JP2004278588A - Belleville spring, laminated belleville spring, and belleville spring device - Google Patents

Belleville spring, laminated belleville spring, and belleville spring device Download PDF

Info

Publication number
JP2004278588A
JP2004278588A JP2003068395A JP2003068395A JP2004278588A JP 2004278588 A JP2004278588 A JP 2004278588A JP 2003068395 A JP2003068395 A JP 2003068395A JP 2003068395 A JP2003068395 A JP 2003068395A JP 2004278588 A JP2004278588 A JP 2004278588A
Authority
JP
Japan
Prior art keywords
disc spring
contact surface
disc
belleville spring
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003068395A
Other languages
Japanese (ja)
Other versions
JP4286034B2 (en
Inventor
Takaaki Hayashida
高章 林田
Masami Wakita
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2003068395A priority Critical patent/JP4286034B2/en
Publication of JP2004278588A publication Critical patent/JP2004278588A/en
Application granted granted Critical
Publication of JP4286034B2 publication Critical patent/JP4286034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep the load characteristics of a belleville spring over an extended period, related to a belleville spring device in which a support body is supported or pressurized with the belleville spring. <P>SOLUTION: There are provided a base body 10, a support body 19, and a plurality of belleville springs 20a-20g interposed between the base body 10 and the support body 19. A contact surface 12 on the base body 10 side that contacts the belleville spring 20g at the bottom and a contact surface 16 on the support body 19 side that contacts the belleville spring 20a at the top, are covered with a resin layer. Since the contact surfaces 12 and 16 of the conical spring device are covered with the resin layer, the frictional resistance between the belleville spring 20g and the contact surface 12 is reduced and that between the belleville spring 20a and the contact surface 16 is also reduced. So, wearing of both is suppressed to be able to keep the load characteristics of a stacked belleville spring 20 over an extended period. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、皿ばね及び複数枚の皿ばねを重ね合わせた重ね皿ばねに関する。また、本発明は、1又は複数枚の皿ばねを用いた皿ばね装置に関する。
【0002】
【従来の技術】皿ばねは、荷重方向の小さな変位で大きな力を発生させることができ、種々の用途に用いられている。皿ばねを利用した装置としては、例えば、特許文献1や特許文献2に開示された装置が知られている。
特許文献1に記載の皿ばね装置では、基礎(基体)と建築物(支持体)との間に複数枚の皿ばねが介装される。複数枚の皿ばねは、同一方向に積み重ねられ、建築物の重量が作用している。この皿ばね装置では、地震等によって基礎が上下方向に変位すると、皿ばねに作用する荷重も変化する。このため、各皿ばねが弾性変形し、基礎の建築物に対する相対変位を吸収して建築物に伝達される振動を吸収するようにしている。
また、特許文献2に記載の皿ばね装置では、ケーシング(基体)と、ケーシング内に収容されるセル積層体(支持体)を備える。皿ばねは圧縮された状態でケーシングとセル積層体との間に介装され、セル積層体のセル同士を密着させる方向に力を作用させる。
【0003】
【特許文献1】
特開2002−39244号公報
【特許文献2】
特開2001−167745号公報
【0004】
【発明が解決しようとする課題】上述した皿ばね装置においては、基体と支持体の間に介装される皿ばねは、所望の荷重特性が得られるよう設計され、かかる荷重特性は長期間にわたって維持されることが要求される。しかしながら、従来においては、皿ばねの荷重特性を長期間にわたって維持する観点から詳細に検討されたことはなかった。
【0005】
本発明の目的は、皿ばねを用いた皿ばね装置において、皿ばねの荷重特性を長期間にわたって維持することを可能とする技術を提供する。
【0006】
【課題を解決するための手段と作用と効果】上記課題を解決するために、本願に係る皿ばね装置は、基体と、支持体と、基体と支持体の間に介装される1又は複数枚の皿ばねとを備える。そして、皿ばねと接触する基体側の接触面及び皿ばねと接触する支持体側の接触面のうち少なくとも一方の接触面が異種材料層で被覆されていることを特徴とする。
