JP2004277636A - Oil absorbing material - Google Patents

Oil absorbing material Download PDF

Info

Publication number
JP2004277636A
JP2004277636A JP2003073568A JP2003073568A JP2004277636A JP 2004277636 A JP2004277636 A JP 2004277636A JP 2003073568 A JP2003073568 A JP 2003073568A JP 2003073568 A JP2003073568 A JP 2003073568A JP 2004277636 A JP2004277636 A JP 2004277636A
Authority
JP
Japan
Prior art keywords
oil
absorbing material
weight
powder
water repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003073568A
Other languages
Japanese (ja)
Inventor
Kenji Kamihatsu
憲治 神初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Kenzai Gijutsu Kenkyusho KK
Original Assignee
Clion Co Ltd
Kenzai Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clion Co Ltd, Kenzai Gijutsu Kenkyusho KK filed Critical Clion Co Ltd
Priority to JP2003073568A priority Critical patent/JP2004277636A/en
Publication of JP2004277636A publication Critical patent/JP2004277636A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil absorbing material for the treatment of environmental pollution caused by spilled oil, causing little scattering in application and separation of absorbed oil and capable of suppressing the oxidation by the oil absorbed in the material, and provide a method for treating the oil-absorbing material after the oil-absorbing treatment. <P>SOLUTION: The oil-absorbing material is composed of powder or granule of a hydrated calcium silicate containing tobermorite and/or xonotlite. The diameter of the powder or particle is ≤1.2 mm, the weight of the particle having a diameter of ≤90 μm is ≤20% of the total weight of the oil-absorbing material, the cumulative volume of the pores having pore radius of 75-75,000Å is 0.40-0.70 cm<SP>3</SP>in 1 g of the particle, the cumulative volume of the pores having pore radius of 75-750Å is 0.25-0.55 cm<SP>3</SP>in 1 g of the particle and the bulk density of the oil-absorbing material is 0.28-0.70 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、珪酸カルシウム系水和物の粉粒体からなる吸油材に関するものである。
【0002】
【従来の技術】
油流出による道路等の陸上汚染、河川汚染または海洋汚染などの環境汚染の処理材として使用される、化繊系、天然繊維系、半天然繊維系、活性炭系および無機質系(特許文献1、2,3参照)などの吸油材は、嵩密度が0.05〜0.20g/cmの軽量のもので、粉粒体のものが一般的に用いられている。しかし、前記吸油材は表1(ビューフォート風力表)に示すように、風速1m/s程度の至軽風の状況において飛散するため、汚染箇所に正確に散布することが難しい。
【0003】
【表1】

Figure 2004277636
【0004】
また、前記吸油材は粉粒体に替えて袋状、マット状、シート状およびネット状などの形態を取った場合であっても、嵩密度が小さいために風速2.5m/s程度の軽風においてさえ、目標とする汚染域への正確な投入が困難であった。さらに、前記形態では汚染箇所に均一にかつ重ならないように散布することが非常に難しい。
【0005】
