JP2004278976A - Device for controlling temperature of fluid and air conditioner - Google Patents

Device for controlling temperature of fluid and air conditioner Download PDF

Info

Publication number
JP2004278976A
JP2004278976A JP2003073360A JP2003073360A JP2004278976A JP 2004278976 A JP2004278976 A JP 2004278976A JP 2003073360 A JP2003073360 A JP 2003073360A JP 2003073360 A JP2003073360 A JP 2003073360A JP 2004278976 A JP2004278976 A JP 2004278976A
Authority
JP
Japan
Prior art keywords
cold water
temperature
fluid
pipe
chilled water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003073360A
Other languages
Japanese (ja)
Other versions
JP4059112B2 (en
Inventor
Makoto Tanaka
真 田中
Ryusuke Gotoda
龍介 後藤田
Yutaka Shimokawa
豊 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003073360A priority Critical patent/JP4059112B2/en
Publication of JP2004278976A publication Critical patent/JP2004278976A/en
Application granted granted Critical
Publication of JP4059112B2 publication Critical patent/JP4059112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for controlling temperature of fluid reducing running cost with a simple structure. <P>SOLUTION: Cold water having temperature variation supplied to a cylindrical passage pipe 54 of a cold water mixing tank 10 from a cold water making device 50 rapidly diffuses at a lower layer part 54A of the cylindrical passage pipe 54 right after flowing into the cylindrical passage pipe 54. Consequently, although the cold water gets in a state that temperature variation spatially exists, the temperature variation is gradually reduced by being naturally mixed in the cylindrical passage pipe 54 by hydraulic power of the continuously supplied cold water. The cold water makes rising stream in an upper layer part 54B of the cylindrical passage pipe 54 and is led to a conical passage pipe 58. When the cold water flows in the conical passage pipe 58, fluid with temperature variation is subjected to contraction flow and spatial temperature variation is reduced and temperature is equalized. Then, the cold water is sent out to a second cold water supply pipe 62 from an outlet 56 of the conical passage pipe 58. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は流体の温度制御装置及び空調設備に係り、特にクリーンルーム用空調装置の冷却コイルに供給する、冷水の温度を制御するための流体の温度制御装置及びその空調設備に関する。
【0002】
【従来の技術】
近年の半導体製造用クリーンルームは、半導体の大規模集積化に伴い、室内の温度管理が厳しく要求されている。特に、実際に検査解析作業を行なう空間では、検査解析精度を上げるために室温の変動を±1/1000度以下に抑えることが要求されている。このため、クリーンルーム用の空調設備においては、高精度な温度管理が実施されている。
【0003】
ところで、空調設備にはエア冷却用の冷却コイルが設けられているが、この冷却コイルに供給される冷水の温度が大きく変動した場合、冷却コイルの直前に設けられた電気ヒータで再熱調整しようとしても、ニクロム線からなる電気ヒータの特性により大きな変動には追従できない。このため、温度変化の大きい冷水が冷却コイルにそのまま供給されるという問題があった。
【0004】
そこで、従来の空調設備は、冷水製造装置から冷却コイルに供給される冷水を、タンクに一旦貯留し、ここで攪拌し混合することにより、冷水の温度むらを抑えた冷水を冷却コイルに供給している(例えば、非特許文献1)。
【0005】
【非特許文献1】
空気調和・衛生工学会発行「空気調和・衛生工学第65巻第9号」、平成3年8月、p.558
【0006】
【発明が解決しようとする課題】
しかしながら、前記非特許文献1に記載された空調設備は、冷水の温度むらを抑えるために攪拌装置をタンクに設けなければならず、設備のランニングコストが増大するという欠点があった。
【0007】
ところで、非特許文献1のようにタンクを有している空調設備は、一般に図6に示す構成を有する。同図に示す空調設備は冷水製造装置1、タンク2、冷却コイル3、第1の冷水循環系4、及び第2の冷水循環系5等から構成される。
【0008】