この皿ばね装置では、皿ばねと接触する基体側の接触面及び皿ばねと接触する支持体側の接触面の少なくとも一方を皿ばねの材料とは異なる異種材料層で被覆することで、皿ばねの荷重特性が経時的に変化することを抑制する。すなわち、基体や支持体に作用する外力や、基体や支持体の熱変形等によって、皿ばねに作用する荷重が変化すると、皿ばねの形状(すなわち、皿ばねの傾斜角度)が変化する。このため、長期間使用される間に、皿ばねと基体側(あるいは、支持体側)の接触面が擦れ合い、両者が磨耗(たとえば、凝着磨耗)することでその荷重特性を変化させる。この皿ばね装置では、皿ばねと接触する基体側の接触面(あるいは、支持体側の接触面)が異種材料層で被覆されるため、両者の磨耗(特に、凝着磨耗)が抑制される。このため、皿ばねの荷重特性を長期にわたって維持することができる。
なお、皿ばねと接触する基体側の接触面と皿ばねと接触する支持体側の接触面の両者に異種材料層を被覆してもよく、いずれの接触面を被覆するかは、皿ばね装置の用途や使用態様に応じて決定することができる。
また、基体と支持体の間に複数枚の皿ばねを介装する場合、皿ばね間の接触面に異種材料層(例えば、樹脂層)を被覆するようにしてもよい。皿ばね間を被覆すると、皿ばね同士の磨耗が抑制できるため、より効果的である。
【0007】
上記異種材料層は、例えば、ポリアミドイミド樹脂を主成分とする樹脂層とすることができる。また、樹脂層には潤滑材が混入されていることが好ましい。潤滑材が混入されていると、両者の摩擦抵抗がより低下し、擦れ合いによる磨耗をより抑制することができる。
また、上記異種材料層は、ダイヤモンド・ライク・カーボン(DLC)を主成分とする皮膜とすることも好ましい。
【0008】
上記皿ばね装置においては、基体側の接触面と接触する皿ばねの角部及び支持体側の接触面と接触する皿ばねの角部のうち少なくとも一つが面取り又はR形状とされていることが好ましい。皿ばねの角部を面取りすると、皿ばねと接触面との接触面積が大きくなってその面圧が低下する。このため、両者の磨耗を抑制することができる。また、皿ばねの角部をR形状とすると、皿ばねの角部が接触面上を滑りやすくなるため、両者の磨耗を抑制することができる。
【0009】
また、本願は荷重特性を長期にわたって維持することができる皿ばねを提供する。本願に係る皿ばねは、内径面の板厚方向両端に形成される2つの角部と外径面の板厚方向両端に形成される2つの角部のうち少なくとも1つの角部が面取り又はR形状とされていることを特徴とする。
この皿ばねでは、皿ばねと接触する相手部材(たとえば、皿ばねを保持する保持部材)の磨耗を抑制することができる。これによって、皿ばねの荷重特性を長期にわたって維持することができる。
【0010】
さらに、上記の本願に係る皿ばねを用いて重ね皿ばねを構成することもできる。すなわち、本願に係る重ね皿ばねの一態様では、皿ばねが複数枚重ね合わされてなる重ね皿ばねであって、その両端に配される皿ばねの少なくとも一方の皿ばねに上記の皿ばねが用いられる。
なお、皿ばね同士の接触面は、両者間の摩擦抵抗を低減するため、樹脂層により被覆されていることが好ましい。
【0011】
【発明の実施の形態】本発明を具現化した一実施形態に係る皿ばね装置について図面を参照して説明する。図1は皿ばね装置の概略構成を示す図である。
図1に示すように、本実施形態に係る皿ばね装置は、ケーシング10と、ケーシング10内に収容されたセル積層体19(例えば、燃料電池等のセル積層体)とを備える。ケーシング10の下端(図面下側)にはケーシング側ホルダ11が取付けられる。ケーシング側ホルダ11は、ケーシング10に固定されるホルダ本体13を備える。ホルダ本体13の接触面12には、皿ばね20a〜20gの外径に応じて壁14が設けられている。
一方、セル積層体19の下端にはセル側ホルダ15が取付けられる。セル側ホルダ15は、セル積層体19の一端面(図面下側の端面)に固定されるホルダ本体17を備える。ホルダ本体17の接触面16からは、円柱状の脚部18が設けられている。脚部18の外径は、皿ばね20a〜20gの内径と略同一寸法(若干小さい)とされ、脚部18が皿ばね20a〜20gの中央開口部に挿入可能となっている。
【0012】
上述したケーシング側ホルダ11とセル側ホルダ15の間には、同一方向に積み重ねられた複数枚の皿ばね20a〜20g(以下、皿ばね20a〜20gが積み重ねられた状態を重ね皿ばね20ともいう。)が保持される。すなわち、各皿ばね20a〜20gの中央開口部にはセル側ホルダ15の脚部18が挿入され、最下端の皿ばね20gは壁14によってケーシング側のホルダ本体13に対して位置決めされる。これにより、ケーシング側ホルダ11とセル側ホルダ15の間に重ね皿ばね20が保持される。
重ね皿ばね20が保持された状態では、上端の皿ばね20aがセル側の接触面16に当接し、下端の皿ばね20gがケーシング側の接触面12に当接する。また、重ね皿ばね20は、セル積層体19を加圧する方向(図面の上方向)に力が発生するよう、予め圧縮された状態でケーシング10と支持体19との間に配される。
なお、重ね皿ばね20を構成する皿ばねの枚数は、目的とする荷重特性が得られるよう適宜決定することができ、その数は図1に示す例に限られない。
【0013】
上記皿ばね装置においてセル積層体19は、その特性を向上させる観点から、略一定の加圧力で加圧されることが好ましい。一方、使用中のセル積層体19は熱変位等によってその寸法が変化するため、皿ばね20a〜20gのたわみ量も変動する。このため、皿ばね20a〜20gは、そのたわみ量が変化しても、セル積層体19を略一定の加圧力で加圧できることが好ましい。そこで、本実施形態では、「たわみ量」が変化しても「荷重」の変動量が少ない領域(図5のグラフ内で水平な荷重曲線となる領域)においてセル積層体19に所定の加圧力を作用させることができるよう、重ね皿ばね20の荷重特性と初期変位が決められている(図5参照)。
【0014】
なお、皿ばね20a〜20gのたわみ量が変化すると、皿ばね同士の接触面が擦れ合い、また、上端の皿ばね20aとセル側の接触面16及び下端の皿ばね20gとケーシング側の接触面12とが擦れ合う。このため、重ね皿ばね20の加圧時の「たわみ量−荷重曲線」と除荷時の「たわみ量−荷重曲線」とに差(いわゆる、ヒステリシス損失)が発生する。セル積層体19を略一定の加圧力で加圧する観点からは、重ね皿ばね20のヒステリシス損失をできるだけ小さくすることが好ましく、また、ヒステリシス損失が小さい状態が長期間にわたって維持されることが好ましい。
【0015】
そこで、本実施形態では、セル側の接触面16及びケーシング側の接触面12には、以下に説明する表面処理等が施されている。すなわち、接触面16,12には、まず、研磨(例えば、バフ研磨等)が施され、次いで、皿ばね20a〜20gの材料とは異なる異種材料層が被覆されている。これによって、重ね皿ばね20と接触面12,16との摩擦抵抗を減らし、重ね皿ばね20のヒステリシス損失を小さくしている。
【0016】
接触面12,16に施される研磨処理においては、接触面12,16の表面粗さをRmax0.5〜5.0の範囲とすることが好ましい。Rmaxが0.5より小さいと研磨処理の手間(時間等)がかかりすぎて好ましくなく、Rmaxが5.0より大きくなるとヒステリシスが充分に小さくならないためである。より好ましくは、Rmaxが1.0〜2.0(例えば、Rmax1.6程度)の範囲内とすることが好ましい。また、接触面12,16の平面度は0.1以下程度とすることが好ましい。
【0017】
接触面12,16に異種材料層を被覆する処理には、樹脂溶液を塗布する皮膜処理を用いることができる。塗布する樹脂溶液は、例えばポリアミドイミド樹脂、エポキシ樹脂、フェノール樹脂等を主成分とする樹脂溶液を用いることができる。また、樹脂溶液中には、潤滑材(たとえば、フッ素樹脂(PTFE)やPEなどの樹脂系潤滑材、グラファイトや二硫化モリブデンなどの潤滑材)を混入することが好ましい。混入される潤滑材の粒子径は、1μmより小さくすることが好ましい。