また、多量に油が浮遊している河川または海洋の汚染領域では、短時間に効率的に油類を回収するために、前記化繊系、天然繊維系、半天然繊維系の吸油材が用いられてきた。しかし、吸油した吸油材が長時間水中に浸漬されていると、油類の遊離(放油)が起こり、再び水が汚染されることになる。この対策として、油類の遊離が極めて少ない活性炭系のものを用いることができるが、非常に高価であり、また前述したように嵩密度が小さいために、汚染域に正確に散布することが難しかった。
【0006】
前述した問題点を解消する方策として、取扱いが容易で、かつ油類の遊離を少なくする方法が提案されている(特許文献4参照)。しかし、この方法においては、油類の遊離防止が十分とは言えず、また油類以外に多量の水を吸水するため、その吸油性能が十分発揮されているとは言えなかった。
【0007】
また、吸油後の吸油材の処理方法は、焼却処理されることが一般的であると推察されるが、処理するまでの保管や輸送に2週間程度要すると、該吸油材中の油が酸化し酸敗臭を放つようになり、環境の悪化をもたらす。また、吸油材が前記化繊系、天然繊維系、半天然繊維系、活性炭系のものであると、焼却時の黒煙やダイオキシン発生等の大気汚染の問題が生じ、また無機質系のものであれば、多量の焼却灰が発生するため、埋め立て用地の確保などの問題があった。
【0008】
【特許文献1】
特開昭50−27791号公報
【特許文献2】
特開昭56−100883号公報
【特許文献3】
特開昭56−100884号公報
【特許文献4】
特開昭51−92791号公報
【0009】
【発明が解決しようとする課題】
本発明は、前述した従来技術における問題点の解決を課題として、鋭意検討した結果なされたものである。
【0010】
すなわち、本発明の課題は、油類流出による環境汚染領域に対して、散布時に飛散量が少なく、また吸油後の油類の遊離が極めて少なくかつ長期に渡り酸化を抑制できる吸油材を提供することにある。
【0011】
【課題を解決するための手段】
本発明による吸油材は、トバモライトおよび/またはゾノトライトを含有する珪酸カルシウム系水和物からなる吸油材であって、
(1)該粉粒体の粒径は、1.2mm以下、
(2)粒径90μm以下の粉粒体重量は、全吸油材重量の20%以下、
(3)粉粒体1g中に細孔半径75〜75000Åの累積容積は0.40〜0.70cmで、かつ細孔半径75〜750Åの累積容積は0.25〜0.55cm
(4)吸油材の嵩密度は、0.28〜0.70g/cm
である吸油材とした。
【0012】
前記吸油材が、
(1)該粉粒体の粒径は、1.2mm以下、
(2)粒径90μm以下の粉粒体重量は、全吸油材重量の20%以下、
(3)粉粒体1g中に細孔半径75〜75000Åの累積容積は0.40〜0.70cmで、かつ細孔半径75〜750Åの累積容積は0.25〜0.55cm
(4)吸油材の嵩密度は、0.28〜0.70g/cm
であると、吸油性能の低下をきたすことなく、また風速2.5m/s程度(軽風)でも飛散を抑制でき、油汚染領域に対して正確に散布できる。このため、経済性が向上する吸油材を提供できる。また、前記多孔質の粉粒体中には、トバモライトおよびゾノトライトの前駆体であるCSHと呼ばれる非晶質形態の物質を含有してもよい。
【0013】
また、粉粒体1g中に前記細孔半径75〜75000Åの累積容積が0.40〜0.70cmで、かつ細孔半径75〜750Åの累積容積が0.25〜0.55cm以上であると、吸油後の油の遊離が極めて減少するとともに油類の酸化が長期に渡り抑制できる。
【0014】
前記吸油材の嵩密度が0.28〜0.70g/cmであると、前記軽風でも多量の飛散がなく、また、単位g当たりの吸油量が低下することがない。前記嵩密度が0.45〜0.65g/cmであると、風速4.0m/sの和風においても飛散しにくいため、より正確にかつ必要量散布でき好ましい。この結果、作業効率や経済性が向上する。
【0015】
また、前記粉粒体の細孔内表層部にシリコーン系水性エマルション撥水剤が含浸された吸油材とした。前記粉粒体の細孔内表層部までシリコーン系水性エマルション撥水剤を含浸させることにより、汚染された水域に吸油材を散布した際に、同時に水分を吸水することがないため、油類のみ吸着できる。その結果、余分に吸油材を散布する必要がなくなるため、経済性が向上する。
【0016】
該吸油材にシリコーン系水性エマルション撥水剤を含浸させる場合、該水性エマルション撥水剤をスプレーなどで塗布してもよい。さらに、該吸油材を1日間程度前記撥水剤に浸漬させると、粉粒体内部および微細な細孔内部にも十分浸透させることができより好ましい。
【0017】
また、前記シリコーン系水性エマルション撥水剤は、アルキルアルコキシシランまたはアルキルシロキサンの1種以上を主成分とする水性エマルション撥水剤である吸油材とした。前記撥水剤が劣化に強く、長期間安定性に優れたアルキルアルコキシシランまたはアルキルシロキサンであると、吸水量が極めて少なくなり、吸油材の吸油性能の確保が長期に渡り図られる。
【0018】
また、前記水性エマルション撥水剤の主成分が、吸油材100重量部に対し0.1〜1.0重量部付与された吸油材とした。前記主成分が、吸油材100重量部に対し0.1〜1.0重量部であると、撥水性能が優れ、かつ十分に長期間安定性に優れた吸油材を提供できる。また前記撥水剤は、主成分換算で0.3〜3.0重量%となるよう希釈されていると、少量の撥水剤により十分な撥水効果が得られて望ましい。
【0019】
