JP2004280027A - 回折格子素子 - Google Patents

回折格子素子 Download PDF

Info

Publication number
JP2004280027A
JP2004280027A JP2003105678A JP2003105678A JP2004280027A JP 2004280027 A JP2004280027 A JP 2004280027A JP 2003105678 A JP2003105678 A JP 2003105678A JP 2003105678 A JP2003105678 A JP 2003105678A JP 2004280027 A JP2004280027 A JP 2004280027A
Authority
JP
Japan
Prior art keywords
diffraction grating
flat plate
transparent flat
linear expansion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003105678A
Other languages
English (en)
Inventor
Manabu Shiozaki
学 塩▼崎▲
Masaichi Mobara
政一 茂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003105678A priority Critical patent/JP2004280027A/ja
Priority to DK04704328.6T priority patent/DK1590693T3/da
Priority to CA2473911A priority patent/CA2473911C/en
Priority to PCT/JP2004/000558 priority patent/WO2004066003A1/en
Priority to US10/761,433 priority patent/US6917471B2/en
Priority to EP04704328A priority patent/EP1590693B1/en
Publication of JP2004280027A publication Critical patent/JP2004280027A/ja
Priority to US11/147,381 priority patent/US7085054B2/en
Priority to US11/483,728 priority patent/US20060262305A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

【課題】温度制御機構を不要化または簡略化することができる回折格子素子を提供する。
【解決手段】回折格子素子1は、各々が媒質21,22に接していて互いに平行な第1面10Aおよび第2面10Bを有する透明平板10において第1面10Aに回折格子が形成されたものである。この第1面10Aに形成された回折格子は、格子方向がy軸方向に平行であり、x軸方向に周期Λで凹凸が周期的に形成されたものである。媒質21,22は例えば空気であり、透明平板10は例えば石英ガラスからなる。温度範囲−20℃〜+80℃に含まれる何れかの温度において、回折格子の周期Λの線膨張係数と媒質21,22の屈折率の温度係数との和が0である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、透明平板の一方の面に回折格子が形成された回折格子素子に関するものである。
【0002】
【従来の技術】
回折格子素子は、一般に、互いに平行な第1面および第2面を有する透明平板において第1面に回折格子が形成されたものである(例えば非特許文献1を参照)。この回折格子素子では、例えば、第1面に接する媒質から該第1面に光が一定入射角で入射すると、その光は、第1面に形成された回折格子により回折され、透明平板の内部を通過して、第2面に接する媒質へ出射される。透明平板の第2面から出射されるときの光の回折角は、波長によって異なる。
【0003】
このように、この回折格子素子は、入射した光を分波して出射する光分波器として用いられ得る。また、この回折格子素子は、上記の場合とは逆の方向に光を導く場合には、入射した光を合波して出射する光合波器として用いられ得る。さらに、回折格子素子と他の光学素子とを組み合わせることで、例えば、波長に応じて光の群遅延時間を調整する分散調整器を構成することもできる。したがって、回折格子素子は、多波長の信号光を多重化して伝送する波長分割多重(WDM: Wavelength Division Multiplexing)光通信システムにおいて重要な光デバイスの1つとなっている。
【0004】
【非特許文献1】
小舘香椎子、「回折光学の発展と新展開」、日本女子大学紀要、理学部、第10号、pp.7−24, (2002)
【0005】
【発明が解決しようとする課題】
しかしながら、回折格子素子に入射する光の波長および入射角が一定であっても、温度に依存して回折角が変化する。WDM光通信システムで用いられる場合に、回折格子素子における回折角が変化すると、これに因り、信号光の損失が大きくなり、或いは、信号光の波形が劣化して、通信エラーが生じる場合がある。このような通信エラーを抑制するために、従来では、回折格子素子の温度を一定に制御するアクティブな温度制御機構を設ける必要があった。しかし、温度制御機構を設けることはシステムコストの増加を引き起こし、また、温度制御機構に対する電力供給が必要であることからもシステムコストの増加を引き起こしていた。
【0006】
本発明は、上記問題点を解消する為になされたものであり、温度制御機構を不要化または簡略化することができる回折格子素子を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る回折格子素子は、各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において第1面または第1面に平行に内部に回折格子が形成され、温度範囲−20℃〜+80℃に含まれる何れかの温度において回折格子の周期の線膨張係数と媒質の屈折率の温度係数との和が0であることを特徴とする。この回折格子素子は、光通信システムにおいて一般的な環境温度範囲−20℃〜+80℃で用いられる場合に、温度制御機構を不要とすることができ、或いは、温度制御機構を簡略化することができる。本発明に係る回折格子素子は、媒質が空気であって、回折格子の周期の線膨張係数が0.63×10−6/K〜1.23×10−6/Kであるのが好適であり、この場合には、温度範囲−20℃〜+80℃に含まれる何れかの温度において、大気圧下で、回折格子の周期の線膨張係数と媒質の屈折率の温度係数との和が0となる。