樹脂皮膜を付与する方法には、乾性皮膜処理を用いることができる。乾性皮膜処理は、たとえば、まず接触面12,16の表面から油・ゴミ等を除去し、次いで樹脂溶液に潤滑材を混入したものを塗布し、次いで塗布した溶液を乾燥させ、最後に乾燥させた皮膜を加熱処理(200〜300℃)することにより実施することができる。塗布する方法としては、スプレー、スプレータンブリング、刷毛塗りを用いることができる。このような処理により付与される樹脂皮膜の膜厚は、15μm程度(例えば、5〜25μm)とすることが好ましい。皮膜の厚さを15μm程度とするのは、長期間にわたって皮膜の効果を維持するためである。
【0018】
また、接触面12,16を被覆する異種材料層としては、上述した以外にも、例えば、ダイヤモンド・ライク・カーボン(DLC)を主成分とする皮膜、窒化処理、リウブライト処理、二硫化モリブデン処理等により得られる皮膜、さらには、各種めっき処理(例えば、無電解Niめっき、無電解Ni−P複合めっき、クロムめっき等)により得られる皮膜を好適に用いることができる。このような表面処理により付与される皮膜中には、潤滑材が混入されていることが好ましい。混入される潤滑材としては、例えば、上述したPTFE等を使用することができる。
【0019】
また、上述した接触面12に当接する皿ばね20gの角部と、上述した接触面16に当接する皿ばね20aの角部には、以下に説明する平滑化処理が施されている。図2に示すように、皿ばね20a〜20gは、中央に開口部が形成されたドーナツ状をなし、その周面は傾斜面をなしている。皿ばね20gについては、接触面12と接触する外縁24の角部25に平滑化処理が施される。皿ばね20aについては、接触面16と接触する内縁21の角部22に平滑化処理が施される。
【0020】
図3,図4には、皿ばね20gの角部25に施された平滑化処理の一例が示されている。図3に示す例では、皿ばね20gの角部25がR形状に加工されている。角部25がR形状に加工されることで、角部25と接触面12が擦れ合う際に角部25によって接触面12の皮膜が削り取られる現象(いわゆる皮むき現象)を抑制することができる。これによって、重ね皿ばね20のヒステリシス特性を長期にわたって維持することができる。
図4に示す例では、皿ばね20gの角部25が面取り加工されている。角部25を面取りすることで、皿ばね20gと接触面12との接触面積が増えるため、その接触面圧が低下する。したがって、角部25と接触面12が擦れ合う際の摩擦抵抗が小さくなって、接触面12の皮膜の磨耗を抑制することができる。このような方法によっても、重ね皿ばね20のヒステリシス特性を長期にわたって維持することができる。
皿ばね20aの角部22に施される平滑化処理については、上述した皿ばね20gの角部25に施される平滑化処理と同様の処理を施すことができる。
【0021】
なお、上述した平滑化処理は、皿ばね20a〜20gのそれぞれについて、その内径面の板厚方向上端に形成される角部と外径面の板厚方向下端に形成される角部に施すようにしてもよい。このように構成すると、皿ばね20a〜20gが全て同一構成となり、どのような順番で重ね合わせてもよいため、重ね合わせる際の作業が容易となる。
また、皿ばねを保持するホルダの形状等によっては、皿ばねの内径面板厚方向下端に形成される角部と外径面板厚方向上端に形成される角部もホルダと擦れ合う場合がある。かかる場合には、これらの角部にも上述した平滑化処理を施すことが好ましい。
【0022】
なお、重ね皿ばね20を構成する各皿ばね20a〜20gの皿ばね同士の接触面にも、接触面12,16に施した表面処理と同様の処理が施されていることが好ましい。すなわち、皿ばねの上面(図2において26で示される面)及び/または底面(図2において27で示される面)に上述した表面処理が施されることによって、皿ばね同士の摩擦抵抗が小さくなるため、重ね皿ばねのヒステリシス損失を小さくすることができる。
【0023】
【実験例】次に、上述した皿ばね装置を実際に製作し、そのヒステリシス損失と耐久性との関係を調べた。実験には、外径200mm、内径110mm、板厚3.7mmの皿ばねを5枚重ね合せて重ね皿ばねとした。各皿ばねの接触面の表面粗さはRmax1.6とし、各接触面にはポリアミドイミド樹脂にPTFEを分散させた皮膜(約15μm)を被覆した。また、ホルダと接触する2箇所の角部(すなわち、上端の皿ばねの内径面上端の角部と、下端の皿ばねの外径面下端の角部)については、R形状としたものを2種類(R半径0.23mm,0.76mm)と、面取り加工を施したものを1種類と、比較例(従来技術)としてR形状や面取り加工を施さないものを1種類製作した。
また、ホルダについては、ホルダの接触面にポリアミドイミド樹脂系表面処理(皮膜15μm,添加剤;PTFE+グラファイト)を施したもの1種類と、比較例(従来技術)としてホルダの接触面に表面処理を施さなかったもの1種類を製作した。
製作した重ね皿ばねとホルダとを種々に組合せたものについて、初期荷重をかけた状態から所定のストローク(4mm)で弾性変形を繰り返し与え、弾性変形回数とヒステリシス損失との関係を調べた。
【0024】
図6には、角部をR形状とした重ね皿ばねと、従来技術に係る重ね皿ばねについての実験結果が示されている。いずれの実験も、接触面に表面処理が施されていない従来技術に係るホルダを使用した。図6から明らかなように、角部をR形状とした重ね皿ばねは、R形状としていない場合と比較して、長い期間ヒステリシス損失の増大を抑制することができた。また、角部に施されるR形状は、その曲率半径が大きくなるほど良好な結果を示した。
【0025】
図7には、角部に面取り加工を施した重ね皿ばねと、従来技術に係る重ね皿ばねについての実験結果が示されている。いずれの実験も、接触面に表面処理が施されていない従来技術に係るホルダを使用した。図7から明らかなように、角部に面取り加工を施した重ね皿ばねは、面取り加工を施していない場合と比較して、長い期間ヒステリシス損失の増大を抑制することができた。
【0026】
図8には、接触面に表面処理が施されたホルダと、従来技術に係るホルダについての実験結果が示されている。いずれの実験も、角部にR加工や面取り加工を施していない従来技術に係る重ね皿ばねを使用した。図8から明らかなように、接触面に表面処理が施されたホルダは、表面処理が施されていない場合と比較して、ヒステリシス損失の増大を抑制することができた。
【0027】
図9には、角部をR形状(R;0.76mm)とした重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを従来技術に係るホルダで保持した場合についての実験結果が示されている。図9から明らかなように、角部をR形状とした重ね皿ばねを接触面に表面処理を施したホルダで保持する場合が、最もヒステリシスが小さく、その耐久性についても最も良い結果が得られた。
【0028】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】実施形態に係わる皿ばね装置の構造を示す図である。
【図2】皿ばねの断面図である。
【図3】皿ばねの角部に施される平滑化処理の一例を示す図である。