また、全粉粒体重量中の全アルカリ分の含有量が0.75重量%以下である吸油材とすることにより、吸油処理後にセメント製造での珪酸質原料や石灰質原料として用いることができる。すなわち、前記吸油材がJIS R 5210で規定されている全アルカリ分の含有量の範囲内(0.75重量%以下)であるため、アルカリ分の調整が必要でなく、さらに該吸油材が珪酸カルシウム系であるため、セメント製造工場のキルンに原料として直接投入できる。また、該吸油材は油類を吸着しているため、前記キルン投入時の燃料としても利用できる。
【0020】
【発明の実施の形態】
以下、本発明の吸油材の試験例を挙げ、具体的に詳述する。尚、吸油材の性能評価方法として、各風速での吸油材の残量、吸油量・率、油の遊離率、酸化による重量増加率を測定し、総合的に評価した。また、吸油材の各パラメータの測定方法は、以下の通りである。
【0021】
1.嵩密度:内径45mm、高さ40mmの鉄製円筒容器に試料を少し盛り上げる程度に充填する。次に、容器の側壁を数回軽く叩き、さらに少し盛り上げる程度に充填する。そして、均し棒で盛り上がった試料を水平になるよう取り除き、充填した試料重量および容器容積とから嵩密度を算出した。
2.細孔半径および累積容積:水銀圧入式細孔径分布測定装置を用い、細孔径分布を測定し、それぞれの細孔半径における累積容積を求めた。
3.各風速での吸油材の残量:一定重量の試料に対し、ブロアーを30秒間作動させて、その残分重量により算出した。尚、各風速はデジタル風速計(Kestrel3000)により計測した。
4.吸油量・率:
▲1▼吸油量:各吸油材にアマニ油を吸着させた。
顔料試験方法(JIS K 5101)に準じて測定を行った。
▲2▼吸油率:各吸油材にアマニ油及び水の混合液を吸着させた。
アマニ油及び水の混合液中に一定量の試料を投入し、十分攪拌する。その後、固体のみを分離抽出し、105℃で乾燥後固体重量を測定し、上記▲1▼の吸油量に対する割合を求めた。
5.油遊離率:試料1gに煮アマニ油を吸油量分吸収させた吸油材を、20℃の水中で攪拌(150rpm、10分間)し、3時間静置後、水の表面に浮遊した煮アマニ油を回収し、煮アマニ油の重量を測定し、油遊離率を求めた。
6.酸化重量増加率:吸油量測定後の試料を20℃の室内にて3週間静置し、酸化による重量増を測定して、酸化重量増加率を求めた。
【0022】
また、トバモライトまたはゾノトライトを含有する珪酸カルシウム系水和物の粉粒体からなる吸油材の作製は、以下の通りとした。
(試験例1〜10)
<トバモライト含有吸油材の作製>
珪酸質原料として珪石粉60重量部、石灰質原料として生石灰粉末25重量部および普通ポルトランドセメント15重量部の粉末原料100重量部に対し、水55重量部、アルミニウム粉末0.1重量部を混合し、型枠(縦×横×高さ=250mm×250mm×500mm)に打設し、発泡・硬化した半硬化体を脱型後、7時間蒸気養生(183℃、10気圧)を行い、得られた本硬体を粉砕して粉粒体とした。そして、目開き4.8mm篩を通過した粉粒体を試験に供し、性能測定を行った。また、この粉粒体の全アルカリ分の含有量は、0.20重量%であった。
<粒度調整>
上記トバモライト含有吸油材をさらに目開き2.4mm、1.2mm、0.6mm、0.3mm、0.15mm、0.09mm(90μm)、0.045mm(45μm)の各篩で分級し、各粒度毎の粉粒体を作製した。
<撥水剤の付与>
粉粒体にアルキルアルコキシシランおよびアルキルシロキサンを主成分とする水性エマルション撥水剤(希釈濃度:主成分換算で1重量%)溶液に浸漬したのち、105℃で乾燥させた。この時、水性エマルション撥水剤の主成分は、粉粒体100重量部に対し0.5重量部であった。
(試験例11)
<トバモライト含有吸油材の作製>
珪酸質原料として珪石粉65重量部、石灰質原料として生石灰粉末23重量部および普通ポルトランドセメント12重量部の粉末原料100重量部に対し、水53重量部、アルミニウム粉末0.1重量部を混合し、型枠(試験例1と同じ)に打設し、発泡・硬化した半硬化体を脱型後、2時間蒸気養生(183℃、10気圧)を行い、得られた本硬体を粉砕して粉粒体とした。そして、目開き4.8mm篩を通過した粉粒体を試験に供した。また、この粉粒体の全アルカリ分の含有量は、0.20重量%であった。
<粒度調整>
上記試験例1〜10に同じ。
(試験例12)
<トバモライト含有吸油材の作製>
珪酸質原料として珪石粉70重量部、石灰質原料として生石灰粉末20重量部および普通ポルトランドセメント10重量部の粉末原料100重量部に対し、水60重量部、アルミニウム粉末0.05重量部を混合し、型枠(試験例1と同じ)に打設し、発泡・硬化した半硬化体を脱型後、2時間蒸気養生(183℃、10気圧)を行い、得られた本硬体を粉砕して粉粒体とした。そして、目開き4.8mm篩を通過した粉粒体を試験に供した。また、この粉粒体の全アルカリ分の含有量は、0.20重量%であった。
<粒度調整>
上記試験例1〜10と同じ。
(試験例13及び14)
<ゾノトライト含有吸油材の作製>
珪酸質原料として珪石粉60重量部、石灰質原料として生石灰粉末30重量部および普通ポルトランドセメント10重量部の粉末原料100重量部に対し、水60重量部、アルミニウム粉末0.1重量部を混合し、型枠(縦×横×高さ=250mm×250mm×500mm)に打設し、発泡・硬化した半硬化体を脱型後、10時間蒸気養生(225℃、25気圧)を行い、得られた本硬体を粉砕して粉粒体とした。そして、目開き1.2mm篩を通過した粉粒体を粒度調整し、試験に供した。また、この粉粒体の全アルカリ分の含有量は、0.15重量%であった。
<粒度調整>
上記試験例1〜10と同じ。
<撥水剤の付与>
上記試験例1〜10と同じ。
(試験例15〜16)
市販の2種類のパーライトを入手し、試験に供した。