【0008】
本発明に係る回折格子素子は、各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において第1面または第1面に平行に内部に回折格子が形成され、媒質が空気であって、回折格子の周期の線膨張係数が0.65×10−6/K〜1.11×10−6/Kであることを特徴とする。この回折格子素子は、温度範囲−20℃〜+80℃で大気圧下での最大波長シフト量が0.04nm以下となり、多波長信号光の光周波数間隔が100GHzであるWDM光通信システムにおいて好適に用いられ得る。
【0009】
本発明に係る回折格子素子は、互いに平行な第1面および第2面を有する透明平板において第1面または第1面に平行に内部に回折格子が形成され、透明平板が気密封止されたガス中または真空中に配置され、回折格子の周期の線膨張係数が2.4×10−7/K以下であることを特徴とする。この回折格子素子は、温度範囲−20℃〜+80℃で気密封止下または真空での最大波長シフト量が0.04nm以下となり、多波長信号光の光周波数間隔が100GHzであるWDM光通信システムにおいて好適に用いられ得る。
【0010】
本発明に係る回折格子素子は、各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において第1面または第1面に平行に内部に回折格子が形成され、媒質が空気であって、回折格子の周期の線膨張係数が0.80×10−6/K〜0.95×10−6/Kであることを特徴とする。この回折格子素子は、温度範囲−20℃〜+80℃で大気圧下での最大波長シフト量が0.02nm以下となり、多波長信号光の光周波数間隔が50GHzであるWDM光通信システムにおいて好適に用いられ得る。
【0011】
本発明に係る回折格子素子は、互いに平行な第1面および第2面を有する透明平板において第1面または第1面に平行に内部に回折格子が形成され、透明平板が気密封止されたガス中または真空中に配置され、回折格子の周期の線膨張係数が1.2×10−7/K以下であることを特徴とする。この回折格子素子は、温度範囲−20℃〜+80℃で気密封止下または真空での最大波長シフト量が0.02nm以下となり、多波長信号光の光周波数間隔が50GHzであるWDM光通信システムにおいて好適に用いられ得る。
【0012】
本発明に係る回折格子素子は、透明平板が不純物を添加された石英ガラスからなるのも好適であり、透明平板が不純物を添加された石英ガラスまたは結晶化ガラスからなるのも好適であり、透明平板が異なる線膨張係数を有する複数の光学ガラスが積層されてなるのも好適であり、或いは、透明平板が厚み方向に異なる濃度で不純物を添加された石英ガラスからなるのも好適である。
【0013】
透明平板に不純物が添加される場合、その不純物がGe,PおよびBの何れかの元素であるのが好適であり、或いは、その不純物がTi元素であるであるのも好適であり、例えばVAD法やCVD法により適切な濃度の不純物が添加されることにより、透明平板に形成される回折格子の周期の線膨張係数を所望値とすることができる。透明平板の回折格子形成部が石英ガラスからなるのが好適であり、この場合には、回折格子を形成する際に加工性が優れる。
【0014】
本発明に係る回折格子素子は、透明平板の厚み方向における線膨張係数分布が対称であるのが好適であり、この場合には、温度変化があっても、透明平板の反りの発生が抑制される。さらに、回折格子が透明平板の厚み方向の中央に形成されているのが好適であり、この場合には、光の出射位置の温度依存性も低減される。
【0015】
本発明に係る回折格子素子は、回折効率が実質的に偏波無依存であるのが好適であり、この場合には、入射する光の偏波状態が一定で無い場合であっても、従来では必要であった他の光学素子(偏波分離素子や偏波合成素子など)を用いることなく、入射光を一定の回折効率で回折することができる。
【0016】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、各図において説明の便宜の為にxyz直交座標系が示されている場合がある。
【0017】
図1は、本実施形態に係る回折格子素子1の断面図である。この図に示される回折格子素子1は、各々が媒質21,22に接していて互いに平行な第1面10Aおよび第2面10Bを有する透明平板10において第1面10Aに回折格子が形成されたものである。この第1面10Aに形成された回折格子は、格子方向がy軸方向に平行であり、x軸方向に周期Λで凹凸が周期的に形成されたものである。また、第2面10Bには反射低減膜が設けられているのが好適であり、この場合には、回折効率が優れる。なお、媒質21,22は、例えば空気であるが、これに限られない。また、透明平板10は、例えば石英ガラスからなるが、これに限られない。
【0018】
このような回折格子素子1において、媒質21から透明平板10の第1面10Aに光が入射する。入射面はxz平面に平行である。その光は、第1面10Aに形成された回折格子により回折され、透明平板10の内部を通過して、第2面10Bに接する媒質22へ出射される。
【0019】
透明平板10の第2面10Bから出射されるm次の回折光の回折角θは、
【0020】
【数1】
Figure 2004280027
なる式で表される。ここで、θは入射角であり、λは真空中の光の波長であり、nは媒質21,22の屈折率である。この式から判るように、回折角θが波長λに依存していることから、回折格子素子1は、例えば、光分波器または光合波器として用いられ、或いは、分散調整器の一構成要素としても用いられ得る。
【0021】
ところで、温度Tが変化すると、次に説明するような問題が生じる。図2は、回折格子素子の問題点を説明する図である。一般に、媒質21,22の屈折率nは温度Tの関数であり、また、回折格子の周期Λも温度Tの関数であるから、回折角θは温度Tにより異なる。もし、図2に示されるように、入射光が波長成分λ〜λを含むものとして、0次以外の回折光のうちの波長λの成分を光学素子30(例えば、フォトダイオード、ミラー、等)で受光するように光学系が調整されていたとすると、温度Tが変化して回折角θが変化したときに、光学素子30に入射する光の波長がシフトする。それ故、従来では、回折格子素子の温度を一定に制御するアクティブな温度制御機構を設ける必要があった。