第1の冷水循環系4は、冷水製造装置1の冷水をポンプ6によってタンク2に供給する往路管4Aとタンク2で混合された冷水の大部分を冷水製造装置1に戻す復路管4Bとから構成される。また、第2の冷水循環系5は、タンク2で混合された温度むらの小さい冷水をポンプ7によって冷却コイル3に供給する往路管5Aと冷却コイル3で熱交換された冷水をタンク2に戻す復路管5Bとから構成される。なお、往路管5Aには、電気ヒータ8、温度センサ9などが取り付けられている。
【0009】
第1の冷水循環系4に流れる冷水量は、第2の冷水循環系5に流れる冷水量よりも多めに設定されている。これは、冷水製造装置1からの冷水をタンク2に多量に供給することで冷水の混合を促進し、この促進作用によって温度むらを抑え、そして、温度むらを抑えた冷水を冷却コイル3に供給するようにしているためである。よって、タンク2を有する空調設備は、冷水の循環系が第1、第2の循環系4、5を必要とするので、設備が大がかりになるという問題もあった。
【0010】
本発明は、このような事情に鑑みてなされたもので、簡単な構造でランニングコストを削減できる流体の温度制御装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、前記目的を達成するために、温度にばらつきのある流体が供給され、該流体の温度のばらつきを所定の範囲に抑えて送出する流体の温度制御装置において、前記流体が供給される供給口が下部に形成された円筒状流路管と、該円筒状流路管の上端部に一体的に連結され上部に前記流体の送出口が形成された先細状の円錐状流路管とを有する流体の温度制御装置を提供する。
【0012】
また、本発明は、前記目的を達成するために、前記円筒状流路管の供給口に、第1の冷水供給管を介して冷水製造装置が接続され、前記円錐状流路管の送出口に、第2の冷水供給管を介して冷却コイルの入口部が接続され、該冷却コイルの出口部に冷水戻り管を介して前記冷水製造装置が接続されている空調設備を提供する。
【0013】
本発明の流体の温度制御装置によれば、円筒状流路管に供給された、温度にばらつきのある流体は、円筒状流路管に流入して急拡散することにより空間的に温度むらのある状態となるが、継続して供給されてくる流体の水力によって円筒状流路管内で自然に混合されることにより温度むらが徐々に少なくなっていく。そして、前記流体は、円筒状流路管を上昇流となって円錐状流路管に導かれ、そして、円錐状流路管を流れる際に、温度むらのあった流体が縮流していき空間的な温度むらが小さくなって平均化される。そして、円錐状流路管の送出口から外部に送り出される。
【0014】
このように、本発明の流体の温度制御装置は、円筒状流路管において流体を急拡散させ、この後、円錐状流路管において流体を縮流させる、という流体の流れのなかで流体の温度むらを平均化させる構造なので、拡散装置を別途設けることなく、流体の温度のばらつきを所定の範囲に抑えて、流体を送出することができる。
【0015】
また、前記円筒状流路管に整流部材を設けることによって、円筒状流路管から円錐状流路管に流れる流体を整流化できるので、円筒状流路管において偏流が無くなり、均一に流れを混合できるため、温度むらの抑制効果が向上する。
【0016】
また、本発明に係る空調設備によれば、冷水製造装置からの冷水は、第1の冷水供給管を介して、前記温度制御装置の円筒状流路管の供給口から円筒状流路管に供給される。そして、温度制御装置によって温度むらが平均化された冷水は、円錐状流路管の送出口から第2の冷水供給管を介して冷却コイルの入口に供給される。そして、冷却コイルにおいて熱交換された冷水は、冷却コイルの出口から冷水戻り管を介して前記冷水製造装置に戻される。よって、本発明の空調設備は、冷水の循環系が1つで済むので、設備が簡素化する。
【0017】
【発明の実施の形態】
以下、添付図面に従って本発明に係る流体の温度制御装置及び空調設備の好ましい実施の形態について詳説する。
【0018】
図1は、実施の形態の流体の温度制御装置10が適用されたクリーンルーム用空調設備12の構造を示したブロック図である。同図に示すクリーンルーム14は、区画壁16によって外部と隔離され、室内には精密機械の製造ライン、検査解析装置などが設置される。このクリーンルーム14では、許容誤差±1/1000度オーダ以内で一定に温度が維持されることが要求される。
【0019】
区画壁16の壁面の図1上で右壁面には、空気供給パネル18が設けられるとともに、左壁面には空気吸気パネル20が設けられている。これらパネル18、20として、空気を通過させるとともに整流の作用もあるパンチングメタルが用いられている。
【0020】
吸気パネル20にはダクト22が接続されている。ダクト22には、送風機24、冷却コイル26、及び加熱器28からなる空調装置30が連結されている。また、この空調装置30の空気出口にはダクト32が接続され、これに空調用ヒータ34が接続されるとともにダクト36を介して供給パネル18が接続されている。このダクト配管により空調設備12は、クリーンルーム14内の空気を循環させる方式となっている。
【0021】
送風機24が作動されると、吸気パネル20からクリーンルーム14内の空気がダクト22を介して空調装置30に吸引される。吸引された前記空気は、冷却コイル26に接触して所定の温度まで冷却される。
【0022】
加熱器28は、内部にハロゲンランプを備えたランプヒータであり、この加熱器28の直後でダクト32内には温度センサ38が設けられ、加熱器28を出た直後のダクト32内の温度を検出している。温度センサ38は、デジタル調節計40に接続され、デジタル調節計40は、温度センサ38の温度情報に基づいてサイリスタ42を制御し、サイリスタ42によって、電源部(不図示)から加熱器28に所定の電圧の電力を供給する。なお、デジタル調節計40における分解能の性能としては±1/100度である。このような構成の加熱器28によって、冷却コイル26にて冷却された空気を、要求される温度の近傍まで加熱する。たとえば、要求温度が摂氏23.2度である場合には、加熱器28によって摂氏22.9度になるように空気を加熱制御する。
【0023】
クリーンルーム14内には、クリーンルーム14内の温度を検出する温度センサ44が設けられている。温度センサ44は、デジタル調節計46に接続され、デジタル調節計46は、温度センサ44の温度情報に基づいてサイリスタ48を制御し、サイリスタ48によって電源部(不図示)から空調用ヒータ34のランプヒータ(不図示)に所定の電圧の電力を供給する。ここで、デジタル調節計46における分解能は、デジタル調節計40よりも高いものが用いられ、クリーンルーム14における温度の±1/1000度まで可能なものが用いられる。
【0024】
かかる構造の空調設備12によって、供給パネル18から吹き出された空調空気は吸気パネル20から吸引されることにより、クリーンルーム14内でサイドフローとなって流れる。また、クリーンルーム14では厳しく温度が管理され、クリーンルーム14を摂氏23.2度で許容誤差1/1000度以内の温度で維持している。特に、クリーンルーム14におけるサイドフローによって、クリーンルーム14内に空気の滞留が生じず、クリーンルーム14内の温度分布が均等となり易く、乱流などの発生を防止できるので、温度制御性が向上する。