【図4】皿ばねの角部に施される平滑化処理の他の例を示す図である。
【図5】重ね皿ばねの荷重特性(ヒステリシス特性)を示す図である。
【図6】角部をR形状とした重ね皿ばねと、従来技術に係る重ね皿ばねについて、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【図7】角部に面取り加工を施した重ね皿ばねと、従来技術に係る重ね皿ばねについて、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【図8】接触面に表面処理が施されたホルダを用いた場合と、従来技術に係るホルダを用いた場合について、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【図9】角部をR形状(R;0.76mm)とした重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを接触面に表面処理を施したホルダで保持した場合と、従来技術に係る重ね皿ばねを従来技術に係るホルダで保持した場合について、実測した「ヒステリシス−耐久回数」の関係を併せて示す図である。
【符号の説明】
10:ケーシング
11:ケーシング側ホルダ
12:側接触面
13:ホルダ本体
14;壁
15:セル側ホルダ
16:接触面
17:ホルダ本体
18:脚部
19:セル積層体
20:重ね皿ばね
20a〜20g:皿ばね
22,25:角部
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a disc spring and a stacked disc spring in which a plurality of disc springs are overlapped. The present invention also relates to a disc spring device using one or more disc springs.
[0002]
2. Description of the Related Art Disc springs can generate a large force with a small displacement in the load direction, and are used for various purposes. As a device using a disc spring, for example, devices disclosed in Patent Literature 1 and Patent Literature 2 are known.
In the disc spring device described in Patent Document 1, a plurality of disc springs are interposed between a foundation (base) and a building (support). The plurality of disc springs are stacked in the same direction, and the weight of the building acts. In this disc spring device, when the foundation is displaced in the vertical direction due to an earthquake or the like, the load acting on the disc spring also changes. For this reason, each disc spring is elastically deformed to absorb the relative displacement of the foundation relative to the building, thereby absorbing the vibration transmitted to the building.
The disc spring device described in Patent Document 2 includes a casing (base) and a cell stack (support) housed in the casing. The disc spring is interposed between the casing and the cell stack in a compressed state, and applies a force in a direction in which the cells of the cell stack adhere to each other.
[0003]
[Patent Document 1]
JP 2002-39244 A [Patent Document 2]
JP 2001-167745 A
In the above-described disc spring device, the disc spring interposed between the base and the support is designed to obtain a desired load characteristic, and the load characteristic is maintained for a long period of time. It is required to be maintained. However, conventionally, no detailed study has been made from the viewpoint of maintaining the load characteristics of the disc spring over a long period of time.
[0005]
An object of the present invention is to provide a technology that enables a load characteristic of a disc spring to be maintained for a long time in a disc spring device using the disc spring.
[0006]
In order to solve the above-mentioned problems, a coned disk spring device according to the present invention comprises a base, a support, and one or a plurality of members interposed between the base and the support. And two disc springs. Further, at least one of the contact surface on the substrate side that contacts the disc spring and the contact surface on the support that contacts the disc spring is covered with a different material layer.