【0022】
本実施形態に係る回折格子素子1は、このような問題点を解決することができるものである。すなわち、上記(1)式の右辺にある温度依存成分である積(nΛ)を温度Tで微分すると、
【0023】
【数2】
Figure 2004280027
なる式が得られる。この(2)式の右辺が0であれば、積(nΛ) は温度Tに依らず一定となり、したがって、回折角θは温度Tに依らず一定となる。
【0024】
ここで、上記(2)式右辺の括弧内の第2項は、
【0025】
【数3】
Figure 2004280027
なる式で定義される回折格子の周期Λの線膨張係数αである。また、上記(2)式右辺の括弧内の第1項は、
【0026】
【数4】
Figure 2004280027
なる式で定義される媒質21,22の屈折率nの温度係数βである。したがって、回折格子の周期Λの線膨張係数αと、媒質21,22の屈折率nの温度係数βとの和が0となれば、すなわち、
【0027】
【数5】
Figure 2004280027
なる関係式が成り立てば、回折角θは温度Tに依らず一定となる。
【0028】
そして、本実施形態に係る回折格子素子1では、温度範囲−20℃〜+80℃に含まれる何れかの温度において、回折格子の周期Λの線膨張係数αと媒質21,22の屈折率nの温度係数βとの和が0となっている。これにより、この回折格子素子1は、光通信システムにおいて一般的な環境温度範囲−20℃〜+80℃で用いられる場合に、温度制御機構を不要とすることができ、或いは、温度制御機構を簡略化することができる。
【0029】
以下では、媒質21,22が空気である場合について説明する。図3は、大気圧下での空気の屈折率nの温度係数βと温度Tとの関係を示すグラフである。この図に示されるように、空気の屈折率nは、温度Tへの依存性が小さく殆ど値1に等しいが、空気の屈折率nの温度係数βは、温度Tに依存して大きく変化する。また、回折格子の周期Λの線膨張係数α(単位:1/K)が
【0030】
【数6】
Figure 2004280027
なる数値範囲内にあれば、温度範囲−20℃〜+80℃に含まれる何れかの温度において大気圧下で上記(5)式の関係が成り立つ。また、回折格子の周期Λの線膨張係数αが0.89×10−6/Kであれば、通常の使用温度である25℃付近で大気圧下で上記(5)式の関係が成り立つ。
【0031】
また、図2を用いて説明したように、一般に、温度Tが変化すると光学素子30に入射する回折光の波長がシフトする。図4は、温度範囲−20℃〜+80℃での最大波長シフト量と回折格子の周期Λの線膨張係数αとの関係を示すグラフである。この図には、波長λが1.3μm,1.5μmおよび1.7μmそれぞれの場合について示されている。なお、一般に、WDM光通信システムでは、信号光波長帯として波長1.7μm以下の波長帯が用いられる。
【0032】
WDM光通信システムにおける多波長信号光の光周波数間隔が100GHzである場合、温度範囲−20℃〜+80℃で大気圧下での最大波長シフト量が0.04nm以下であることが必要であり、したがって、図4より、回折格子の周期Λの線膨張係数α(単位:1/K)は
【0033】
【数7】
Figure 2004280027
なる数値範囲内にあればよい。また、多波長信号光の光周波数間隔が50GHzである場合、温度範囲−20℃〜+80℃で大気圧下での最大波長シフト量が0.02nm以下であることが必要であり、したがって、回折格子の周期Λの線膨張係数α(単位:1/K)は
【0034】
【数8】
Figure 2004280027
なる数値範囲内にあればよい。
【0035】
以上のように、本実施形態に係る回折格子素子1は、回折格子の周期Λの線膨張係数αが好適範囲にあることにより、温度範囲−20℃〜+80℃におけるWDM光通信での要求精度を満たすことができて、温度制御機構を不要とすることができ、或いは、温度制御機構を簡略化することができる。ただし、多波長信号光の波長域や光周波数間隔によって要求精度は異なる。
【0036】
次に、回折格子の周期Λの線膨張係数αを所望のものに実現する方法について説明する。その第1の方法として、石英ガラスに不純物(Ge,PおよびBなど)を添加したものを透明平板10とすればよい。石英ガラスの線膨張係数は0.5×10−6/Kであって上記数値範囲外であるが、石英ガラスに添加される不純物の添加濃度を適切に設定することで、その石英ガラスの線膨張係数を所望のものに実現することができる。
【0037】
例えば、石英ガラスに添加される不純物がGeである場合、その石英ガラスの線膨張係数α(単位:1/K)は、Ge添加濃度MGe(単位:mol%)に対して、
【0038】
【数9】
Figure 2004280027
なる関係式で表される。したがって、上記(6)式で表される線膨張係数αの数値範囲とするには、Ge添加濃度MGeは1.7mol%〜9.6mol%であればよい。また、上記(8)式で表される線膨張係数αの数値範囲とするには、Ge添加濃度MGeは3.9mol%〜5.9mol%であればよい。
【0039】
Ge以外の他の不純物(P,B,その他)が添加される場合にも、添加濃度を適切に設定することで、その石英ガラスの線膨張係数を所望のものに実現することができる。また、透明平板10の製造性を考慮すると、石英ガラスに複数種類の不純物が添加されるのも好適である。なお、製造は例えばVAD法やCVD法により可能である。
【0040】
回折格子の周期Λの線膨張係数αを所望のものに実現する第2の方法として、異なる線膨張係数を有する複数の光学ガラスを積層したものを透明平板10としてもよい。図5は、本実施形態に係る回折格子素子1の他の構成例の説明図である。この図に示される回折格子素子1では、透明平板10は、3枚の光学ガラス11〜13が順に積層されたものとなっている。光学ガラス11が媒質21と接し、光学ガラス13が媒質22と接していて、光学ガラス11と光学ガラス13との間に光学ガラス12が挟まれている。
【0041】
また、透明平板10の厚み方向における線膨張係数分布が対称であるのが好適であり、この場合には、温度変化があっても、透明平板10の反りの発生が抑制される。光学ガラス11および13それぞれは、厚みがt/2であり、ヤング率がEであり、ポアソン比がνであり、線膨張係数がαであるとする。光学ガラス12は、厚みがtであり、ヤング率がEであり、ポアソン比がνであり、線膨張係数がαであるとする。このとき、透明平板10の線膨張係数(すなわち、回折格子の周期Λの線膨張係数α)は、
【0042】
【数10】