【0025】
また、空調装置30と空調用ヒータ34とを設け、これらを制御するための温度センサをダクトに取り付けることで、温度分解能の異なる2段階の温度制御を可能として、制御性の優れた空調設備12を提供できる。特に、空調装置30の加熱器28によって、要求される温度まで近づけておき、空調用ヒータ34によって、要求温度に維持させるので、加熱器28や空調用ヒータ34の制御熱量の変動が少なくなり、クリーンルーム14の室温の制御が行い易く、また室温の安定化も図れる。
【0026】
一方、実施の形態の流体の温度制御装置10は、冷水製造装置50から供給される冷水を、冷水の自然の流れのなかで攪拌混合する冷水混合タンクである。以下、流体の温度制御装置10を冷水混合タンク10と称する。
【0027】
この冷水混合タンク10は図1、図2に示すように、冷水製造装置50からの冷水が供給される供給口52が下部に形成された円筒状流路管54と、この円筒状流路管54の上端部に一体的に連結され上部に冷水の送出口56が形成された先細状の円錐状流路管58とによって構成されている。
【0028】
また、図1の如く、円筒状流路管54の供給口52には、第1の冷水供給管60を介して冷水製造装置50が接続され、円錐状流路管58の送出口56には、第2の冷水供給管62を介して冷却コイル26の入口部が接続されている。また、冷却コイル26の出口部は、冷水戻り管64を介して冷水製造装置50に接続されている。すなわち、実施の形態の空調設備12によれば、冷水製造装置50から冷水混合タンク10を介して冷却コイル26に至る冷水の循環系は1つであり、設備が簡素化されている。
【0029】
また、第2の冷水供給管62には、加熱器66及び温度センサ68が設けられている。更に、第1の冷水供給管60又は第2の冷水供給管62にはポンプ(不図示)が設けられ、このポンプによって冷水が前記循環系で循環される。
【0030】
加熱器66は、コイル状の伝熱ワイヤを有する電気ヒータであり、不図示の電源部から伝熱ワイヤに通電させることで伝熱ワイヤに熱を発生させ、ポンプによって搬送された冷水を伝熱ワイヤに接触させることで、所望の温度まで加熱する。また、温度センサ68は、加熱器66を通過した直後の冷水の温度を検出している。この温度センサ68は、デジタル調節計70に接続されており、デジタル調節計70は、温度センサ68の温度情報に基づいて加熱器66を制御する。
【0031】
次に、前記の如く構成された冷水混合タンク10の作用について説明する。
【0032】
冷水製造装置50から円筒状流路管54に供給された、温度にばらつきのある冷水は、図2の矢印の如く円筒状流路管54に流入した直後に、円筒状流路管54の下層部54Aにおいて急拡散する。これにより、冷水は、空間的に温度むらのある状態となるが、継続して供給されてくる冷水の水力によって円筒状流路管54内で自然に混合されることにより温度むらが徐々に少なくなっていく。そして、冷水は、円筒状流路管54の上層部54Bにおいて上昇流となって円錐状流路管58に導かれる。そして、円錐状流路管58を流れる際に、温度むらのあった流体が、矢印の如く縮流していき空間的な温度むらが小さくなって平均化される。そして、円錐状流路管58の送出口56から、図1に示した第2の冷水供給管62に送り出される。
【0033】
このように、冷水混合タンク10は、円筒状流路管54において冷水を急拡散させ、この後、円錐状流路管58において冷水を縮流させる、という冷水の流れのなかで冷水の温度むらを平均化する構造なので、拡散装置を別途設けることなく、冷水の温度のばらつきを所定の範囲に抑えて、冷水を冷却コイル26に送り出すことができる。
【0034】
また、図3に示すように、円筒状流路管54の中層部に、多孔質の整流板72を設けることによって、円筒状流路管54から円錐状流路管58に流れる冷水を強制的に整流化できるので、円筒状流路管54において偏流が無くなり、冷水を均一に縮流・混合できる。これにより、温度制御性が向上する。
【0035】
実施の形態では、クリーンルーム用空調設備12の冷却コイル26に冷水を供給するための流体の温度制御装置について説明したが、これに限定されるものではなく、本発明の流体の温度制御装置は、加湿器、ウォータジャケットの温度制御装置にも適用できる。
【0036】
【実施例】
図4は、冷水製造装置50から供給された冷水の温度変動に対する、冷水混合タンク10から送出された冷水の温度変動状態を実験により取得して作成したグラフである。同図において、グラフAは、冷水混合タンク10から供給された冷水の温度変動を示したグラフ、グラフBは、冷水製造装置50から送出された冷水の温度変動を示したグラフである。
【0037】
また、図5のグラフCは、冷水製造装置50から供給された冷水の温度を加熱器66の電気ヒータのみで制御したときの温度変動を示したグラフ、グラフDは、冷水製造装置50から供給された冷水の温度を冷水混合タンク10と加熱器66の電気ヒータとで制御したときの温度変動を示したグラフである。なお、図4、図5のグラフの縦軸は温度変動を示し、横軸は経過時間を示している。
【0038】
図4のグラフBで示すように、冷水製造装置50から供給される生の冷水は、±0.04℃の範囲で大きく変動し、その変動周波数も高い。このような冷水を冷水混合タンク10に通すことなく冷却コイル26に直接供給すると、加熱器66の電気ヒータの特性により大きな変動には追従できないため、図5のグラフCに示すように、温度変化の大きい冷水が冷却コイルにそのまま供給される。このことは、クリーンルーム14の室温制御に悪影響を与える。
【0039】
これに対して、冷水製造装置50から供給される冷水を冷水混合タンク10に通すと、図4のグラフAの如く、高い周波数域の成分が均されるとともに、その温度ばらつきが±0.02℃の範囲に抑えられ、全体として温度むらが平均化された冷水となる。そして、冷水混合タンク10から出た冷水、すなわち温度むらが平均化された冷水を加熱器66によって更に制御することにより、図5のグラフDの如く、その温度ばらつきが±0.01℃の範囲に抑えられる。これは、低い周波数域の温度変化であれば温度制御可能な電気ヒータの特性による。
【0040】
以上により、実施の形態の冷水混合タンク10と加熱器66とを併用することにより、高精度な温度制御が可能となる。
【0041】
【発明の効果】
以上説明したように本発明に係る流体の温度制御装置によれば、円筒状流路管において流体を急拡散させ、この後、円錐状流路管において流体を縮流させる、という流体の流れのなかで流体の温度むらを平均化する構造なので、拡散装置を別途設けることなく、流体の温度のばらつきを所定の範囲に抑えて、流体を送出することができる。
【0042】
