JP2004278807A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004278807A
JP2004278807A JP2003066602A JP2003066602A JP2004278807A JP 2004278807 A JP2004278807 A JP 2004278807A JP 2003066602 A JP2003066602 A JP 2003066602A JP 2003066602 A JP2003066602 A JP 2003066602A JP 2004278807 A JP2004278807 A JP 2004278807A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
refrigerant
fluid
meandering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003066602A
Other languages
Japanese (ja)
Inventor
Koichi Nakashita
功一 中下
Ken Yamamoto
山本  憲
Norihide Kawachi
典秀 河地
Takeshi Okinoya
剛 沖ノ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003066602A priority Critical patent/JP2004278807A/en
Publication of JP2004278807A publication Critical patent/JP2004278807A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of reducing a head loss of hot water to be supplied generated in the heat exchanger. <P>SOLUTION: The heat exchanger is structured so that a plurality of partitioning members 23 are stacked in the thickness direction of outer plates 22 (in the vertical direction to the sheet surface) in the space formed between the two outer plates 22. Thereby a plurality rows of meandering paths 24 overlapping in the thickness direction of the outer plates 22 can be formed in the mentioned space, and it is possible to reduce the head loss by enlarging the passage section area of the meandering paths 24 without dropping the ratio (=S/Q) of the heat conduction area S of the hot water passage to the supplied water quantity Q i.e. the meandering paths to the supplied hot water. As a result, the heat exchanger path with refrigerant can be prolonged without enlarging the outside dimensions of the water-refrigerant heat exchanger 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹(バスタブ)状にプレス成形された2枚の外板を接合することによって構成されたチューブを有する熱交換器に関するもので、給湯水を加熱するための加熱用熱交換器の水チューブに適用して有効である。
【0002】
【従来の技術発明が解決しようとする課題】
給湯水と冷媒とを熱交換するヒートポンプ式給湯器用の熱交換器として、発明者は、断面形状が略凹(バスタブ)状にプレス成形された2枚の外板を接合するとともに、2枚の外板間で構成された空間を仕切板で仕切ることにより給湯水通路を蛇行させた水側チューブと細管状の冷媒側チューブとを接合して、給湯水と冷媒とが対向流状態で熱交換するものを開発検討した。
【0003】
しかし、上記開発品では、給湯水通路を何度(例えば、100回)も転向させることにより給湯水通路を蛇行路として、熱交換器の外形寸法を大きくすることなく、冷媒との熱交換経路を長くしているので、給湯水通路で発生する圧力損失が大きくなる易いという問題を有している。
【0004】
本発明は、上記点に鑑み、第1には、従来と異なる新規な熱交換器を提供し、第2には、熱交換器内で発生する圧力損失を低減することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹状にプレス成形された2枚の外板(22)を接合することによって構成された第1チューブ(21)と、2枚の外板(22)間に形成された空間内に配置され、空間内を仕切るようにして流体が流れる蛇行路(24)を構成する複数枚の仕切部材(23)と、外板(22)に接合され、第1チューブ(21)内を流れる流体と熱交換する流体が流れる第2チューブ(26)とを備え、複数枚の仕切部材(23)は、空間内において、外板(22)の厚み方向に積層されていることを特徴とする。