Figure 2004280027
なる式で表される。なお、光学ガラス11〜13それぞれの厚みは回折格子の凹凸の深さより充分に大きいので、回折格子の凹凸の影響を無視することができる。
【0043】
また、光学ガラス11および光学ガラス13それぞれは、回折格子を形成する為に加工性が優れるのが好適であり、光学ガラス12は、上記(10)式に従って回折格子の周期Λの線膨張係数αが所望値のものとなるように、物性および厚みが適切に設定されるのが好適である。例えば、光学ガラス11および光学ガラス13それぞれは石英ガラスからなるのが好適である。また、光学ガラス12は、不純物としてGeが添加された石英ガラスからなるのが好適である。
【0044】
図6は、回折格子の周期Λの線膨張係数αと厚み比(t/t)との関係を示すグラフである。ここでは、光学ガラス12に添加される不純物がGeであって、その添加濃度が10mol%および15mol%それぞれとした。この図から判るように、光学ガラス12の不純物添加濃度および厚みを適切に設定することにより、回折格子の周期Λの線膨張係数αを所望値とすることができる。
【0045】
ここで、光学ガラス11,13と光学ガラス12との屈折率差が大きいと、これらの光学ガラスの界面での光の反射が大きくなり、回折効率が悪くなる。したがって、界面での反射を抑制する為に、上記屈折率差は小さい方が好ましい。光学ガラス11,13が石英ガラスであって、光学ガラス12がGe添加濃度15mol%の石英ガラスである場合、屈折率差が0.022であって非常に小さいので、界面での反射が抑制される。
【0046】
光学ガラス11〜13の貼り合わせには接着剤が用いられる。この接着剤の屈折率も、光学ガラス11〜13それぞれの屈折率に近いのが好ましい。また、光学ガラス11〜13の貼り合わせに陽極接合も用いられるが、この場合には、接着剤が不要であるので、接着剤の線膨張の影響が無く、この点でも好ましい。
【0047】
回折格子の周期Λの線膨張係数αを所望のものに実現する第3の方法として、厚み方向に異なる濃度で不純物(Ge,PおよびBなど)を添加された石英ガラスからなるものを透明平板10としてもよい。図7は、本実施形態に係る回折格子素子1の更に他の構成例の説明図である。この図は、透明平板10の厚み方向におけるGe添加濃度分布を示している。この図に示される回折格子素子1では、透明平板10は、第1面10Aおよび第2面10Bそれぞれを含む近傍領域では石英ガラスであり、中間領域では不純物としてGeが添加されている。このような透明平板10は、VAD法やCVD法により製造される。
【0048】
この場合にも、透明平板10の厚み方向における線膨張係数分布が対称であるのが好適であり、温度変化があっても、透明平板10の反りの発生が抑制される。透明平板10の線膨張係数(すなわち、回折格子の周期Λの線膨張係数α)は、
【0049】
【数11】
Figure 2004280027
なる式で表される。ここで、lは、透明平板10の厚みであり、第2面10Bのz座標値を0としている。
【0050】
第1面10Aおよび第2面10Bそれぞれを含む近傍領域では石英ガラスであるから、回折格子を形成する為に加工性が優れるのが好適である。上記(11)式に従って、不純物添加濃度および厚みを適切に設定することにより、回折格子の周期Λの線膨張係数αを所望値とすることができる。また、厚み方向に不純物添加濃度が滑らかに変化するようにすることにより、厚み方向に屈折率が滑らかに変化するようにでき、屈折率変化部分での光の反射を抑制することができる。
【0051】
回折格子の周期Λの線膨張係数αを所望のものに実現する第4の方法として、透明平板10の一方の面の上に膜形成およびエッチングにより回折格子を形成してもよい。図8および図9それぞれは、本実施形態に係る回折格子素子1の更に他の構成例の説明図である。これらの図に示される回折格子素子1では、透明平板10は、例えば、Ge元素またはTi元素などの不純物を添加した石英ガラスからなる。図8に示される回折格子素子1は、透明平板10の一方の面の上に、単層の膜10aを蒸着した後、パターニングを行なってエッチングすることで、周期Λのパターンで膜10aを残して、これを回折格子としたものである。図9に示される回折格子素子1は、透明平板10の一方の面の上に、多層の膜10a,10bおよび10cを蒸着した後、パターニングを行なってエッチングすることで、周期Λのパターンで膜10a,10bを残して、これを回折格子としたものである。
【0052】
この回折格子素子1では、透明平板10に添加された不純物の添加濃度が適切に調整されることで、回折格子の周期Λの線膨張係数αが所望値とされる。また、この場合、透明平板10のエッチングが困難であっても、その一方の面の上に形成する膜の材料を適切に選択することで、回折格子を容易に形成することができる。また、特に図9に示された回折格子素子1では、膜10a,10bおよび10cそれぞれの屈折率を適切に選択することにより、広波長帯域で回折特性の偏波依存性を低減することができる。
【0053】
以上までの実施形態の説明では、回折格子素子1は大気圧下に置かれるものとし、媒質21,22が大気圧のガスであるとした。しかし、回折格子素子1が筐体内に気密封止される場合があり、この場合には、温度が変化するとガスの圧力が変化して、この圧力変化によりガスの屈折率が変化する。以下では、気密封止される場合について説明する。
【0054】
本実施形態に係る回折格子素子1は、光分波器や光合波器として用いられるだけでなく、分散調整器、スペクトル検出装置および光フィルタ等の光学モジュールの構成部品として、WDM光通信システムにおいて好適に用いられる。また、これらの光学モジュールにおいては、レーザダイオード、フォトダイオードおよびMEMS(Micro Electro Mechanical System)などの半導体部品とともに、筐体内に回折格子素子1が設けられる場合がある。ところで、一般に、半導体部品は、水素や水蒸気の影響に因る劣化を防止するため、気密封止される。また、半導体部品を含まない光学モジュールでも、気密封止することにより、回折格子素子1への異物の付着を抑制することで、良好な特性を維持することができる。以下では、気密封止による回折特性の温度依存性の低減について具体例を示す。
【0055】
ガスの屈折率nは、一般に
【0056】
【数12】
Figure 2004280027
なる式で表される。ここで、Δnは、真空の屈折率との差を表しており、ガスにより異なり、He,Ne,ArおよびNそれぞれについては温度0℃で1気圧のときの値が