イ.粗粉:東興パーライト工業株式会社製(品番10、粒度:1.2mm〜0.6mm、50%)
ロ.微粉:三井金属工業株式会社製(品番A、粒度:0.6mm〜0.3mm、50%)
(試験例17)
市販の雲母粉(粒度:1.2mm以下)を入手し、試験に供した。
(試験例18)
市販の珪藻土(能登産、粒度:90μm以下)を入手し、試験に供した。
(試験例19)
市販の活性炭(粉状、粒度:0.3mm以下)を入手し、試験に供した。
【0023】
各吸油材のパラメータの測定結果および性能評価結果を表2に示す。
【0024】
【表2】
Figure 2004277636
【0025】
表2の評価結果から分かるように、トバモライトおよび/またはゾノトライトを含有する珪酸カルシウム系水和物の粉粒体からなる吸油材のうち、
(1)該粉粒体の粒径は、1.2mm以下、
(2)粒径90μm以下の粉粒体重量は、全吸油材重量の20%以下、
(3)粉粒体1g中に細孔半径75〜75000Åの累積容積は0.40〜0.70cmで、かつ細孔半径75〜750Åの累積容積は0.25〜0.55cm
(4)吸油材の嵩密度は、0.28〜0.70g/cm
とした吸油材、すなわち試験例3〜6,9,10,13,14は、いずれも風速2.5m/s程度の軽風においても全く飛散することがなく、また吸油量が1ml/g以上(試験例3〜6,9,10,13,14)であり、かつ油の遊離や酸化による重量増加も殆ど見られなかった。また、撥水剤を含浸させた吸油材(試験例10及び14)は、吸水量が抑制されるため、吸油量の低下を押さえることが分かった。
【0026】
また、本発明以外の吸油材(試験例1,2,7,8,15〜19)においては、風速4.5m/s程度の軟風においていずれも残量が50%未満であった。また、パーライトや珪藻土などはいずれも優れた吸油量を呈するが、各風速での残量、遊離率、酸化重量増加率などの点で本発明の吸油材より劣ることが分かった。また、活性炭は吸油量、遊離率などの点で本発明の吸油材と概ね同等であるが、各風速での残量および酸化重量増加率が劣ることが分かった。
【0027】
【発明の効果】
以上、本発明の吸油材は、油類の流出による環境汚染に対して、ある程度の強風や風雨の条件下においても、散布時に飛散量が少なくでき、また吸油後の遊離が極めて少なくかつ長期間に渡り酸化を抑制できる。この結果、効率よく油類を吸着・回収できるとともに回収後の酸化による悪臭の発生を抑制できる。また、全アルカリ分の含有量が少ない珪酸カルシウム系の吸油材であるため、吸油材使用後にセメント製造の原料や燃料とすることができる。このことで、使用済み吸油材の焼却時の大気汚染や焼却灰の埋め立て用地確保などの配慮がいらず、かつ資源の再利用が図れるという優れた効果を発揮する。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an oil-absorbing material comprising a powder of calcium silicate hydrate.
[0002]
[Prior art]
Synthetic fiber type, natural fiber type, semi-natural fiber type, activated carbon type and inorganic type used as a treatment material for environmental pollution such as road pollution due to oil spill such as road pollution, river pollution or marine pollution (Patent Documents 1, 2) 3) is a light-weight material having a bulk density of 0.05 to 0.20 g / cm 3 , and a powdery material is generally used. However, as shown in Table 1 (Beaufort Wind Force Table), the oil absorbing material is scattered in the condition of light wind at a wind speed of about 1 m / s, so that it is difficult to spray the oil absorbing material accurately on the contaminated site.
[0003]
[Table 1]
Figure 2004277636
[0004]
Even when the oil absorbing material is in the form of a bag, a mat, a sheet, a net, or the like instead of a granular material, a light wind having a wind speed of about 2.5 m / s due to its low bulk density. However, accurate introduction into the target contaminated area was difficult. Further, in the above-described embodiment, it is very difficult to uniformly and non-overlapping the contaminated site.