【0006】
これにより、前記空間内において、外板(22)の厚み方向に重なった複数列の蛇行路(24)が形成され得ることとなる。
【0007】
したがって、流量(Q)に対する蛇行路(24)と流体との伝熱面積(S)との比(=S/Q)を低下させることなく、蛇行路(24)の通路断面積を大きくして圧力損失を低減できるので、熱交換器の外形寸法を大きくすることなく、流体との熱交換経路を長くすることができる。
【0008】
請求項2に記載の発明では、流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹状にプレス成形された2枚の外板(22)を接合することによって構成された第1チューブ(21)と、2枚の外板(22)間に形成された空間内に配置され、空間内を仕切るようにして流体が流れる蛇行路(24)を構成する仕切部材(23)と、外板(22)に接合され、第1チューブ(21)内を流れる流体と熱交換する流体が流れる第2チューブ(26)とを備え、仕切部材(23)は、空間内において、外板(22)の厚み方向に重なった複数列の蛇行路(24)が形成されるような形状に成形されていることを特徴とする。
【0009】
これにより、請求項1に記載の発明と同様に、流量(Q)に対する蛇行路(24)と流体との伝熱面積(S)との比(=S/Q)を低下させることなく、蛇行路(24)の通路断面積を大きくして圧力損失を低減できるので、熱交換器の外形寸法を大きくすることなく、流体との熱交換経路を長くすることができる。
【0010】
請求項3に記載の発明では、流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹状にプレス成形された2枚の外板(22)を接合することによって構成された第1チューブ(21)と、2枚の外板(22)間に形成された空間内に配置され、空間内を仕切るようにして流体が流れる蛇行路(24)を構成する仕切部材(23)と、外板(22)に接合され、第1チューブ(21)内を流れる流体と熱交換する流体が流れる第2チューブ(26)とを備えることを特徴とするものである。
【0011】
請求項4に記載の発明では、第2チューブ(26)は、第1チューブ(21)周りにコイル状に巻き付けられた状態で外板(22)に接合されていることを特徴とするものである。
【0012】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0013】
【発明の実施の形態】
(第1実施形態)
本実施形態は、給湯水を加熱するための加熱用熱交換器の水チューブに本発明を適用したものであって、図1はヒートポンプ式給湯器であり、図2は本実施形態に係るチューブを用いた給湯水と冷媒と熱交換する水冷媒熱交換器20の外形斜視図である。なお、本実施形態では、冷媒として二酸化炭素を用いている。
【0014】
因みに、ヒートポンプ式給湯器とは、ヒートポンプ式給湯器は、図1に示すように、冷媒を吸入圧縮する圧縮機10、水冷媒熱交換器20、水冷媒熱交換器20から流出した冷媒を減圧する減圧器30、外気から吸熱して冷媒を蒸発させる蒸発器40、及び蒸発器40から流出した冷媒を液相冷媒と気相冷媒とに分離して余剰冷媒を液相冷媒として蓄えるとともに、気相冷媒を圧縮機10に供給する気液分離器50等から構成されたもので、外気から吸熱した熱及び圧縮機10の圧縮仕事量に相当する熱量を給湯水に与えることにより給湯水を加熱する。
【0015】
次に、水冷媒熱交換器20の構造について述べる。
【0016】
水冷媒熱交換器20の水側チューブ21は、図3に示すように、断面形状が略凹(バスタブ)状にプレス成形された2枚の外板22を接合するとともに、図4に示すように、2枚の外板22間で構成された空間を複数枚の仕切部材23で仕切ることにより蛇行した給湯水通路、つまり蛇行路24を構成したもので、本実施形態では、外板22及び仕切部材23を耐食性に優れた金属(例えば、銅やステンレス)製として、これらをろう接にて接合している。
【0017】
そして、本実施形態では、図3に示すように、2枚の外板22間で構成された空間内において、複数枚の仕切部材23を外板22の厚み方向(紙面上下方向)に積層することにより、前記空間内において、外板22の厚み方向に重なった複数列の蛇行路24を形成している。
【0018】
なお、「ろう接」とは、例えば「接続・接合技術」(東京電機大学出版局)に記載されているように、ろう材やはんだを用いて母材を溶融させないように接合する技術を言う。因みに、融点が450℃以上の溶加材を用いて接合するときをろう付けと言い、その際の溶加材をろう材と呼び、融点が450℃以下の溶加材を用いて接合するときをはんだ付けと言い、その際の溶加材をはんだと呼ぶ。
【0019】
因みに、本実施形態では、外板22及び仕切部材23の厚みを共に約0.5mmとし、両者22、23は箔状のりん銅溶加材にろう接され、外板22同士も箔状のりん銅溶加材にろう接されているが、例えば棒状の溶加材を所定箇所に配置してもよい。
【0020】
また、仕切部材23は、図5に示すように、板材を略矩形波状にプレス成形することにより、蛇行路24の一部を構成する複数本の溝部24aを形成したもので、隣り合う溝部24aは、連通路24bを介して連通する。
【0021】
因みに、本実施形態では、仕切部材23を金属製とすることにより、給湯水と水側チューブ21との伝熱面積を増大させるフィンとして効果も担っている。
【0022】