【0057】
【数13】
Figure 2004280027
のとおりである。
【0058】
温度または圧力が変化すると、ガスの密度に略比例してΔnが変化する。気密封止時におけるガス密度をρとし、気密封止時におけるガス温度をTとし、ガスの体積膨張率をγとする。このとき、温度Tの時のガスの屈折率nは、
【0059】
【数14】
Figure 2004280027
なる式で表され、温度Tの時のガスの密度ρは、
【0060】
【数15】
Figure 2004280027
なる式で表される。よって、気密封止時のガスの屈折率の温度係数βは、
【0061】
【数16】
Figure 2004280027
なる式で表される。
【0062】
回折格子素子1(および半導体部品)を収納して封止する筐体の材質がAlである場合、その筐体の線膨張係数が23×10−6/℃であるので、その筐体の内部にあるガスの体積膨張率γは69×10−6/℃(=3x23x10−6)となる。よって、気密封止時のガスの屈折率の温度係数βは、Heガスの場合には−0.024×10−7/℃であり、Nガスの場合には−0.20×10−7/℃である。
【0063】
これらの気密封止時のガスの屈折率の温度係数βの値は、石英ガラスの線膨張係数5×10−7/℃と比較して、絶対値が1桁以上も小さい。また、大気圧中では、ガスの体積膨張率は、絶対温度に反比例し、例えば温度0℃では3.7×10−3/℃(=1/273)であるから、Alの筐体で気密封止されたガスの体積膨張率γは、大気圧中でのガスの体積膨張率と比較して、絶対値が2桁以上も小さい。
【0064】
回折格子素子1が大気圧中に置かれた場合と比較して、このように回折格子素子1が気密封止された場合には、ガス(媒質21,22)の屈折率nの温度係数βは小さく、また、温度係数βの温度依存性も小さいので、回折格子の周期Λの線膨張係数αの好適範囲は異なる。
【0065】
WDM光通信システムにおいて無温調で回折格子素子1を用いる場合、多波長信号光の光周波数間隔が100GHzであるときには、単位温度変化当たりの回折格子の波長シフト量は0.4pm/℃以下(温度範囲−20℃〜+80℃で波長シフト量が0.04nm以下)であることが望まれ、また、多波長信号光の光周波数間隔が50GHzであるときには、単位温度変化当たりの回折格子の波長シフト量は0.2pm/℃以下(温度範囲−20℃〜+80℃で波長シフト量が0.02nm以下)であることが望まれる。なお、多波長信号光の波長域や光周波数間隔によって要求精度は異なる。
【0066】
ここで、単位温度変化当たりの回折格子の波長シフト量は、
【0067】
【数17】
Figure 2004280027
なる式で表される。
【0068】
一般にWDM光通信で用いられる信号光の波長は1.7μm以下であるので、信号光波長帯域の全域で波長シフト量が0.4pm/℃以下(または0.2pm/℃以下)となるためには、
【0069】
【数18】
Figure 2004280027
なる条件を満たせばよい。
【0070】
この(18)式の右辺の値は、気密封止時のガスの屈折率nの温度係数βと比べると、約1桁大きい。Alのような線膨張係数が大きい材料からなる筐体を用いても、その筐体内に回折格子素子1を気密封止すれば、ガス(媒質21,22)の屈折率nの温度係数βを無視することができる。したがって、筐体内が真空である場合も含めて、回折格子の周期Λの線膨張係数αは、光周波数間隔が100GHzおよび50GHzそれぞれの場合で、
【0071】
【数19】
Figure 2004280027
なる条件を満たせばよい。なお、封止される場合であっても、封止する筐体の材質が樹脂のように線膨張係数が大きい場合には、気密封止時のガスの屈折率の温度係数βを考慮して上記(18a)式または(18b)式を満たす必要がある。
【0072】
気密封止する場合には、回折格子の周期Λの線膨張係数αは、石英ガラスの線膨張係数(5×10−7/℃)より小さいことが必要である。これを実現するには、透明平板10として結晶化ガラスを用いるのが好適であり、或いは、透明平板10としてTi元素を添加した石英ガラスを用いるのが好適である。結晶化ガラスの場合には結晶化の程度を調整することにより、また、Ti元素を添加した石英ガラスの場合にはTi添加量を調整することにより、線膨張係数を例えば−20×10−7/℃〜+5×10−7/℃の範囲の値とすることができる。また、実質的に熱膨張しないガラスを透明平板10として用いると、なお好適である。また、図5に示された構成で、光学ガラス11,13として石英ガラスを用い、光学ガラス12として線膨張係数が負であるガラスを用いてもよい。
【0073】
以上までの実施形態の回折格子素子1は、透明平板10の一方の表面に回折格子が形成されたものであった。しかし、透明平板の表面に平行に内部に回折格子が形成されてもよい。以下では、透明平板の内部に回折格子が形成され回折格子素子について説明する。
【0074】
図10は、本実施形態に係る回折格子素子2の断面図である。この図に示される回折格子素子2は、各々が媒質21,22に接していて互いに平行な第1面10Aおよび第2面10Bを有する透明平板10において、第1面10Aに平行に内部に回折格子10aが形成されたものである。透明平板10は、例えば、Ge元素またはTi元素を添加された石英ガラスである。回折格子10aは、透明平板10の厚み方向(z軸方向)について中央に形成されていて、上下対称の構造であり、格子方向がy軸に平行であり、x軸方向に周期Λで周期的に形成されたものである。また、第1面10Aおよび第2面10Bそれぞれには反射低減膜が設けられているのが好適である。この回折格子素子2でも、回折格子の周期Λの線膨張係数αは、大気圧中に置かれる場合には上記(5)式〜(8)式の何れかを満たし、或いは、気密封止される場合には上記(18a)式または(18b)式を満たす。この回折格子素子2は、第1面10Aに回折格子が形成されている既述の回折格子素子1と同様に、回折角の温度依存性が低減される。
【0075】
また、回折格子素子2は、一般に高い回折効率が得られるブラッグ条件での使用時に、第2面10Bからの光の出射位置の温度依存性も抑制される。すなわち、媒質21から第1面10Aへの光の入射角をθとし、その光の波長をλとし、回折格子の周期をΛとし、媒質21,22の屈折率をnすると、m次回折光のブラッグ条件は、
【0076】
【数20】
Figure 2004280027