In this disc spring device, at least one of the contact surface on the base side contacting the disc spring and the contact surface on the support side contacting the disc spring is coated with a different material layer different from the material of the disc spring, thereby forming the disc spring. The load characteristics are prevented from changing over time. That is, when the load acting on the disc spring changes due to an external force acting on the base or the support, or thermal deformation of the base or the support, the shape of the disc spring (that is, the inclination angle of the disc spring) changes. For this reason, during long-term use, the contact surfaces of the disc spring and the base side (or the support side) rub against each other, and both of them wear (for example, cohesive wear) to change the load characteristics. In this disc spring device, since the contact surface on the base side (or the contact surface on the support side) that comes into contact with the disc spring is covered with the different material layer, wear (particularly, adhesion wear) of both is suppressed. For this reason, the load characteristics of the disc spring can be maintained for a long time.
It is to be noted that both the contact surface on the base side contacting the disc spring and the contact surface on the support side contacting the disc spring may be coated with a different material layer. It can be determined according to the use and the mode of use.
When a plurality of disc springs are interposed between the base and the support, the contact surface between the disc springs may be covered with a different material layer (for example, a resin layer). Covering between the disc springs is more effective because wear between the disc springs can be suppressed.
[0007]
The different material layer can be, for example, a resin layer containing a polyamideimide resin as a main component. Further, it is preferable that a lubricant is mixed in the resin layer. When the lubricant is mixed, the frictional resistance between the two is further reduced, and the abrasion due to rubbing can be further suppressed.
Further, it is preferable that the different material layer is a film containing diamond-like carbon (DLC) as a main component.
[0008]
In the above-mentioned disc spring device, it is preferable that at least one of the corner of the disc spring contacting the contact surface on the base side and the corner portion of the disc spring contacting the contact surface on the support is chamfered or rounded. . If the corner of the disc spring is chamfered, the contact area between the disc spring and the contact surface increases, and the surface pressure decreases. For this reason, wear of both can be suppressed. Further, when the corner of the disc spring has an R-shape, the corner of the disc spring easily slides on the contact surface, so that wear of both can be suppressed.
[0009]
Further, the present application provides a disc spring capable of maintaining load characteristics for a long period of time. In the disc spring according to the present application, at least one of the two corners formed at both ends in the thickness direction of the inner diameter surface and the two corners formed at both ends in the thickness direction of the outer diameter surface is chamfered or rounded. It is characterized by having a shape.
With this disc spring, wear of a mating member that comes into contact with the disc spring (for example, a holding member that holds the disc spring) can be suppressed. As a result, the load characteristics of the disc spring can be maintained for a long time.
[0010]
Further, a stacked disc spring can be formed using the disc spring according to the present invention. That is, in one embodiment of the stacked disc spring according to the present application, the disc spring is a stacked disc spring in which a plurality of disc springs are stacked, and the disc spring is used as at least one of the disc springs disposed at both ends thereof. Can be
The contact surface between the disc springs is preferably covered with a resin layer in order to reduce the frictional resistance between them.
[0011]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A disc spring device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a schematic configuration of the disc spring device.
As shown in FIG. 1, the disc spring device according to the present embodiment includes a casing 10 and a cell stack 19 (for example, a cell stack such as a fuel cell) housed in the casing 10. A casing-side holder 11 is attached to a lower end (the lower side in the drawing) of the casing 10. The casing side holder 11 includes a holder body 13 fixed to the casing 10. A wall 14 is provided on the contact surface 12 of the holder body 13 according to the outer diameter of the disc springs 20a to 20g.
On the other hand, a cell-side holder 15 is attached to the lower end of the cell stack 19. The cell-side holder 15 includes a holder main body 17 fixed to one end surface (the lower end surface in the drawing) of the cell stack 19. A columnar leg 18 is provided from the contact surface 16 of the holder body 17. The outer diameter of the leg 18 is substantially the same as (slightly smaller than) the inner diameter of the disc springs 20a to 20g, and the leg 18 can be inserted into the central opening of the disc springs 20a to 20g.
[0012]
Between the casing-side holder 11 and the cell-side holder 15 described above, a plurality of disc springs 20a to 20g stacked in the same direction (hereinafter, a state in which the disc springs 20a to 20g are stacked is also referred to as a stacked disc spring 20). .) Is retained. That is, the leg 18 of the cell-side holder 15 is inserted into the center opening of each of the disc springs 20a to 20g, and the lowermost disc spring 20g is positioned by the wall 14 with respect to the holder body 13 on the casing side. Thereby, the laminated disc spring 20 is held between the casing-side holder 11 and the cell-side holder 15.
In a state where the stacked disc spring 20 is held, the disc spring 20a at the upper end contacts the contact surface 16 on the cell side, and the disc spring 20g at the lower end contacts the contact surface 12 on the casing. The stacked disc spring 20 is disposed between the casing 10 and the support 19 in a compressed state so that a force is generated in a direction of pressing the cell stack 19 (upward in the drawing).
Note that the number of disc springs constituting the stacked disc spring 20 can be appropriately determined so as to obtain a desired load characteristic, and the number is not limited to the example shown in FIG.
[0013]
In the above-mentioned disc spring device, it is preferable that the cell laminated body 19 is pressed with a substantially constant pressing force from the viewpoint of improving its characteristics. On the other hand, since the dimensions of the cell stack 19 during use change due to thermal displacement or the like, the amount of deflection of the disc springs 20a to 20g also changes. For this reason, it is preferable that the disc springs 20a to 20g can press the cell stack 19 with a substantially constant pressing force even if the amount of deflection changes. Therefore, in the present embodiment, a predetermined pressing force is applied to the cell stack 19 in an area where the amount of change in the “load” is small even if the “deflection amount” changes (an area where the load curve is horizontal in the graph of FIG. 5). The load characteristics and the initial displacement of the stacked disc spring 20 are determined so that the above-mentioned can be applied (see FIG. 5).