また、円筒状流路管に整流部材を設けることによって、円筒状流路管から円錐状流路管に流れる流体を整流化できるので、円筒状流路管において温度むらが小さくなった流体を混合することなく円錐状流路管に導くことがで、温度制御性が向上する。
【0043】
また、本発明に係る空調設備によれば、冷水の循環系が1つで済むので、設備を簡素化できる。
【図面の簡単な説明】
【図1】実施の形態の流体の温度制御装置が適用されたクリーンルーム用空調設備の構造を示すブロック図
【図2】実施の形態の冷水混合タンクの構造を示した縦断面図
【図3】整流板を取り付けた冷水混合タンクの縦断面図
【図4】冷水混合タンクを設けた場合の冷水温度変動状態を示したグラフ
【図5】ヒータと冷水混合タンクを設けた場合の冷水温度変動状態を示したグラフ
【図6】従来の空調設備の構造を示したブロック図
【符号の説明】
10…流体の温度制御装置(冷水混合タンク)、12…クリーンルーム用空調設備、14…クリーンルーム、26…冷却コイル、30…空調装置、34…空調用ヒータ、50…冷水製造装置、52…供給口、54…円筒状流路管、56…送出口、58…円錐状流路管、60…第1の冷水供給管、62…第2の冷水供給管、64…冷水戻り管、66…加熱器、68…温度センサ、72…整流板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid temperature control device and an air conditioner, and more particularly to a fluid temperature control device for controlling the temperature of chilled water supplied to a cooling coil of a clean room air conditioner and the air conditioner.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in a clean room for semiconductor manufacturing, a large-scale integration of semiconductors requires strict temperature control of the room. In particular, in a space where inspection and analysis work is actually performed, it is required that the fluctuation in room temperature be suppressed to ± 1/1000 degrees or less in order to increase the accuracy of inspection and analysis. For this reason, high-precision temperature control is performed in air conditioners for clean rooms.
[0003]
By the way, the air conditioning equipment is provided with a cooling coil for air cooling. If the temperature of the chilled water supplied to the cooling coil fluctuates greatly, reheat adjustment is performed by an electric heater provided immediately before the cooling coil. However, large variations cannot be followed due to the characteristics of the electric heater made of nichrome wire. For this reason, there has been a problem that cold water having a large temperature change is directly supplied to the cooling coil.
[0004]
Therefore, the conventional air-conditioning equipment supplies cold water to the cooling coil, in which the cold water supplied from the cold water production device to the cooling coil is temporarily stored in a tank, and is stirred and mixed here to suppress the temperature unevenness of the cold water. (For example, Non-Patent Document 1).
[0005]
[Non-patent document 1]
Published by Japan Society of Air Conditioning and Sanitary Engineers, “Air Conditioning and Sanitary Engineering, Vol. 65, No. 9,” August 1991, p. 558
[0006]
[Problems to be solved by the invention]
However, the air conditioner described in Non-Patent Document 1 has a disadvantage that a stirrer must be provided in the tank in order to suppress the temperature unevenness of the cold water, and the running cost of the equipment increases.
[0007]
By the way, an air conditioner having a tank as in Non-Patent Document 1 generally has a configuration shown in FIG. The air conditioner shown in FIG. 1 includes a chilled water production device 1, a tank 2, a cooling coil 3, a first chilled water circulation system 4, a second chilled water circulation system 5, and the like.