なる式で表される。ブラッグ条件では、入射角と回折角とが逆符号で各々の絶対値が互いに等しい。また、透明平板10が透明平板10の厚み方向(z軸方向)について中央に形成されていて上下対称の構造である。したがって、x軸方向に関して、第2面10Bからの光の出射位置は、第1面10Aへの光の入射位置と等しい。仮に上記(20)式中の積(nΛ)の温度依存性が無くなれば、第1面10Aへの光の入射位置の温度依存性は無いから、温度に依らずに常にブラッグ条件を満たし、第2面10Bからの光の出射位置の温度依存性も無くなる。したがって、上記(20)式中の温度依存成分である積(nΛ)の温度依存性を低減すれば、回折角の温度依存性を低減することができるだけでなく、出射位置の温度依存性をも低減することができる。
【0077】
図11は、本実施形態に係る回折格子素子3の断面図である。この図に示される回折格子素子3は、既述した回折格子素子2の変形例であって、3枚の光学ガラス11〜13が順に積層されて透明平板10が構成されたものである。この回折格子素子3における3枚の光学ガラス11〜13は、図5に示された構成と同様である。中央の光学ガラス12は例えば石英ガラスであり、両側の光学ガラス11,13それぞれは例えばGe元素またはTi元素を添加された石英ガラスである。回折格子10aは、中央の光学ガラス12の厚み方向(z軸方向)について中央に形成されていて、上下対称の構造であり、格子方向がy軸に平行であり、x軸方向に周期Λで周期的に形成されたものである。また、光学ガラス11,13それぞれの表面には反射低減膜が設けられているのが好適である。この回折格子素子3でも、回折格子の周期Λの線膨張係数αは、大気圧中に置かれる場合には上記(5)式〜(8)式の何れかを満たし、或いは、気密封止される場合には上記(18a)式または(18b)式を満たす。この回折格子素子3は、既述の回折格子素子2と同様に、積(nΛ)の温度依存性を低減すれば、回折角の温度依存性が低減され、また、出射位置の温度依存性も低減される。
【0078】
回折格子素子2,3は以下のようにして製造される。エッチング等により表面に回折格子が形成された透明ガラスの回折格子面に対し、両面が平坦な他の透明ガラスを貼り合せ、この張り合わせたものを、回折格子素子2の透明平板10または回折格子素子3の光学ガラス12とする。或いは、エッチング等により表面に回折格子が形成された透明ガラスの回折格子面に対し、その格子の溝を蒸着等によりTiO,TaおよびNb等の高屈折率材で埋め、その後に、両面が平坦な他の透明ガラスを貼り合せ、この張り合わせたものを、回折格子素子2の透明平板10または回折格子素子3の光学ガラス12としてもよい。後者の場合には、回折格子面が全て固体であるから、貼り合せ作業が容易である。また、後者の場合には、高屈折率材料で埋めた後に研磨等の表面処理を行なうと、貼り合せ作業が更に容易となり好適である。
【0079】
図12は、本実施形態に係る回折格子素子4の断面図である。この図に示される回折格子素子4では、透明平板10は、光学ガラス11と光学ガラス12との間に挟まれた領域に回折格子が形成されたものであり、その回折格子は、媒質14aと媒質14bとがx軸方向に周期Λで交互に設けられたものである。
【0080】
また、図13は、本実施形態に係る回折格子素子5の断面図である。この図に示される回折格子素子5では、透明平板10は、光学ガラス11と光学ガラス12との間に挟まれた領域に膜15〜18が順に形成されていて、膜16と膜17との間に回折格子が形成されたものであり、その回折格子は、媒質14aと媒質14bとがx軸方向に周期Λで交互に設けられたものである。
【0081】
これらの回折格子素子4,5でも、回折格子の周期Λの線膨張係数αは、大気圧中に置かれる場合には上記(5)式〜(8)式の何れかを満たし、或いは、気密封止される場合には上記(18a)式または(18b)式を満たす。これらの回折格子素子4,5は、既述の回折格子素子2と同様に、積(nΛ)の温度依存性を低減すれば、回折角の温度依存性が低減され、また、出射位置の温度依存性も低減される。
【0082】
これらの回折格子素子4,5は、より広い波長帯域で回折効率の向上が可能である。また、回折格子素子4,5は偏波依存性の抑制が可能であり、このことから、回折格子素子とは別に偏波分離素子や偏波合成素子を設ける必要がないので、これら偏波分離素子や偏波合成素子における偏波分離・合成の温度依存性の影響を排除することができる。
【0083】
なお、回折格子素子5では、膜15〜18および媒質14a,14bは、通常の場合には充分に薄く、透明平板10の線膨張係数への影響が殆ど無いから、この部分では上下対称でなくてもよい。
【0084】
以上では、回折格子素子単体の温度依存性の抑制について説明してきた。ところで、一般に、回折格子素子は他の光学素子とともに用いられる場合がある。例えば、入射する光の偏波状態が一定で無い場合には、回折格子素子は、偏波分離素子、偏波回転素子および偏波合成素子とともに用いられる。この場合、入射した光は、偏波分離素子により偏波分離されて、互いに偏波面が直交する2つの直線偏光とされる。偏波分離された2つの直線偏光の光は、そのうち一方の偏波面が90°だけ偏波回転素子により回転されて、同一方位の直線偏光とされて、回折格子素子に入射して回折される。回折格子素子により回折された2つの直線偏光の光は、そのうち一方の偏波面が90°だけ他の偏波回転素子により回転されて、互いに偏波面が直交する直線偏光とされ、そして、偏波合成素子により偏波合成されて出射される。
【0085】
このような場合、回折格子素子の単体で温度依存性が抑制されるだけでなく、他の光学素子(偏波分離素子、偏波合成素子、偏波回転素子)についても、一般に温度依存性を有していることから温度制御機構が必要である。しかし、他の光学素子については温度制御の負荷が大きいとなると、回折格子素子について温度制御機構の不要化または簡略化がなされた意義が半減する。
【0086】
そこで、本実施形態に係る回折格子素子1は、温度依存性が抑制されたものであるだけでなく、回折効率の偏波依存性も抑制されたものであるのが好適である。このようにすることにより、入射する光の偏波状態が一定で無い場合であっても、上述した他の光学素子(偏波分離素子、偏波合成素子、偏波回転素子)を用いることなく、回折格子素子1のみで、入射光を一定の回折効率で回折することができる。
【0087】
例えば、図14に示されるように、回折格子の断面が矩形状の凹凸であって、周期Λが1.55μmであり、凸条部の高さHが3.72μmであり、凸条部の幅Wと周期Λとの比(W/Λ)が0.66であるとする。透明平板10が石英ガラスからなり、媒質21,22が空気であるとする。また、透明平板10の第2面10Bには無反射コーティングが形成されているとする。このとき、媒質21から第1面10Aへ入射する光の波長が1.55μmであって、入射角θが30°であるとすると、TE偏波光およびTM偏波光それぞれの回折効率は98%程度となり、回折効率は実質的に偏波無依存となる。