[0014]
When the amount of deflection of the disc springs 20a to 20g changes, the contact surfaces of the disc springs rub against each other, and the disc spring 20a at the upper end and the contact surface 16 on the cell side and the disc spring 20g at the lower end and the contact surface on the casing side. 12 rubs. Therefore, a difference (a so-called hysteresis loss) occurs between the “flexure amount-load curve” when the stacking disc spring 20 is pressurized and the “flexure amount-load curve” when the load is unloaded. From the viewpoint of pressurizing the cell stack 19 with a substantially constant pressing force, it is preferable that the hysteresis loss of the lap spring 20 be as small as possible, and that the state in which the hysteresis loss is small be maintained for a long period of time.
[0015]
Therefore, in this embodiment, the surface treatment described below is applied to the contact surface 16 on the cell side and the contact surface 12 on the casing side. That is, the contact surfaces 16 and 12 are first polished (for example, buffed or the like), and then coated with a different material layer different from the material of the disc springs 20a to 20g. As a result, the frictional resistance between the stacked disc spring 20 and the contact surfaces 12 and 16 is reduced, and the hysteresis loss of the stacked disc spring 20 is reduced.
[0016]
In the polishing process performed on the contact surfaces 12 and 16, it is preferable that the surface roughness of the contact surfaces 12 and 16 be in the range of Rmax 0.5 to 5.0. If Rmax is less than 0.5, the time (time, etc.) of the polishing process is too long, which is not preferable. If Rmax is more than 5.0, the hysteresis is not sufficiently reduced. More preferably, Rmax is preferably in the range of 1.0 to 2.0 (for example, about Rmax 1.6). Further, it is preferable that the flatness of the contact surfaces 12, 16 is about 0.1 or less.
[0017]
For the treatment for covering the contact surfaces 12 and 16 with the different material layer, a film treatment for applying a resin solution can be used. As a resin solution to be applied, for example, a resin solution containing a polyamideimide resin, an epoxy resin, a phenol resin, or the like as a main component can be used. Further, it is preferable to mix a lubricant (for example, a resin-based lubricant such as fluororesin (PTFE) or PE, or a lubricant such as graphite or molybdenum disulfide) into the resin solution. The particle size of the lubricant to be mixed is preferably smaller than 1 μm.
As a method for providing a resin film, a dry film treatment can be used. In the dry film treatment, for example, first, oil and dirt are removed from the surfaces of the contact surfaces 12 and 16, then a resin solution mixed with a lubricant is applied, and then the applied solution is dried and finally dried. The heat treatment (200 to 300 ° C.) of the coated film can be performed. Spraying, spray tumbling, and brush coating can be used as a method of applying. The thickness of the resin film provided by such a treatment is preferably about 15 μm (for example, 5 to 25 μm). The reason why the thickness of the film is set to about 15 μm is to maintain the effect of the film over a long period of time.
[0018]
In addition to the above, as a different material layer covering the contact surfaces 12 and 16, for example, a film containing diamond-like carbon (DLC) as a main component, a nitriding treatment, a Liubrite treatment, a molybdenum disulfide treatment, or the like. And a film obtained by various plating processes (for example, electroless Ni plating, electroless Ni-P composite plating, chromium plating, etc.) can be preferably used. It is preferable that a lubricant is mixed in the film provided by such a surface treatment. As the lubricant to be mixed, for example, the above-mentioned PTFE or the like can be used.
[0019]
Further, a smoothing process described below is performed on the corner of the disc spring 20g that contacts the contact surface 12 and the corner of the disc spring 20a that contacts the contact surface 16 described above. As shown in FIG. 2, each of the disc springs 20a to 20g has a donut shape with an opening formed in the center, and its peripheral surface has an inclined surface. With regard to the disc spring 20g, the corner 25 of the outer edge 24 that comes into contact with the contact surface 12 is subjected to a smoothing process. With regard to the disc spring 20a, a smoothing process is performed on the corner portion 22 of the inner edge 21 that is in contact with the contact surface 16.
[0020]
3 and 4 show an example of the smoothing process performed on the corner 25 of the disc spring 20g. In the example shown in FIG. 3, the corner 25 of the disc spring 20g is formed into an R shape. By processing the corner 25 into an R shape, it is possible to suppress a phenomenon (a so-called peeling phenomenon) in which a film of the contact surface 12 is scraped off by the corner 25 when the corner 25 and the contact surface 12 rub against each other. As a result, the hysteresis characteristics of the stacked disc spring 20 can be maintained for a long period of time.
In the example shown in FIG. 4, the corner 25 of the disc spring 20g is chamfered. By chamfering the corner 25, the contact area between the disc spring 20g and the contact surface 12 increases, so that the contact surface pressure decreases. Therefore, the frictional resistance when the corner 25 and the contact surface 12 rub against each other is reduced, and the wear of the coating on the contact surface 12 can be suppressed. Even with such a method, the hysteresis characteristics of the lap disc spring 20 can be maintained for a long time.
As for the smoothing process performed on the corner portion 22 of the disc spring 20a, the same process as the above-described smoothing process performed on the corner portion 25 of the disc spring 20g can be performed.
[0021]
The above-described smoothing process is performed on the corners formed at the upper end in the thickness direction of the inner diameter surface and the corners formed at the lower end in the thickness direction of the outer diameter surface for each of the disc springs 20a to 20g. It may be. With such a configuration, all the disc springs 20a to 20g have the same configuration, and may be superposed in any order.
Further, depending on the shape of the holder for holding the disc spring, the corner formed at the lower end in the thickness direction of the inner diameter surface of the disc spring and the corner formed at the upper end in the thickness direction of the outer diameter surface may also rub against the holder. In such a case, it is preferable to perform the above-described smoothing processing also on these corners.