[0005]
Further, in a polluted area of a river or ocean in which a large amount of oil is floating, the above-mentioned synthetic fiber-based, natural fiber-based, semi-natural fiber-based oil-absorbing material is used in order to efficiently collect oils in a short time. Have been. However, if the oil-absorbing material that has absorbed the oil is immersed in the water for a long time, oils are released (oil release), and the water is again contaminated. As a countermeasure, an activated carbon-based material with very little release of oils can be used, but it is very expensive and, as described above, has a low bulk density, so that it is difficult to disperse it accurately in the contaminated area. Was.
[0006]
As a measure for solving the above-mentioned problems, a method has been proposed in which handling is easy and oil liberation is reduced (see Patent Document 4). However, in this method, release of oils is not sufficiently prevented, and a large amount of water is absorbed in addition to oils. Therefore, it cannot be said that the oil absorption performance is sufficiently exhibited.
[0007]
It is generally assumed that the oil absorbing material after the oil absorption is treated by incineration. However, if it takes about two weeks for storage and transportation until the treatment, the oil in the oil absorbing material is oxidized. It gives off a rancid odor, which degrades the environment. Further, when the oil absorbing material is a synthetic fiber type, a natural fiber type, a semi-natural fiber type, or an activated carbon type, there arises a problem of air pollution such as generation of black smoke and dioxin at the time of incineration, and an inorganic type. For example, a large amount of incineration ash is generated, and there is a problem of securing land for landfill.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 50-27791 [Patent Document 2]
JP-A-56-100883 [Patent Document 3]
JP-A-56-100884 [Patent Document 4]
JP-A-51-92791
[Problems to be solved by the invention]
The present invention has been made as a result of intensive studies with a view to solving the above-mentioned problems in the conventional technology.
[0010]
That is, an object of the present invention is to provide an oil-absorbing material that has a small amount of scattering during spraying, has a very small release of oils after oil absorption, and can suppress oxidation for a long period of time, in an environmental pollution area due to oil spill. It is in.
[0011]
[Means for Solving the Problems]
The oil absorbent according to the present invention is an oil absorbent comprising a calcium silicate hydrate containing tobermorite and / or zonotlite,
(1) The particle size of the powder is 1.2 mm or less;
(2) The weight of the powder having a particle size of 90 μm or less is 20% or less of the total weight of the oil absorbing material,
(3) Cumulative volume with a pore radius of 75 to 75000 ° in 1 g of the granular material is 0.40 to 0.70 cm 3 , and cumulative volume with a pore radius of 75 to 750 ° is 0.25 to 0.55 cm 3 ,
(4) The bulk density of the oil-absorbing material is 0.28 to 0.70 g / cm 3 ,
Oil absorbing material.
[0012]
The oil absorbing material,
(1) The particle size of the powder is 1.2 mm or less;
(2) The weight of the powder having a particle size of 90 μm or less is 20% or less of the total weight of the oil absorbing material,
(3) Cumulative volume with a pore radius of 75 to 75000 ° in 1 g of the granular material is 0.40 to 0.70 cm 3 , and cumulative volume with a pore radius of 75 to 750 ° is 0.25 to 0.55 cm 3 ,
(4) The bulk density of the oil-absorbing material is 0.28 to 0.70 g / cm 3 ,
Accordingly, scattering can be suppressed even at a wind speed of about 2.5 m / s (light wind) without lowering the oil absorption performance, and the oil can be sprayed accurately on the oil-contaminated area. For this reason, it is possible to provide an oil-absorbing material with improved economy. The porous powder may contain an amorphous substance called CSH, which is a precursor of tobermorite and zonotlite.
[0013]
The cumulative volume of the pore radius of 75 to 75000 ° is 0.40 to 0.70 cm 3 in 1 g of the granular material, and the cumulative volume of the pore radius of 75 to 750 ° is 0.25 to 0.55 cm 3 or more. If so, release of oil after oil absorption is extremely reduced, and oxidation of oils can be suppressed for a long time.
[0014]
When the bulk density of the oil absorbing material is 0.28 to 0.70 g / cm 3 , there is no large amount of scattering even with the light wind, and the oil absorbing amount per unit g does not decrease. When the bulk density is 0.45 to 0.65 g / cm 3, it is difficult to be scattered even in a Japanese style having a wind speed of 4.0 m / s, so that it is possible to spray more accurately and a required amount, which is preferable. As a result, work efficiency and economy are improved.
[0015]
Further, an oil-absorbing material was used in which the surface layer in the pores of the powder was impregnated with a silicone-based aqueous emulsion water repellent. By impregnating the silicone-based aqueous emulsion water repellent up to the surface layer inside the pores of the powder, when the oil absorbing material is sprayed on the contaminated water area, it does not absorb water at the same time, so only oils Can be adsorbed. As a result, it is no longer necessary to spray an extra oil absorbing material, so that the economy is improved.
[0016]
When the oil absorbing material is impregnated with a silicone-based aqueous emulsion water repellent, the aqueous emulsion water repellent may be applied by spraying or the like. Further, it is more preferable that the oil absorbing material is immersed in the water repellent for about one day, because it can sufficiently penetrate into the inside of the granular material and the inside of the fine pores.
