Date Title
JP4935077B2 (en) Refrigerator and vending machine
KR101286436B1 (en) Vending machine
WO2009102020A1 (en) Vending machine
JP5375342B2 (en) vending machine
JP4274075B2 (en) Refrigerator and vending machine
JP3003356B2 (en) Vending machine cooling and heating equipment
JP5392491B2 (en) Refrigerant circuit
JP2004326400A (en) Vending machine
JP4702101B2 (en) Refrigerator and vending machine
JP2004280753A (en) In-storage cooling device for vending machine
JP5407621B2 (en) Cooling and heating device
JP4911105B2 (en) vending machine
JP5569634B2 (en) Operation method of cooling heating device
JP5228965B2 (en) vending machine
JP4155329B1 (en) vending machine
JP5434423B2 (en) vending machine
JP2003161563A (en) Operation control method for freezing and refrigerating reach-in showcase
JP4548540B2 (en) vending machine
JP5471480B2 (en) vending machine
JP2011127848A (en) Refrigerant circuit
JPH07110882A (en) Automatic vending machine
JP5370108B2 (en) Cooling and heating device
JP5229057B2 (en) vending machine
JP5240030B2 (en) vending machine
JP5240017B2 (en) vending machine