【0088】
【発明の効果】
以上、詳細に説明したとおり、本発明に係る回折格子素子は、各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において第1面または第1面に平行に内部に回折格子が形成され、温度範囲−20℃〜+80℃に含まれる何れかの温度において回折格子の周期の線膨張係数と媒質の屈折率の温度係数との和が0である。この回折格子素子は、光通信システムにおいて一般的な環境温度範囲−20℃〜+80℃で用いられる場合に、温度制御機構を不要とすることができ、或いは、温度制御機構を簡略化することができる。
【図面の簡単な説明】
【図1】本実施形態に係る回折格子素子1の断面図である。
【図2】回折格子素子の問題点を説明する図である。
【図3】空気の屈折率nの温度係数と温度Tとの関係を示すグラフである。
【図4】温度範囲−20℃〜+80℃での最大波長シフト量と回折格子の周期Λの線膨張係数αとの関係を示すグラフである。
【図5】本実施形態に係る回折格子素子1の他の構成例の説明図である。
【図6】回折格子の周期Λの線膨張係数αと厚み比(t/t)との関係を示すグラフである。
【図7】本実施形態に係る回折格子素子1の更に他の構成例の説明図である。
【図8】本実施形態に係る回折格子素子1の更に他の構成例の説明図である。
【図9】本実施形態に係る回折格子素子1の更に他の構成例の説明図である。
【図10】本実施形態に係る回折格子素子2の断面図である。
【図11】本実施形態に係る回折格子素子3の断面図である。
【図12】本実施形態に係る回折格子素子4の断面図である。
【図13】本実施形態に係る回折格子素子5の断面図である。
【図14】本実施形態に係る回折格子素子1の偏波無依存性の実現方法を説明する図である。
【符号の説明】
1〜5…回折格子素子、10…透明平板、10A…第1面、10B…第2面、11〜13…光学ガラス、21,22…媒質。

Claims (16)

  1. 各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において前記第1面または前記第1面に平行に内部に回折格子が形成され、
    温度範囲−20℃〜+80℃に含まれる何れかの温度において前記回折格子の周期の線膨張係数と前記媒質の屈折率の温度係数との和が0である、
    ことを特徴とする回折格子素子。
  2. 前記媒質が空気であって、前記回折格子の周期の線膨張係数が0.63×10−6/K〜1.23×10−6/Kである、ことを特徴とする請求項1記載の回折格子素子。
  3. 各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において前記第1面または前記第1面に平行に内部に回折格子が形成され、
    前記媒質が空気であって、前記回折格子の周期の線膨張係数が0.65×10−6/K〜1.11×10−6/Kである、
    ことを特徴とする回折格子素子。
  4. 互いに平行な第1面および第2面を有する透明平板において前記第1面または前記第1面に平行に内部に回折格子が形成され、
    前記透明平板が気密封止されたガス中または真空中に配置され、
    前記回折格子の周期の線膨張係数が2.4×10−7/K以下である、
    ことを特徴とする回折格子素子。
  5. 各々が媒質に接していて互いに平行な第1面および第2面を有する透明平板において前記第1面または前記第1面に平行に内部に回折格子が形成され、
    前記媒質が空気であって、前記回折格子の周期の線膨張係数が0.80×10−6/K〜0.95×10−6/Kである、
    ことを特徴とする回折格子素子。
  6. 互いに平行な第1面および第2面を有する透明平板において前記第1面または前記第1面に平行に内部に回折格子が形成され、
    前記透明平板が気密封止されたガス中または真空中に配置され、
    前記回折格子の周期の線膨張係数が1.2×10−7/K以下である、
    ことを特徴とする回折格子素子。
  7. 前記透明平板が不純物を添加された石英ガラスからなる、ことを特徴とする請求項1,3および5の何れか1項に記載の回折格子素子。
  8. 前記透明平板が不純物を添加された石英ガラスまたは結晶化ガラスからなる、ことを特徴とする請求項1,4および6の何れか1項に記載の回折格子素子。
  9. 前記透明平板が異なる線膨張係数を有する複数の光学ガラスが積層されてなる、ことを特徴とする請求項1,3,4,5および6の何れか1項に記載の回折格子素子。
  10. 前記透明平板が厚み方向に異なる濃度で不純物を添加された石英ガラスからなる、ことを特徴とする請求項1,3および5の何れか1項に記載の回折格子素子。
  11. 前記不純物がGe,PおよびBの何れかの元素であることを特徴とする請求項7または10に記載の回折格子素子。
  12. 前記不純物がTi元素であることを特徴とする請求項8記載の回折格子素子。
  13. 前記透明平板の回折格子形成部が石英ガラスからなることを特徴とする請求項9または10に記載の回折格子素子。
  14. 前記透明平板の厚み方向における材質の分布が対称であることを特徴とする請求項9または10に記載の回折格子素子。
  15. 前記回折格子が前記透明平板の厚み方向の中央に形成されていることを特徴とする請求項14記載の回折格子素子。
  16. 回折効率が実質的に偏波無依存であることを特徴とする請求項1,3,4,5および6の何れか1項に記載の回折格子素子。
JP2003105678A 2003-01-24 2003-04-09 回折格子素子 Pending JP2004280027A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003105678A JP2004280027A (ja) 2003-01-24 2003-04-09 回折格子素子
DK04704328.6T DK1590693T3 (da) 2003-01-24 2004-01-22 Diffraktionsgitterelement
CA2473911A CA2473911C (en) 2003-01-24 2004-01-22 Diffraction grating element