[0017]
The silicone-based water-based emulsion water repellent is an oil-absorbing material that is a water-based emulsion water-repellent containing at least one of alkylalkoxysilane and alkylsiloxane as a main component. When the water repellent is an alkylalkoxysilane or an alkylsiloxane that is resistant to deterioration and excellent in long-term stability, the amount of water absorption becomes extremely small, and the oil absorbing performance of the oil absorbing material can be ensured for a long time.
[0018]
Further, the main component of the water-based emulsion water repellent was 0.1 to 1.0 part by weight based on 100 parts by weight of the oil absorbing material. When the main component is 0.1 to 1.0 part by weight with respect to 100 parts by weight of the oil absorbing material, it is possible to provide an oil absorbing material having excellent water repellency and sufficiently excellent long-term stability. When the water repellent is diluted to be 0.3 to 3.0% by weight in terms of the main component, a sufficient water repellency can be obtained with a small amount of the water repellent.
[0019]
In addition, by using an oil-absorbing material having a total alkali content of 0.75% by weight or less in the total weight of the granules, the oil-absorbing material can be used as a siliceous raw material or calcareous raw material in cement production after the oil absorption treatment. That is, since the oil-absorbing material is within the range of the total alkali content defined by JIS R 5210 (0.75% by weight or less), no adjustment of the alkali is necessary, and the oil-absorbing material is made of silicate. Since it is calcium-based, it can be directly input as a raw material to kilns at cement manufacturing plants. Further, since the oil absorbing material adsorbs oils, it can be used as a fuel at the time of charging the kiln.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, test examples of the oil-absorbing material of the present invention will be cited and specifically described in detail. As a method for evaluating the performance of the oil absorbing material, the remaining amount of the oil absorbing material, the amount and rate of oil absorption, the rate of oil release, and the rate of weight increase due to oxidation at each wind speed were measured and comprehensively evaluated. The measuring method of each parameter of the oil absorbing material is as follows.
[0021]
1. Bulk density: An iron cylindrical container having an inner diameter of 45 mm and a height of 40 mm is filled to the extent that the sample is slightly raised. Next, lightly tap the side wall of the container several times, and fill the container to such an extent that the container is slightly raised. Then, the sample raised with the leveling rod was removed so as to be horizontal, and the bulk density was calculated from the filled sample weight and the container volume.
2. Pore radius and cumulative volume: The pore size distribution was measured using a mercury intrusion-type pore size distribution measuring device, and the cumulative volume at each pore radius was determined.
3. Remaining amount of oil-absorbing material at each wind speed: For a sample having a constant weight, the blower was operated for 30 seconds and calculated based on the remaining weight. Each wind speed was measured with a digital anemometer (Kestrel 3000).
4. Oil absorption / rate:
(1) Oil absorption: Linseed oil was adsorbed on each oil absorbing material.
The measurement was performed according to the pigment test method (JIS K 5101).
{Circle around (2)} Oil absorption: A mixture of linseed oil and water was adsorbed to each oil absorbing material.
A certain amount of the sample is put into a mixture of linseed oil and water, and the mixture is sufficiently stirred. Thereafter, only the solid was separated and extracted, dried at 105 ° C., and the weight of the solid was measured to determine the ratio of the above (1) to the oil absorption.
5. Oil release rate: Boiled linseed oil suspended in water at 20 ° C. (150 rpm, 10 minutes), agitated in water at 20 ° C., and allowed to stand for 3 hours. Was collected and the weight of boiled linseed oil was measured to determine the oil release rate.
6. Oxidation weight increase rate: The sample after measuring the oil absorption was allowed to stand in a room at 20 ° C. for 3 weeks, and the weight increase due to oxidation was measured to determine the oxidation weight increase rate.
[0022]
In addition, the production of an oil-absorbing material composed of a granular material of calcium silicate hydrate containing tobermorite or zonotlite was performed as follows.
(Test Examples 1 to 10)
<Preparation of tobermorite-containing oil absorbing material>
55 parts by weight of water and 0.1 parts by weight of aluminum powder were mixed with 60 parts by weight of siliceous powder as a siliceous raw material, 100 parts by weight of a powdered raw material of 25 parts by weight of quick lime powder and 15 parts by weight of ordinary Portland cement as a calcareous raw material, It was poured into a mold (length × width × height = 250 mm × 250 mm × 500 mm), and the foamed and cured semi-cured body was released from the mold, followed by steam curing (183 ° C., 10 atm) for 7 hours. The hard body was pulverized into a powder. And the granular material which passed through the 4.8-mm sieve was used for the test, and the performance was measured. The total alkali content of the powder was 0.20% by weight.
<Particle size adjustment>
The tobermorite-containing oil-absorbing material was further classified with sieves having openings of 2.4 mm, 1.2 mm, 0.6 mm, 0.3 mm, 0.15 mm, 0.09 mm (90 μm), and 0.045 mm (45 μm). Powders were prepared for each particle size.