[0008]
The first chilled water circulation system 4 includes a forward pipe 4A for supplying the chilled water of the chilled water producing apparatus 1 to the tank 2 by the pump 6 and a return pipe 4B for returning most of the chilled water mixed in the tank 2 to the chilled water producing apparatus 1. Be composed. The second chilled water circulation system 5 returns the chilled water heat-exchanged by the cooling coil 3 to the tank 2 and the forward pipe 5A for supplying the chilled water with small temperature unevenness mixed in the tank 2 to the cooling coil 3 by the pump 7. And a return pipe 5B. Note that an electric heater 8, a temperature sensor 9, and the like are attached to the outward pipe 5A.
[0009]
The amount of chilled water flowing through the first chilled water circulation system 4 is set to be larger than the amount of chilled water flowing through the second chilled water circulation system 5. This promotes the mixing of cold water by supplying a large amount of cold water from the cold water production device 1 to the tank 2, suppresses temperature unevenness by this promoting action, and supplies cold water with suppressed temperature unevenness to the cooling coil 3. This is because they are trying to do so. Therefore, the air-conditioning equipment having the tank 2 has a problem in that the cooling water circulation system requires the first and second circulation systems 4 and 5, which makes the equipment large.
[0010]
The present invention has been made in view of such circumstances, and has as its object to provide a fluid temperature control device that can reduce running costs with a simple structure.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a fluid temperature control device which supplies a fluid having a variation in temperature and sends the fluid while keeping the variation in the temperature of the fluid within a predetermined range. A cylindrical flow pipe having a supply port formed at a lower part, and a tapered conical flow pipe formed integrally with an upper end of the cylindrical flow pipe and having an outlet for the fluid formed at an upper part thereof; A fluid temperature control device having the following.
[0012]
Further, according to the present invention, in order to achieve the above object, a chilled water production device is connected to a supply port of the cylindrical flow pipe via a first chilled water supply pipe, and an outlet of the conical flow pipe is provided. In addition, the present invention provides an air conditioner in which an inlet of a cooling coil is connected via a second cold water supply pipe, and the cold water producing device is connected to an outlet of the cooling coil via a cold water return pipe.
[0013]
According to the fluid temperature control device of the present invention, the fluid supplied to the cylindrical flow pipe and having a variation in temperature flows into the cylindrical flow pipe and rapidly diffuses, thereby causing spatially uneven temperature. Although it is in a certain state, temperature unevenness is gradually reduced by natural mixing in the cylindrical flow pipe by the hydraulic power of the fluid continuously supplied. Then, the fluid is guided to the conical flow pipe as an ascending flow in the cylindrical flow pipe, and when flowing through the conical flow pipe, the fluid having uneven temperature flows and contracts. Temperature unevenness is reduced and averaged. Then, it is sent out from the outlet of the conical flow pipe.
[0014]
As described above, the fluid temperature control device of the present invention rapidly diffuses the fluid in the cylindrical flow pipe, and then contracts the fluid in the conical flow pipe. Since the structure is such that the temperature unevenness is averaged, the fluid can be sent out while keeping the temperature variation of the fluid within a predetermined range without separately providing a diffusion device.
[0015]
In addition, by providing a rectifying member in the cylindrical flow pipe, the fluid flowing from the cylindrical flow pipe to the conical flow pipe can be rectified, so that there is no drift in the cylindrical flow pipe, and the flow can be uniform. Since mixing is possible, the effect of suppressing temperature unevenness is improved.
[0016]
Further, according to the air conditioning equipment according to the present invention, the chilled water from the chilled water production device is supplied from the supply port of the cylindrical channel tube of the temperature control device to the cylindrical channel tube via the first chilled water supply tube. Supplied. Then, the chilled water whose temperature unevenness has been averaged by the temperature control device is supplied from the outlet of the conical flow pipe to the inlet of the cooling coil via the second chilled water supply pipe. Then, the cold water that has undergone heat exchange in the cooling coil is returned from the outlet of the cooling coil to the cold water production device via a cold water return pipe. Therefore, the air-conditioning equipment of the present invention requires only one circulating system for cold water, which simplifies the equipment.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a fluid temperature control device and an air conditioner according to the present invention will be described in detail with reference to the accompanying drawings.
[0018]
FIG. 1 is a block diagram showing a structure of a clean room air conditioner 12 to which a fluid temperature control device 10 of the embodiment is applied. A clean room 14 shown in FIG. 1 is isolated from the outside by a partition wall 16, and a production line of a precision machine, an inspection analysis device, and the like are installed in the room. In the clean room 14, it is required that the temperature be maintained constant within an allowable error of ± 1/1000 degrees.
[0019]
An air supply panel 18 is provided on a right wall surface of the partition wall 16 in FIG. 1 and an air intake panel 20 is provided on a left wall surface. Punched metal that allows air to pass and also has a rectifying function is used for the panels 18 and 20.
[0020]
A duct 22 is connected to the intake panel 20. An air conditioner 30 including a blower 24, a cooling coil 26, and a heater 28 is connected to the duct 22. A duct 32 is connected to an air outlet of the air conditioner 30, and an air conditioning heater 34 is connected to the duct 32, and the supply panel 18 is connected via a duct 36. The air conditioning system 12 is configured to circulate the air in the clean room 14 by the duct piping.