[0022]
In addition, it is preferable that the same treatment as the surface treatment applied to the contact surfaces 12 and 16 is applied to the contact surfaces of the respective plate springs of the respective disc springs 20a to 20g constituting the stacked disc spring 20. That is, by performing the above-described surface treatment on the upper surface (the surface indicated by 26 in FIG. 2) and / or the bottom surface (the surface indicated by 27 in FIG. 2), the frictional resistance between the disc springs is reduced. Therefore, the hysteresis loss of the stacked disc spring can be reduced.
[0023]
EXPERIMENTAL EXAMPLE Next, the above-described disc spring device was actually manufactured, and the relationship between hysteresis loss and durability was examined. In the experiment, five disc springs having an outer diameter of 200 mm, an inner diameter of 110 mm, and a plate thickness of 3.7 mm were superposed to form a laminated disc spring. The surface roughness of the contact surface of each disc spring was Rmax 1.6, and each contact surface was coated with a film (about 15 μm) in which PTFE was dispersed in polyamideimide resin. The two corners that come into contact with the holder (ie, the upper end corner of the inner diameter surface of the disc spring at the upper end and the lower end corner of the outer diameter surface of the lower disc spring) have two R shapes. One type (R radius 0.23 mm, 0.76 mm), one subjected to chamfering, and one type as a comparative example (prior art) without R-shape or chamfering were produced.
As for the holder, one kind in which the contact surface of the holder is subjected to a polyamideimide resin-based surface treatment (film 15 μm, additive; PTFE + graphite), and a comparative example (conventional technology) in which the contact surface of the holder is subjected to a surface treatment One type that was not applied was produced.
With respect to the various combinations of the manufactured disc springs and holders, elastic deformation was repeatedly applied with a predetermined stroke (4 mm) from the state where the initial load was applied, and the relationship between the number of elastic deformations and the hysteresis loss was examined.
[0024]
FIG. 6 shows an experimental result of a laminated disc spring having a rounded corner portion and a conventional laminated disc spring. In each of the experiments, a holder according to the prior art in which the contact surface was not subjected to a surface treatment was used. As is clear from FIG. 6, the laminated disc spring having the R-shaped corner portion was able to suppress an increase in the hysteresis loss for a long period of time as compared with the case where the R-shaped spring was not formed. In addition, the R shape applied to the corners showed better results as the radius of curvature increased.
[0025]
FIG. 7 shows an experimental result of a laminated disc spring having a chamfered corner portion and a conventional laminated disc spring. In each of the experiments, a holder according to the prior art in which the contact surface was not subjected to a surface treatment was used. As is clear from FIG. 7, the overlapped disc spring with the chamfered corner portion was able to suppress an increase in hysteresis loss for a longer period of time as compared with the case without the chamfered process.
[0026]
FIG. 8 shows experimental results of a holder having a contact surface subjected to a surface treatment and a holder according to the related art. In each of the experiments, the lap springs according to the prior art, in which the corners were not rounded or chamfered, were used. As is clear from FIG. 8, the holder in which the contact surface was subjected to the surface treatment was able to suppress an increase in the hysteresis loss as compared with the case where the surface treatment was not performed.
[0027]
FIG. 9 shows a case where a laminated disc spring having a corner portion having an R shape (R; 0.76 mm) is held by a holder whose surface is subjected to a surface treatment on the contact surface, and a case where the laminated disc spring according to the prior art is placed on the contact surface. Experimental results are shown for a case where the holder is treated with a treated holder and for a case where the lap spring according to the prior art is held by a holder according to the related art. As is evident from FIG. 9, when the overlapping disc spring having an R-shaped corner is held by a holder having a contact surface subjected to a surface treatment, the hysteresis is the smallest, and the best result is obtained for the durability. Was.
[0028]
As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and alterations of the specific examples illustrated above.
Further, the technical elements described in the present specification or the drawings exhibit technical utility singly or in various combinations, and are not limited to the combinations described in the claims at the time of filing. The technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a disc spring device according to an embodiment.
FIG. 2 is a sectional view of a disc spring.
FIG. 3 is a diagram illustrating an example of a smoothing process performed on a corner of a disc spring.
FIG. 4 is a diagram showing another example of the smoothing process performed on the corners of the disc spring.
FIG. 5 is a view showing load characteristics (hysteresis characteristics) of the lap disc spring.
FIG. 6 is a view additionally showing the relationship between the measured hysteresis and the number of endurance times for a stacked disc spring having an R-shaped corner portion and a conventional stacked disc spring.
FIG. 7 is a view additionally showing the relationship between the measured hysteresis and the number of endurance times for a laminated disc spring having a corner portion subjected to chamfering and a conventional laminated disc spring.
FIG. 8 is a diagram also showing the relationship between the actually measured “hysteresis and the number of endurance times” when a holder having a surface treated on a contact surface is used and when a holder according to the related art is used.
FIG. 9 shows a case where a laminated disc spring having a corner portion having an R shape (R; 0.76 mm) is held by a holder whose surface is subjected to a surface treatment on a contact surface, and a case where a laminated disc spring according to a conventional technique is surface treated on a contact surface. FIG. 11 is a diagram additionally showing the relationship between the actually measured “hysteresis and the number of endurance times” in the case of holding with the holder according to the related art and the case of holding the laminated disc spring according to the related art with the holder according to the related art.
[Explanation of symbols]
10: Casing 11: Casing-side holder 12: Side contact surface 13: Holder body 14; Wall 15: Cell-side holder 16: Contact surface 17: Holder body 18: Leg 19: Cell stack 20: Stacked disc springs 20a to 20g : Disc springs 22, 25: Corner

Claims (7)

基体と、支持体と、基体と支持体の間に介装される1又は複数枚の皿ばねとを備え、
皿ばねと接触する基体側の接触面及び皿ばねと接触する支持体側の接触面のうち少なくとも一方の接触面が異種材料層で被覆されていることを特徴とする皿ばね装置。
A base, a support, and one or more disc springs interposed between the base and the support;
A disc spring device wherein at least one of a contact surface on a substrate side contacting the disc spring and a contact surface on a support side contacting the disc spring is coated with a dissimilar material layer.