PCT/JP2004/000558 WO2004066003A1 (en) 2003-01-24 2004-01-22 Diffraction grating element
US10/761,433 US6917471B2 (en) 2003-01-24 2004-01-22 Diffraction grating element
EP04704328A EP1590693B1 (en) 2003-01-24 2004-01-22 Diffraction grating element
US11/147,381 US7085054B2 (en) 2003-01-24 2005-06-08 Diffraction grating element
US11/483,728 US20060262305A1 (en) 2003-01-24 2006-07-11 Diffraction grating element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003016747 2003-01-24
JP2003105678A JP2004280027A (ja) 2003-01-24 2003-04-09 回折格子素子

Publications (1)

Publication Number Publication Date
JP2004280027A true JP2004280027A (ja) 2004-10-07

Family

ID=33301550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105678A Pending JP2004280027A (ja) 2003-01-24 2003-04-09 回折格子素子

Country Status (1)

Country Link
JP (1) JP2004280027A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258053A (ja) * 2004-03-11 2005-09-22 Nippon Sheet Glass Co Ltd 透過型回折格子
JP2006234920A (ja) * 2005-02-22 2006-09-07 Nippon Sheet Glass Co Ltd 光学モジュール
JP2011138169A (ja) * 2004-07-26 2011-07-14 Nippon Sheet Glass Co Ltd 透過型回折光学素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258053A (ja) * 2004-03-11 2005-09-22 Nippon Sheet Glass Co Ltd 透過型回折格子
JP2011138169A (ja) * 2004-07-26 2011-07-14 Nippon Sheet Glass Co Ltd 透過型回折光学素子
JP2006234920A (ja) * 2005-02-22 2006-09-07 Nippon Sheet Glass Co Ltd 光学モジュール

Similar Documents

Publication Publication Date Title
US7085054B2 (en) Diffraction grating element
US8165436B2 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
US7050233B2 (en) Precision phase retardation devices and method of making same
US7554734B1 (en) Polarization independent grating
US20050157392A1 (en) Tunable-wavelength optical filter and method of manufacturing the same
US6844975B2 (en) Etalon devices employing multiple materials
Lequime et al. Toward tunable thin-film filters for wavelength division multiplexing applications
WO2015101048A1 (zh) 一种具有双输出光束的可调谐激光器
JP4954975B2 (ja) 周期構造体及び周期構造の作製方法並びに応用製品
US20050152037A1 (en) Diffraction grating element, production method of diffraction grating element, and method of designing diffraction grating element
JP4369256B2 (ja) 分光光学素子
WO2015101049A1 (zh) 一种可调谐激光器系统
CN100367049C (zh) 衍射光栅元件
CN109298504B (zh) 微机电光学波长参考标准具
JP2004280027A (ja) 回折格子素子
Sameshima et al. A GaN electromechanical tunable grating on Si substrate
GB2386205A (en) Optical photonic crystal beam splitting element
EP1590693B1 (en) Diffraction grating element
US20050128591A1 (en) Optical component, optical device and optical communications system
GB2385431A (en) Optical beam splitting element with multilayer structure
JP4214808B2 (ja) 光学部品、光学装置および光通信システム
KR101527484B1 (ko) 체적 브래그 격자 및 이의 제조방법
JP5632760B2 (ja) 無機偏光ブレーズド回折格子
JP5686344B2 (ja) 波長フィルタ、波長フィルタリング装置及び波長フィルタリング方法
JP5234151B2 (ja) 回折素子および光ヘッド装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526