[0021]
When the blower 24 is operated, air in the clean room 14 is sucked from the intake panel 20 to the air conditioner 30 through the duct 22. The sucked air contacts the cooling coil 26 and is cooled to a predetermined temperature.
[0022]
The heater 28 is a lamp heater having a halogen lamp inside. A temperature sensor 38 is provided in the duct 32 immediately after the heater 28, and the temperature in the duct 32 immediately after the heater 28 exits. Detected. The temperature sensor 38 is connected to a digital controller 40. The digital controller 40 controls a thyristor 42 based on temperature information of the temperature sensor 38, and the thyristor 42 controls a thyristor 42 from a power source (not shown) to the heater 28. To supply power of voltage. The resolution performance of the digital controller 40 is ± 1/100 degrees. With the heater 28 having such a configuration, the air cooled by the cooling coil 26 is heated to a vicinity of a required temperature. For example, when the required temperature is 23.2 degrees Celsius, the heating of the air is controlled by the heater 28 so that the temperature becomes 22.9 degrees Celsius.
[0023]
In the clean room 14, a temperature sensor 44 for detecting the temperature in the clean room 14 is provided. The temperature sensor 44 is connected to a digital controller 46, and the digital controller 46 controls a thyristor 48 based on temperature information of the temperature sensor 44, and the thyristor 48 controls a lamp of the air conditioning heater 34 from a power supply unit (not shown). A power of a predetermined voltage is supplied to a heater (not shown). Here, the resolution of the digital controller 46 is higher than that of the digital controller 40, and a resolution that can be up to ± 1/1000 degrees of the temperature in the clean room 14 is used.
[0024]
The conditioned air blown out from the supply panel 18 by the air conditioning equipment 12 having such a structure is drawn into the clean room 14 as a side flow by being sucked from the intake panel 20. The temperature in the clean room 14 is strictly controlled, and the clean room 14 is maintained at a temperature of 23.2 degrees Celsius and an allowable error within 1/1000 degrees. In particular, since air does not stay in the clean room 14 due to the side flow in the clean room 14, the temperature distribution in the clean room 14 is likely to be uniform, and the occurrence of turbulence can be prevented, so that the temperature controllability is improved.
[0025]
Further, by providing the air conditioner 30 and the air conditioner heater 34 and attaching a temperature sensor for controlling these to the duct, it is possible to perform two-stage temperature control with different temperature resolutions. Can be provided. In particular, since the required temperature is brought close to the required temperature by the heater 28 of the air conditioner 30 and the required temperature is maintained by the air conditioning heater 34, the control calorie of the heater 28 and the air conditioning heater 34 fluctuates less, The room temperature of the clean room 14 can be easily controlled, and the room temperature can be stabilized.
[0026]
On the other hand, the fluid temperature control device 10 of the embodiment is a cold water mixing tank that stirs and mixes the cold water supplied from the cold water production device 50 in the natural flow of the cold water. Hereinafter, the fluid temperature control device 10 is referred to as a cold water mixing tank 10.
[0027]
As shown in FIGS. 1 and 2, the cold water mixing tank 10 has a cylindrical flow pipe 54 having a supply port 52 formed at a lower portion through which cold water is supplied from a cold water production device 50, and a cylindrical flow pipe 54. And a tapered conical flow pipe 58 integrally formed with an upper end of the pipe 54 and having an outlet 56 for cold water formed thereon.
[0028]
As shown in FIG. 1, the supply port 52 of the cylindrical flow pipe 54 is connected to a chilled water production device 50 via a first chilled water supply pipe 60. The inlet of the cooling coil 26 is connected via a second cold water supply pipe 62. The outlet of the cooling coil 26 is connected to the cold water production device 50 via a cold water return pipe 64. That is, according to the air conditioner 12 of the embodiment, the circulating system of the cold water from the cold water producing device 50 to the cooling coil 26 via the cold water mixing tank 10 is one, and the facility is simplified.
[0029]
The second cold water supply pipe 62 is provided with a heater 66 and a temperature sensor 68. Further, a pump (not shown) is provided in the first cold water supply pipe 60 or the second cold water supply pipe 62, and the pump circulates cold water in the circulation system.
[0030]
The heater 66 is an electric heater having a coil-shaped heat transfer wire. The heater 66 generates heat in the heat transfer wire by energizing the heat transfer wire from a power supply unit (not shown), and transfers heat to the cold water conveyed by the pump. By contacting the wire, it is heated to the desired temperature. Further, the temperature sensor 68 detects the temperature of the cold water immediately after passing through the heater 66. The temperature sensor 68 is connected to a digital controller 70, and the digital controller 70 controls the heater 66 based on temperature information of the temperature sensor 68.
[0031]
Next, the operation of the cold water mixing tank 10 configured as described above will be described.