異種材料層がポリアミドイミド樹脂を主成分とする樹脂層であることを特徴とする請求項1に記載の皿ばね装置。The disc spring device according to claim 1, wherein the different material layer is a resin layer containing a polyamideimide resin as a main component. 樹脂層には潤滑材が混入されていることを特徴とする請求項2に記載の皿ばね装置。The disc spring device according to claim 2, wherein a lubricating material is mixed in the resin layer. 異種材料層がダイヤモンド・ライク・カーボンを主成分とする皮膜であることを特徴とする請求項1に記載の皿ばね装置。The disc spring device according to claim 1, wherein the different material layer is a film containing diamond-like carbon as a main component. 基体側の接触面と接触する皿ばねの角部及び支持体側の接触面と接触する皿ばねの角部のうち少なくとも一つが面取り又はR形状とされていることを特徴とする皿ばね装置。A disc spring device wherein at least one of a corner of the disc spring contacting the contact surface on the base side and a corner portion of the disc spring contacting the contact surface on the support is chamfered or rounded. 内径面の板厚方向両端に形成される2つの角部と外径面の板厚方向両端に形成される2つの角部のうち少なくとも1つの角部が面取り又はR形状とされていることを特徴とする皿ばね。At least one of the two corners formed on both ends in the thickness direction of the inner diameter surface and the two corners formed on both ends in the thickness direction of the outer diameter surface is chamfered or rounded. Disc spring featured. 皿ばねが複数枚重ね合わされてなる重ね皿ばねであって、その両端に配される皿ばねの少なくとも一方が請求項5に記載の皿ばねであることを特徴とする重ね皿ばね。6. A coned disc spring comprising a plurality of coned disc springs, wherein at least one of the disc springs disposed at both ends thereof is the disc spring according to claim 5.
JP2003068395A 2003-03-13 2003-03-13 Belleville spring, double disc spring, and disc spring device Expired - Lifetime JP4286034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068395A JP4286034B2 (en) 2003-03-13 2003-03-13 Belleville spring, double disc spring, and disc spring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068395A JP4286034B2 (en) 2003-03-13 2003-03-13 Belleville spring, double disc spring, and disc spring device

Publications (2)

Publication Number Publication Date
JP2004278588A true JP2004278588A (en) 2004-10-07
JP4286034B2 JP4286034B2 (en) 2009-06-24

Family

ID=33285743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068395A Expired - Lifetime JP4286034B2 (en) 2003-03-13 2003-03-13 Belleville spring, double disc spring, and disc spring device

Country Status (1)

Country Link
JP (1) JP4286034B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2427375B (en) * 2003-05-22 2007-12-19 Westwind Air Bearings Ltd Rotary tool holder assemblies
WO2010123098A1 (en) * 2009-04-24 2010-10-28 日本発條株式会社 Coil spring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2427375B (en) * 2003-05-22 2007-12-19 Westwind Air Bearings Ltd Rotary tool holder assemblies
WO2010123098A1 (en) * 2009-04-24 2010-10-28 日本発條株式会社 Coil spring
JP2010255759A (en) * 2009-04-24 2010-11-11 Nhk Spring Co Ltd Coil spring
EP2423531A1 (en) * 2009-04-24 2012-02-29 Nhk Spring Co., Ltd. Coil spring
EP2423531A4 (en) * 2009-04-24 2014-02-12 Nhk Spring Co Ltd Coil spring

Also Published As

Publication number Publication date
JP4286034B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US6456455B2 (en) Damped spacer articles and disk drive assemblies containing damped spacer articles
TWI733212B (en) Coupling mechanism, substrate polishing apparatus, method of determining position of rotational center of coupling mechanism, program of determining position of rotational center of coupling mechanism, method of determining maximum pressing load of rotating body, and program of determining maximum pressing load of rotating body
JP2619105B2 (en) Vibration damper
US8840447B2 (en) Method and apparatus for polishing with abrasive charged polymer substrates
CN107849703A (en) Band coating sliding members
US11664746B2 (en) Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
JP2008035685A (en) Motor, lens barrel, camera system, and manufacturing method of motor
US20120281315A1 (en) Method and apparatus for processing sliders for disk drives, and to various processing media for the same
JP2004278588A (en) Belleville spring, laminated belleville spring, and belleville spring device
JP5196495B2 (en) Structural member for sliding and manufacturing method thereof
JP6177603B2 (en) Grinding / polishing carrier and substrate manufacturing method
JP7182918B2 (en) Vibration type drive device, electronic device and moving object
JP2015069674A (en) Manufacturing method of magnetic disk glass substrate, and polishing treatment carrier
JP2925192B2 (en) Vibration wave drive
KR101858143B1 (en) Sliding matrials comprising solid lubricants with non­spherical shape
JPS6044136A (en) Engine tappet and method of electroforming said tappet
US20230175541A1 (en) Controlled friction for sliding assemblies
KR102510720B1 (en) Retainer ring used in chemical mechanical polishing apparatus
US20200376700A1 (en) Polishing platens and polishing platen manufacturing methods
JPH05141461A (en) Improved spring uniformly withstanding load
US8199428B2 (en) Clamp of disk rotation driver
TW440497B (en) Method and apparatus for automatically adjusting the contour of a wafer carrier surface
JP3160139B2 (en) Vibration wave motor
JPH0727133A (en) Thrust bearing
KR20220077587A (en) An autonomic upright setup method for making conditioner in use with regular octahedron diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250