ところで、本実施形態では、圧縮機10の吐出圧を冷媒の臨界圧力以上としているので、水冷媒熱交換器20に冷媒と給湯水とが熱交換する際に、冷媒は凝縮することなく、冷媒温度を低下させながらそのエンタルピを低下させることから、図2に示すように、冷媒の流れと給湯水の流れとが対向流れとなるように、複数本(本実施形態では、3本)の細管状冷媒チューブ26を束ねて1本とし、その束ねた冷媒チューブ26を水側チューブ21周りにコイル状に巻き付けた状態で外板22にろう接している。
【0023】
なお、本実施形態では、冷媒チューブ26をりん脱酸銅をローラ成形機にてコイル状に成形したものであり、りん銅の溶加材にて水側チューブ21、つまり外板22にろう接している。
【0024】
次に、本実施形態の作用効果を述べる。
【0025】
本実施形態では、2枚の外板22間で構成された空間内において、複数枚の仕切部材23を外板22の厚み方向(紙面上下方向)に積層しているので、前述のごとく、前記空間内において、外板22の厚み方向に重なった複数列の蛇行路24が形成されることとなる。
【0026】
したがって、給水量(Q)に対する給湯水通路、つまり蛇行路24と給湯水との伝熱面積(S)との比(=S/Q)を低下させることなく、蛇行路24の通路断面積を大きくして圧力損失を低減できるので、水冷媒熱交換器20の外形寸法を大きくすることなく、冷媒との熱交換経路を長くすることができる。
【0027】
(第2実施形態)
第1実施形態では、仕切部材23を矩形波状にプレス成形したが、本実施形態は、図6に示すように、仕切部材23を正弦波状にプレス成形したものである。
【0028】
なお、本実施形態では、2枚の外板22間で構成された空間内において、外板22の厚み方向に重なった複数列の蛇行路24は、第1実施形態ほど、厳密に区画されていない。
【0029】
(第3実施形態)
上述の実施形態では、2枚の外板22間で構成された空間内において、2枚の仕切部材23にて外板22の厚み方向に重なった複数列の蛇行路24を形成したが、本実施形態は、図7に示すように、1枚の仕切部材23にて外板22の厚み方向に重なった複数列の蛇行路24を形成したものである。
【0030】
(第4実施形態)
上述の実施形態では、2枚の外板22間で構成された空間内において、外板22の厚み方向に重なった複数列の蛇行路24を形成したが、本実施形態は、図8に示すように、外板22の厚み方向に重なった複数列の蛇行路24を設けることなく、蛇行路24を1列としたものである。
【0031】
そして、本実施形態においても、1列の蛇行路24の通路断面積を十分に大きくすれば、圧力損失を十分に小さくすることができる。
【0032】
(第5実施形態)
上述の実施形態では、冷媒チューブ26を水側チューブ21にコイル状に巻き付けたが、本実施形態は、図9に示すように、冷媒チューブ26を蛇行路24の進行方向(図9の上下方向)に延びる細管状としたものである。
【0033】
なお、複数本の冷媒チューブ26の長手方向両端側には、これら冷媒チューブ26と連通する冷媒タンク27が設けられており、給湯水の出口側(紙面上側)に設けられた冷媒タンク27は、複数本の冷媒チューブ26に冷媒を分配供給するもので、給湯水の入口側(紙面下側)に設けられた冷媒タンク27は、複数本の冷媒チューブ26から流出した冷媒を集合回収するものである。
【0034】
(その他の実施形態)
第1、2実施形態では、2枚の外板22間で構成された空間内において、2枚の仕切部材23にて外板22の厚み方向に重なった複数列の蛇行路24を形成したが、本実施形態はこれに限定されるものではなく、例えば3枚以上の仕切部材23にて外板22の厚み方向に重なった複数列の蛇行路24を形成してもよい。
【0035】
上述の実施形態では、板材に矩形波状にプレス成形を施すことにより仕切部材23を形成したが、本発明はこれに限定されるものではなく、例えばコの字状断面又は目の字状断面を有す押し出し又は引き抜き材にて仕切部材23を形成してもよい。
【0036】
また、上述の実施形態では、2枚の外板22を共にバスタブ状としたが、本発明はこれに限定されるものではなく、例えば一方側の外板22のバスタブ状とし、他方側を平板状としてもよい。
【0037】
また、上述実施形態では、冷媒と給湯水とを熱交換する水冷媒熱交換器20の水側チューブ21に本発明を適用したが、本発明の適用はこれに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の実施形態に係るヒートポンプ式給湯器の模式図である。
【図2】本発明の第1実施形態に係る水冷媒熱交換器の外形斜視図である。
【図3】本発明の第1実施形態に係る水側チューブの断面図である。
【図4】本発明の第1実施形態に係る水側チューブの概念図である。
【図5】本発明の第1実施形態に係る仕切部材の斜視図である。
【図6】本発明の第2実施形態に係る水側チューブの断面図である。
【図7】本発明の第2実施形態に係る水側チューブの断面図である。
【図8】本発明の第3実施形態に係る水冷媒熱交換器の外形斜視図である。
【図9】本発明の第3実施形態に係る水冷媒熱交換器の外形斜視図である。
【符号の説明】
21…チューブ、22…外板、23…仕切部材、26…冷媒チューブ。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat exchanger having a tube formed by joining two outer plates that are formed by pressurizing a fluid in a meandering inside and at least one of the cross-sectional shapes of at least one of them into a substantially concave (bathtub) shape. This is effective when applied to a water tube of a heating heat exchanger for heating hot water.