[0032]
The chilled water having a temperature variation supplied from the chilled water production device 50 to the cylindrical flow pipe 54 immediately flows into the cylindrical flow pipe 54 as shown by the arrow in FIG. It diffuses rapidly at the portion 54A. As a result, the cold water is in a state where the temperature is spatially uneven, but the temperature unevenness is gradually reduced by the natural mixing in the cylindrical flow passage 54 by the hydraulic power of the continuously supplied cold water. It is becoming. Then, the cold water flows upward in the upper layer portion 54 </ b> B of the cylindrical flow pipe 54 and is guided to the conical flow pipe 58. Then, when flowing through the conical flow pipe 58, the fluid having the uneven temperature contracts as shown by the arrow, and the spatial temperature unevenness is reduced and the fluid is averaged. Then, the water is sent from the outlet 56 of the conical flow pipe 58 to the second cold water supply pipe 62 shown in FIG.
[0033]
As described above, the cold water mixing tank 10 causes the temperature unevenness of the cold water in the flow of the cold water in which the cold water is rapidly diffused in the cylindrical flow pipe 54 and then the cold water is contracted in the conical flow pipe 58. , The temperature of the chilled water can be kept within a predetermined range and the chilled water can be sent to the cooling coil 26 without separately providing a diffusion device.
[0034]
As shown in FIG. 3, by providing a porous flow straightening plate 72 in the middle layer of the cylindrical flow pipe 54, cold water flowing from the cylindrical flow pipe 54 to the conical flow pipe 58 is forcibly applied. Therefore, there is no drift in the cylindrical flow pipe 54, and cold water can be uniformly reduced and mixed. Thereby, the temperature controllability is improved.
[0035]
In the embodiment, the fluid temperature control device for supplying cold water to the cooling coil 26 of the clean room air conditioner 12 has been described. However, the present invention is not limited to this. It can also be applied to humidifiers and water jacket temperature controllers.
[0036]
【Example】
FIG. 4 is a graph created by acquiring experimentally the temperature fluctuation state of the cold water sent from the cold water mixing tank 10 with respect to the temperature fluctuation of the cold water supplied from the cold water production device 50. In the figure, a graph A is a graph showing the temperature fluctuation of the chilled water supplied from the chilled water mixing tank 10, and a graph B is a graph showing the temperature fluctuation of the chilled water sent from the chilled water production device 50.
[0037]
5 is a graph showing the temperature fluctuation when the temperature of the chilled water supplied from the chilled water production device 50 is controlled only by the electric heater of the heater 66, and the graph D is supplied from the chilled water production device 50. 6 is a graph showing a temperature change when the temperature of the chilled water is controlled by the chilled water mixing tank 10 and the electric heater of the heater 66. Note that the vertical axes of the graphs in FIGS. 4 and 5 indicate temperature fluctuations, and the horizontal axes indicate elapsed time.
[0038]
As shown by the graph B in FIG. 4, the raw cold water supplied from the cold water producing apparatus 50 fluctuates greatly within a range of ± 0.04 ° C., and its fluctuation frequency is also high. If such cold water is supplied directly to the cooling coil 26 without passing through the cold water mixing tank 10, it cannot follow large fluctuations due to the characteristics of the electric heater of the heater 66, and as shown in the graph C of FIG. Is supplied directly to the cooling coil. This adversely affects the room temperature control of the clean room 14.
[0039]
On the other hand, when the chilled water supplied from the chilled water production device 50 is passed through the chilled water mixing tank 10, the components in the high frequency range are equalized as shown in the graph A of FIG. The temperature is kept in the range of ° C., and as a whole, it becomes cold water in which temperature unevenness is averaged. Further, by further controlling the chilled water discharged from the chilled water mixing tank 10, that is, the chilled water in which the temperature unevenness is averaged, by the heater 66, as shown in a graph D of FIG. Can be suppressed. This is due to the characteristics of the electric heater that can control the temperature if the temperature changes in a low frequency range.
[0040]
As described above, by using the cold water mixing tank 10 of the embodiment and the heater 66 together, highly accurate temperature control becomes possible.
[0041]
【The invention's effect】
As described above, according to the fluid temperature control device of the present invention, the fluid is rapidly diffused in the cylindrical flow pipe, and then the fluid is contracted in the conical flow pipe. Among them, since the structure is such that the temperature unevenness of the fluid is averaged, it is possible to send out the fluid while keeping the temperature variation of the fluid within a predetermined range without separately providing a diffusion device.
[0042]
In addition, by providing a rectifying member in the cylindrical flow pipe, the fluid flowing from the cylindrical flow pipe to the conical flow pipe can be rectified, so that the fluid with reduced temperature unevenness in the cylindrical flow pipe is mixed. The temperature controllability is improved by guiding the flow to the conical flow pipe without performing the above.
[0043]
Further, according to the air-conditioning equipment according to the present invention, only one circulation system for the cold water is required, so that the equipment can be simplified.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the structure of an air conditioner for a clean room to which a fluid temperature control device according to an embodiment is applied. FIG. 2 is a longitudinal sectional view showing the structure of a chilled water mixing tank according to the embodiment. Longitudinal sectional view of a cold water mixing tank with a current plate attached. [Fig. 4] Graph showing cold water temperature fluctuation when a cold water mixing tank is provided. [Fig. 5] Cold water temperature fluctuation when a heater and a cold water mixing tank are provided. FIG. 6 is a block diagram showing the structure of a conventional air-conditioning system.