<Applying a water repellent>
The powder was immersed in an aqueous emulsion water repellent (diluted concentration: 1% by weight in terms of main component) solution containing alkylalkoxysilane and alkylsiloxane as main components, and then dried at 105 ° C. At this time, the main component of the aqueous emulsion water repellent was 0.5 part by weight with respect to 100 parts by weight of the powder.
(Test Example 11)
<Preparation of tobermorite-containing oil absorbing material>
65 parts by weight of silica powder as a siliceous raw material, 23 parts by weight of quick lime powder as a calcareous raw material and 100 parts by weight of a powder material of 12 parts by weight of ordinary Portland cement were mixed with 53 parts by weight of water and 0.1 part by weight of aluminum powder, The semi-cured body foamed and cured was cast into a mold (same as in Test Example 1), demolded, and then subjected to steam curing (183 ° C., 10 atm) for 2 hours. It was a powder. And the granular material which passed the sieve of 4.8 mm of openings was used for the test. The total alkali content of the powder was 0.20% by weight.
<Particle size adjustment>
Same as Test Examples 1 to 10 above.
(Test Example 12)
<Preparation of tobermorite-containing oil absorbing material>
70 parts by weight of silica powder as a siliceous raw material, 20 parts by weight of quick lime powder as a calcareous raw material and 100 parts by weight of a powder material of 10 parts by weight of ordinary Portland cement are mixed with 60 parts by weight of water and 0.05 parts by weight of aluminum powder, The semi-cured body foamed and cured was cast into a mold (same as in Test Example 1), demolded, and then subjected to steam curing (183 ° C., 10 atm) for 2 hours. It was a powder. And the granular material which passed the sieve of 4.8 mm of openings was used for the test. The total alkali content of the powder was 0.20% by weight.
<Particle size adjustment>
Same as Test Examples 1 to 10 above.
(Test Examples 13 and 14)
<Production of zonotolite-containing oil-absorbing material>
60 parts by weight of water and 0.1 part by weight of aluminum powder were mixed with 60 parts by weight of silica powder as a siliceous raw material, 100 parts by weight of powdery material of 30 parts by weight of quick lime powder and 10 parts by weight of ordinary Portland cement as a calcareous raw material, It was cast into a mold (length × width × height = 250 mm × 250 mm × 500 mm), and after demolding the foamed and cured semi-cured body, it was subjected to steam curing (225 ° C., 25 atm) for 10 hours to obtain. The hard body was pulverized into a powder. And the granular material which passed the sieve with an opening of 1.2 mm was adjusted for particle size, and was subjected to the test. Further, the content of the total alkali content of this powder was 0.15% by weight.
<Particle size adjustment>
Same as Test Examples 1 to 10 above.
<Applying a water repellent>
Same as Test Examples 1 to 10 above.
(Test Examples 15 and 16)
Two types of commercially available perlite were obtained and subjected to a test.
I. Coarse powder: manufactured by Toko Perlite Industry Co., Ltd. (Part No. 10, particle size: 1.2 mm to 0.6 mm, 50%)
B. Fine powder: manufactured by Mitsui Kinzoku Kogyo Co., Ltd. (Part number A, particle size: 0.6 mm to 0.3 mm, 50%)
(Test Example 17)
A commercially available mica powder (particle size: 1.2 mm or less) was obtained and subjected to a test.
(Test Example 18)
A commercially available diatomaceous earth (Noto, particle size: 90 μm or less) was obtained and subjected to a test.
(Test Example 19)
A commercially available activated carbon (powder, particle size: 0.3 mm or less) was obtained and subjected to a test.
[0023]
Table 2 shows the measurement results and performance evaluation results of the parameters of each oil absorbing material.
[0024]
[Table 2]
Figure 2004277636
[0025]
As can be seen from the evaluation results in Table 2, among the oil-absorbing materials composed of powdered granules of calcium silicate hydrate containing tobermorite and / or zonotlite,
(1) The particle size of the powder is 1.2 mm or less;
(2) The weight of the powder having a particle size of 90 μm or less is 20% or less of the total weight of the oil absorbing material,
(3) The cumulative volume of the pore radius of 75 to 75000 ° in 1 g of the granular material is 0.40 to 0.70 cm 3 , and the cumulative volume of the pore radius of 75 to 750 ° is 0.25 to 0.55 cm 3 ,
(4) The bulk density of the oil absorbing material is 0.28 to 0.70 g / cm 3 ,
Each of the oil-absorbing materials, that is, Test Examples 3 to 6, 9, 10, 13, and 14 did not scatter at all even in a light wind having a wind speed of about 2.5 m / s, and had an oil absorption of 1 ml / g or more ( Test Examples 3 to 6, 9, 10, 13, 14), and almost no increase in weight due to oil release or oxidation was observed. In addition, it was found that the oil absorbing materials impregnated with the water repellent (Test Examples 10 and 14) suppressed the water absorption, and thus suppressed the decrease in the oil absorption.