[0002]
[Problems to be solved by the prior art invention]
As a heat exchanger for a heat pump type water heater for exchanging heat between hot water and a refrigerant, the inventor joined two outer plates press-formed in a substantially concave (bathtub) cross section and joined two outer plates. The space formed between the outer plates is partitioned by a partition plate to join the water-side tube and the thin-walled refrigerant-side tube meandering in the hot-water supply passage, so that the hot-water supply and the refrigerant exchange heat in a counterflow state. We studied what to do.
[0003]
However, in the above-mentioned developed product, the hot water passage is turned many times (for example, 100 times) so that the hot water passage becomes a meandering path, and the heat exchange path with the refrigerant is increased without increasing the external dimensions of the heat exchanger. Therefore, there is a problem that the pressure loss generated in the hot water supply passage is likely to be large.
[0004]
In view of the above points, the present invention firstly provides a new heat exchanger different from the conventional one, and secondly, aims to reduce a pressure loss generated in the heat exchanger.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a fluid meanders inside, and at least one of the two outer plates (22) press-formed in a substantially concave cross section. Meandering path (24), which is disposed in a space formed between a first tube (21) formed by joining the first and second outer plates (22) and partitions the space, through which a fluid flows. And a second tube (26) joined to the outer plate (22) and through which a fluid that exchanges heat with a fluid flowing through the first tube (21) flows. The partition members (23) are stacked in the thickness direction of the outer plate (22) in the space.
[0006]
Thereby, a plurality of rows of meandering paths (24) overlapping in the thickness direction of the outer plate (22) can be formed in the space.
[0007]
Therefore, the passage cross-sectional area of the meandering path (24) can be increased without decreasing the ratio (= S / Q) of the meandering path (24) to the heat transfer area (S) with respect to the flow rate (Q). Since the pressure loss can be reduced, the heat exchange path with the fluid can be lengthened without increasing the external dimensions of the heat exchanger.