10: fluid temperature control device (cold water mixing tank), 12: clean room air conditioner, 14: clean room, 26: cooling coil, 30: air conditioner, 34: air conditioner heater, 50: cold water production device, 52: supply port , 54: cylindrical flow pipe, 56: outlet, 58: conical flow pipe, 60: first cold water supply pipe, 62: second cold water supply pipe, 64: cold water return pipe, 66: heater , 68 temperature sensor, 72 rectifier plate

Claims (3)

温度にばらつきのある流体が供給され、該流体の温度のばらつきを所定の範囲に抑えて送出する流体の温度制御装置において、
前記流体が供給される供給口が下部に形成された円筒状流路管と、該円筒状流路管の上端部に一体的に連結され上部に前記流体の送出口が形成された先細状の円錐状流路管とを有することを特徴とする流体の温度制御装置。
Fluid with a temperature variation is supplied, in a fluid temperature control device for sending the fluid with the temperature variation within a predetermined range,
A supply port to which the fluid is supplied is formed at a lower portion of a cylindrical flow channel tube, and a tapered shape having an upper portion formed integrally with an upper end portion of the cylindrical flow channel tube and having an outlet for the fluid. A fluid temperature control device, comprising: a conical flow pipe.
前記円筒状流路管には、前記供給口から供給された前記流体を整流させる整流部材が設けられていることを特徴とする請求項1に記載の流体の温度制御装置。The fluid temperature control device according to claim 1, wherein a rectifying member that rectifies the fluid supplied from the supply port is provided in the cylindrical channel pipe. 前記円筒状流路管の供給口に、第1の冷水供給管を介して冷水製造装置が接続され、前記円錐状流路管の送出口に、第2の冷水供給管を介して冷却コイルの入口部が接続され、該冷却コイルの出口部に冷水戻り管を介して前記冷水製造装置が接続されていることを特徴とする空調設備。The supply port of the cylindrical flow pipe is connected to a chilled water production device via a first chilled water supply pipe, and the outlet of the conical flow pipe is connected to a cooling coil through a second chilled water supply pipe. An air conditioner, wherein an inlet is connected, and the chilled water production device is connected to an outlet of the cooling coil via a chilled water return pipe.
JP2003073360A 2003-03-18 2003-03-18 Cold water temperature control device and air conditioning equipment Expired - Lifetime JP4059112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073360A JP4059112B2 (en) 2003-03-18 2003-03-18 Cold water temperature control device and air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073360A JP4059112B2 (en) 2003-03-18 2003-03-18 Cold water temperature control device and air conditioning equipment

Publications (2)

Publication Number Publication Date
JP2004278976A true JP2004278976A (en) 2004-10-07
JP4059112B2 JP4059112B2 (en) 2008-03-12

Family

ID=33289275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073360A Expired - Lifetime JP4059112B2 (en) 2003-03-18 2003-03-18 Cold water temperature control device and air conditioning equipment

Country Status (1)

Country Link
JP (1) JP4059112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177567A (en) * 2004-12-20 2006-07-06 Techno Ryowa Ltd Air-conditioning system
JP2015028419A (en) * 2007-09-07 2015-02-12 スコット, エム. ダンカン, Cooling recovery system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913942B2 (en) * 2011-12-02 2016-05-11 キヤノン株式会社 Temperature control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177567A (en) * 2004-12-20 2006-07-06 Techno Ryowa Ltd Air-conditioning system
JP4651377B2 (en) * 2004-12-20 2011-03-16 株式会社テクノ菱和 Air conditioning system
JP2015028419A (en) * 2007-09-07 2015-02-12 スコット, エム. ダンカン, Cooling recovery system and method

Also Published As

Publication number Publication date
JP4059112B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
US6295823B1 (en) Apparatus and method for controlling temperature and humidity of a conditioned space
US9612024B2 (en) Energy efficient HVAC system
CA2593244A1 (en) Automatic displacement ventilation system with heating mode
AU2013234030B2 (en) Chilled beam with multiple modes
US7410104B2 (en) Heat source for radiant heating system
Przydróżny et al. Energy efficient setting of supply air temperature in dual-duct dual-fan ventilation systems with extract air recirculation
JP2004278976A (en) Device for controlling temperature of fluid and air conditioner
JP3235986B2 (en) Air conditioner
JP2001034344A (en) Temperature control system
KR20170012770A (en) Heating system for hybrid vehicle and method for controlling the same
JP2007003107A (en) Air conditioning system for accurately performing temperature control in local space
CN112577099B (en) Heating water heater, control method thereof and computer readable storage medium
CN110469925B (en) HVAC system and control method thereof
KR100509564B1 (en) Heater for airconditioning
JP3459332B2 (en) Air conditioner
KR100692269B1 (en) Water source cooling and heating system using serial connection method
US11614255B2 (en) Lighting control for chilled beam
JP2799658B2 (en) Air conditioning system
JPS5810653B2 (en) Air conditioning equipment in buildings
US20090234506A1 (en) Method for Controlling and/or Regulating Room Temperature in a Building
US10962242B1 (en) Systems for workstation-mounted radiant panels
KR20170109106A (en) Heating system for radiating and convecting and controlling method thereof
CN115059961A (en) Distributed indoor climate regulation and control system
JP2024054118A (en) Air-conditioning apparatus
JP2023049068A (en) hybrid air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4059112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term