[0008]
According to the second aspect of the present invention, the fluid is meandered inside, and at least one of the first tubes (22) is formed by joining two outer plates (22) press-formed in a substantially concave cross section. 21) a partition member (23) disposed in a space formed between the two outer plates (22) and forming a meandering path (24) through which a fluid flows so as to partition the space; A second tube (26) joined to the first tube (21) and through which a fluid that exchanges heat with the fluid flowing through the first tube (21) flows, and the partition member (23) is provided with an outer plate (22) Is formed in such a shape that a plurality of rows of meandering paths (24) overlapping in the thickness direction are formed.
[0009]
Accordingly, the meandering path (24) and the ratio of the heat transfer area (S) of the fluid to the meandering path (S) to the flow rate (Q) (= S / Q) are reduced, as in the first aspect of the present invention. Since the pressure loss can be reduced by increasing the passage cross-sectional area of the passage (24), the heat exchange path with the fluid can be lengthened without increasing the external dimensions of the heat exchanger.
[0010]
According to the third aspect of the present invention, the fluid is meandered inside, and at least one of the first tubes (22) is formed by joining two outer plates (22) that are press-formed in a substantially concave cross section. 21) a partition member (23) disposed in a space formed between the two outer plates (22) and forming a meandering path (24) through which a fluid flows so as to partition the space; And a second tube (26) joined to the first tube (21) and through which a fluid that exchanges heat with a fluid that flows in the first tube (21) flows.
[0011]
According to a fourth aspect of the present invention, the second tube (26) is joined to the outer plate (22) while being wound in a coil shape around the first tube (21). is there.
[0012]
Incidentally, reference numerals in parentheses of the above-mentioned units are examples showing the correspondence with specific units described in the embodiments described later.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
In the present embodiment, the present invention is applied to a water tube of a heating heat exchanger for heating hot water, FIG. 1 shows a heat pump water heater, and FIG. 2 shows a tube according to the present embodiment. FIG. 3 is an external perspective view of a water-refrigerant heat exchanger 20 that performs heat exchange between hot water and a refrigerant using the water. In the present embodiment, carbon dioxide is used as the refrigerant.
[0014]
As shown in FIG. 1, the heat pump water heater is a compressor that sucks and compresses a refrigerant, a water refrigerant heat exchanger 20, and a pressure reducing refrigerant flowing out of the water refrigerant heat exchanger 20, as shown in FIG. A decompressor 30, an evaporator 40 that absorbs heat from the outside air to evaporate the refrigerant, and separates the refrigerant flowing out of the evaporator 40 into a liquid-phase refrigerant and a gas-phase refrigerant to store excess refrigerant as a liquid-phase refrigerant. A gas-liquid separator 50 for supplying a phase refrigerant to the compressor 10 and the like. The hot water is heated by giving the heat absorbed from the outside air and the heat corresponding to the compression work of the compressor 10 to the hot water. I do.
[0015]
Next, the structure of the water-refrigerant heat exchanger 20 will be described.
[0016]
As shown in FIG. 3, the water-side tube 21 of the water-refrigerant heat exchanger 20 joins two outer plates 22 each having a substantially concave (bathtub) cross-section, and as shown in FIG. 4. A meandering hot water path, that is, a meandering path 24 is formed by partitioning a space formed between the two outer plates 22 with a plurality of partition members 23. In the present embodiment, the outer plate 22 and the The partition member 23 is made of a metal having excellent corrosion resistance (for example, copper or stainless steel), and these are joined by brazing.
[0017]
In the present embodiment, as shown in FIG. 3, a plurality of partition members 23 are stacked in the thickness direction of the outer plate 22 (vertical direction on the paper) in a space formed between the two outer plates 22. Thereby, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 are formed in the space.
[0018]
The term “brazing” refers to a technique for joining a base material using a brazing material or solder so as not to be melted, as described in, for example, “Connection and Joining Technology” (Tokyo Denki University Press). . By the way, when joining using a filler material with a melting point of 450 ° C or more, it is called brazing, and the filler material at that time is called a brazing material, and when joining using a filler material with a melting point of 450 ° C or less. Is called soldering, and the filler material at that time is called solder.
[0019]
By the way, in the present embodiment, the thickness of both the outer plate 22 and the partition member 23 is about 0.5 mm, the two 22 and 23 are brazed to the foil-like phosphor copper filler material, and the outer plates 22 are also foil-like. Although it is brazed to the phosphor copper filler metal, for example, a rod-shaped filler material may be arranged at a predetermined position.
[0020]
As shown in FIG. 5, the partition member 23 is formed by pressing a plate material into a substantially rectangular wave shape to form a plurality of grooves 24a constituting a part of the meandering path 24. Communicate with each other through the communication passage 24b.
[0021]
By the way, in the present embodiment, the partition member 23 is made of metal, which also serves as a fin that increases the heat transfer area between the hot water and the water side tube 21.
[0022]
By the way, in the present embodiment, since the discharge pressure of the compressor 10 is equal to or higher than the critical pressure of the refrigerant, when the refrigerant exchanges heat with the hot water in the water-refrigerant heat exchanger 20, the refrigerant is not condensed, and the refrigerant is not condensed. Since the enthalpy is lowered while lowering the temperature, as shown in FIG. 2, a plurality of (three in this embodiment) thin tubes are set so that the flow of the refrigerant and the flow of the hot water flow in opposite directions. The refrigerant tubes 26 are bundled into one, and the bundled refrigerant tubes 26 are wound around the water-side tube 21 in a coil shape and brazed to the outer plate 22.
[0023]
In the present embodiment, the refrigerant tube 26 is formed by coiling phosphorous deoxidized copper into a coil by a roller forming machine, and is brazed to the water side tube 21, that is, the outer plate 22 with a filler material of phosphorous copper. ing.
[0024]
Next, the operation and effect of the present embodiment will be described.
[0025]
In the present embodiment, a plurality of partition members 23 are stacked in the thickness direction of the outer plate 22 (vertical direction on the paper) in the space formed between the two outer plates 22. In the space, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 are formed.
[0026]
Therefore, without decreasing the ratio (= S / Q) of the hot water supply passage to the water supply amount (Q), that is, the ratio of the heat transfer area (S) between the meandering passage 24 and the hot water, the passage cross-sectional area of the meandering passage 24 is reduced. Since the pressure loss can be reduced by increasing the size, the heat exchange path with the refrigerant can be lengthened without increasing the external dimensions of the water-refrigerant heat exchanger 20.
[0027]
(2nd Embodiment)
In the first embodiment, the partition member 23 is press-formed in a rectangular wave shape, but in the present embodiment, as shown in FIG. 6, the partition member 23 is press-formed in a sine wave shape.
[0028]
In the present embodiment, in the space formed between the two outer plates 22, the meandering paths 24 in a plurality of rows overlapping in the thickness direction of the outer plates 22 are strictly partitioned as in the first embodiment. Absent.
[0029]
(Third embodiment)
In the above-described embodiment, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 are formed by the two partition members 23 in the space formed between the two outer plates 22. In the embodiment, as shown in FIG. 7, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 are formed by one partition member 23.
[0030]
(Fourth embodiment)
In the above-described embodiment, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 are formed in the space formed between the two outer plates 22, but this embodiment is shown in FIG. As described above, the meandering paths 24 are arranged in one row without providing the plurality of rows of the meandering paths 24 overlapping in the thickness direction of the outer plate 22.
[0031]
And also in this embodiment, if the passage cross-sectional area of the one-line meandering path 24 is made sufficiently large, the pressure loss can be made sufficiently small.
[0032]
(Fifth embodiment)
In the above-described embodiment, the refrigerant tube 26 is wound around the water-side tube 21 in a coil shape. However, in this embodiment, as shown in FIG. 9, the refrigerant tube 26 is moved in the traveling direction of the meandering path 24 (the vertical direction in FIG. 9). ).
[0033]
A refrigerant tank 27 communicating with the refrigerant tubes 26 is provided at both ends in the longitudinal direction of the plurality of refrigerant tubes 26. The refrigerant tank 27 provided on the outlet side (upper side of the paper) of the hot water supply is The refrigerant is distributed and supplied to the plurality of refrigerant tubes 26, and the refrigerant tank 27 provided on the inlet side (lower side of the paper) of the hot water collects and collects the refrigerant flowing out of the plurality of refrigerant tubes 26. is there.
[0034]
(Other embodiments)
In the first and second embodiments, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 are formed by the two partition members 23 in the space formed between the two outer plates 22. However, the present embodiment is not limited to this. For example, a plurality of rows of meandering paths 24 overlapping in the thickness direction of the outer plate 22 may be formed by three or more partition members 23.
[0035]
In the above-described embodiment, the partition member 23 is formed by applying a rectangular wave shape to the plate material, but the present invention is not limited to this. For example, a U-shaped cross section or an eye-shaped cross section may be used. The partition member 23 may be formed of an extruded or drawn material.
[0036]
In the above-described embodiment, both of the two outer plates 22 have a bathtub shape. However, the present invention is not limited to this. For example, one outer plate 22 has a bathtub shape and the other side has a flat plate shape. It is good also as a shape.
[0037]
In the above-described embodiment, the present invention is applied to the water-side tube 21 of the water-refrigerant heat exchanger 20 that exchanges heat between the refrigerant and the hot water, but the application of the present invention is not limited to this.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a heat pump water heater according to an embodiment of the present invention.
FIG. 2 is an external perspective view of the water-refrigerant heat exchanger according to the first embodiment of the present invention.
FIG. 3 is a sectional view of a water-side tube according to the first embodiment of the present invention.
FIG. 4 is a conceptual diagram of a water side tube according to the first embodiment of the present invention.
FIG. 5 is a perspective view of a partition member according to the first embodiment of the present invention.
FIG. 6 is a sectional view of a water side tube according to a second embodiment of the present invention.
FIG. 7 is a sectional view of a water side tube according to a second embodiment of the present invention.
FIG. 8 is an external perspective view of a water-refrigerant heat exchanger according to a third embodiment of the present invention.
FIG. 9 is an external perspective view of a water-refrigerant heat exchanger according to a third embodiment of the present invention.
[Explanation of symbols]
21: tube, 22: outer plate, 23: partition member, 26: refrigerant tube.

Claims (4)

流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹状にプレス成形された2枚の外板(22)を接合することによって構成された第1チューブ(21)と、
前記2枚の外板(22)間に形成された空間内に配置され、前記空間内を仕切るようにして流体が流れる蛇行路(24)を構成する複数枚の仕切部材(23)と、
前記外板(22)に接合され、前記第1チューブ(21)内を流れる流体と熱交換する流体が流れる第2チューブ(26)とを備え、
前記複数枚の仕切部材(23)は、前記空間内において、前記外板(22)の厚み方向に積層されていることを特徴とする熱交換器。
A first tube (21) formed by joining two outer plates (22) each having a fluid meandering inside and at least one of the cross-sectional shapes pressed into a substantially concave shape;
A plurality of partition members (23) arranged in a space formed between the two outer plates (22) and forming a meandering path (24) through which a fluid flows so as to partition the space;
A second tube (26) joined to the outer plate (22) and through which a fluid that exchanges heat with a fluid flowing through the first tube (21) flows;
The heat exchanger, wherein the plurality of partition members (23) are stacked in the space in the thickness direction of the outer plate (22).
流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹状にプレス成形された2枚の外板(22)を接合することによって構成された第1チューブ(21)と、
前記2枚の外板(22)間に形成された空間内に配置され、前記空間内を仕切るようにして流体が流れる蛇行路(24)を構成する仕切部材(23)と、
前記外板(22)に接合され、前記第1チューブ(21)内を流れる流体と熱交換する流体が流れる第2チューブ(26)とを備え、
前記仕切部材(23)は、前記空間内において、前記外板(22)の厚み方向に重なった複数列の前記蛇行路(24)が形成されるような形状に成形されていることを特徴とする熱交換器。
A first tube (21) formed by joining two outer plates (22) each having a fluid meandering inside and at least one of the cross-sectional shapes pressed into a substantially concave shape;
A partition member (23) arranged in a space formed between the two outer plates (22) and forming a meandering path (24) through which a fluid flows so as to partition the space;
A second tube (26) joined to the outer plate (22) and through which a fluid that exchanges heat with a fluid flowing through the first tube (21) flows;
The partition member (23) is formed in a shape such that a plurality of rows of the meandering paths (24) overlapping in the thickness direction of the outer plate (22) are formed in the space. Heat exchanger.
流体が内部で蛇行するとともに、少なくとも一方の断面形状が略凹状にプレス成形された2枚の外板(22)を接合することによって構成された第1チューブ(21)と、
前記2枚の外板(22)間に形成された空間内に配置され、前記空間内を仕切るようにして流体が流れる蛇行路(24)を構成する仕切部材(23)と、
前記外板(22)に接合され、前記第1チューブ(21)内を流れる流体と熱交換する流体が流れる第2チューブ(26)とを備えることを特徴とする熱交換器。
A first tube (21) formed by joining two outer plates (22) each having a fluid meandering inside and at least one of the cross-sectional shapes pressed into a substantially concave shape;
A partition member (23) arranged in a space formed between the two outer plates (22) and forming a meandering path (24) through which a fluid flows so as to partition the space;
A heat exchanger, comprising: a second tube (26) joined to the outer plate (22) and through which a fluid that exchanges heat with a fluid flowing through the first tube (21) flows.
前記第2チューブ(26)は、前記第1チューブ(21)周りにコイル状に巻き付けられた状態で前記外板(22)に接合されていることを特徴とする請求項1ないし3のいずれか1つに記載の熱交換器。The said 2nd tube (26) is joined to the said outer plate (22) in the state wound around the said 1st tube (21) in coil shape, The Claim 1 characterized by the above-mentioned. A heat exchanger according to one.
JP2003066602A 2003-03-12 2003-03-12 Heat exchanger Withdrawn JP2004278807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066602A JP2004278807A (en) 2003-03-12 2003-03-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066602A JP2004278807A (en) 2003-03-12 2003-03-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004278807A true JP2004278807A (en) 2004-10-07

Family

ID=33284446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066602A Withdrawn JP2004278807A (en) 2003-03-12 2003-03-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2004278807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202846A (en) * 2007-02-20 2008-09-04 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger and egr gas cooling device using the same
JP2011127865A (en) * 2009-12-21 2011-06-30 Fujitsu General Ltd Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202846A (en) * 2007-02-20 2008-09-04 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube for heat exchanger and egr gas cooling device using the same
JP2011127865A (en) * 2009-12-21 2011-06-30 Fujitsu General Ltd Heat exchanger

Similar Documents

Publication Publication Date Title
JP3814917B2 (en) Stacked evaporator
US6540015B1 (en) Heat exchanger and method for manufacturing the same
JP2004144460A (en) Heat exchanger
JP2007017132A (en) Tube for heat exchange, and heat exchanger
WO2006123536A1 (en) Heat exchanger
CN100402182C (en) Semiprocessed flat tube and its manufacturing method, flat tube, heat-exchanger using flat tube and its manufacturing method
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
JP2003028582A (en) Heat exchanger
JP2003329376A (en) Double tube type heat exchanger
JP3906814B2 (en) tube
JP4936546B2 (en) Heat exchanger
JP2009264686A (en) Heat exchanger and heat pump type heating device
JP4334965B2 (en) Plate heat exchanger
JP5744316B2 (en) Heat exchanger and heat pump system equipped with the heat exchanger
RU2568230C2 (en) Heat exchanger with secondary folding
JP2003329375A (en) Heat exchanger
JP2004278807A (en) Heat exchanger
CA2645462A1 (en) Heat exchanger
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP5257102B2 (en) Heat exchanger and refrigeration air conditioner
JP2005061667A (en) Heat exchanger
JP2000105093A (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JP3954891B2 (en) Heat exchanger
JPH03117887A (en) Heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606