[0026]
In the oil absorbing materials other than the present invention (Test Examples 1, 2, 7, 8, 15 to 19), the remaining amount was less than 50% in any of the soft winds having a wind speed of about 4.5 m / s. In addition, it was found that pearlite, diatomaceous earth and the like all exhibited excellent oil absorption, but were inferior to the oil-absorbing material of the present invention in terms of the remaining amount at each wind speed, the liberation rate, the oxidation weight increase rate, and the like. Activated carbon was almost the same as the oil-absorbing material of the present invention in terms of the amount of oil absorbed and the rate of liberation, but it was found that the remaining amount and the rate of increase in oxidized weight at each wind speed were inferior.
[0027]
【The invention's effect】
As described above, the oil-absorbing material of the present invention can reduce the amount of scattering at the time of spraying even under a certain strong wind or wind and rain, against environmental pollution due to the outflow of oils, and has very little separation after oil absorption for a long time. The oxidation can be suppressed over a period of time. As a result, oils can be efficiently adsorbed and collected, and the generation of offensive odor due to oxidation after the collection can be suppressed. In addition, since it is a calcium silicate-based oil absorbing material having a low total alkali content, it can be used as a raw material or fuel for cement production after using the oil absorbing material. As a result, there is no need to consider air pollution at the time of incineration of used oil-absorbing material or to secure land for incineration ash, and the resources can be reused.

Claims (5)

トバモライトおよび/またはゾノトライトを含有する珪酸カルシウム系水和物の粉粒体からなる吸油材であって、
(1)該粉粒体の粒径は、1.2mm以下、
(2)粒径90μm以下の粉粒体重量は、全吸油材重量の20%以下、
(3)粉粒体1g中に細孔半径75〜75000Åの累積容積は0.40〜0.70cmで、かつ細孔半径75〜750Åの累積容積は0.25〜0.55cm
(4)吸油材の嵩密度は、0.28〜0.70g/cm
であることを特徴とする吸油材。
An oil-absorbing material comprising calcium silicate-based hydrate containing tobermorite and / or zonotolite,
(1) The particle size of the powder is 1.2 mm or less;
(2) The weight of the powder having a particle size of 90 μm or less is 20% or less of the total weight of the oil absorbing material,
(3) Cumulative volume with a pore radius of 75 to 75000 ° in 1 g of the granular material is 0.40 to 0.70 cm 3 , and cumulative volume with a pore radius of 75 to 750 ° is 0.25 to 0.55 cm 3 ,
(4) The bulk density of the oil-absorbing material is 0.28 to 0.70 g / cm 3 ,
An oil-absorbing material, characterized in that:
前記粉粒体の細孔内表層部にシリコーン系水性エマルション撥水剤が含浸された請求項1記載の吸油材。The oil-absorbing material according to claim 1, wherein the surface layer portion in the pores of the granular material is impregnated with a silicone-based aqueous emulsion water repellent. 前記シリコーン系水性エマルション撥水剤は、アルキルアルコキシシランまたはアルキルシロキサンの1種以上を主成分とする水性エマルション撥水剤である請求項2記載の吸油材。The oil absorbing material according to claim 2, wherein the silicone-based aqueous emulsion water repellent is an aqueous emulsion water repellent containing one or more of alkylalkoxysilane or alkylsiloxane as a main component. 前記水性エマルション撥水剤の主成分が、吸油材100重量部に対し0.1〜1.0重量部である請求項3記載の吸油材。The oil absorbing material according to claim 3, wherein the main component of the water-based emulsion water repellent is 0.1 to 1.0 part by weight based on 100 parts by weight of the oil absorbing material. 全粉粒体重量中の全アルカリ分含有量が、0.75重量%以下である請求項1〜4記載の吸油材。The oil-absorbing material according to any one of claims 1 to 4, wherein the total alkali content in the total weight of the granules is 0.75% by weight or less.
JP2003073568A 2003-03-18 2003-03-18 Oil absorbing material Pending JP2004277636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073568A JP2004277636A (en) 2003-03-18 2003-03-18 Oil absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073568A JP2004277636A (en) 2003-03-18 2003-03-18 Oil absorbing material

Publications (1)

Publication Number Publication Date
JP2004277636A true JP2004277636A (en) 2004-10-07

Family

ID=33289442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073568A Pending JP2004277636A (en) 2003-03-18 2003-03-18 Oil absorbing material

Country Status (1)

Country Link
JP (1) JP2004277636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055828A (en) * 2004-08-20 2006-03-02 Chubu Electric Power Co Inc Method for recycling calcium silicate molding and fuel for making cement
CN114669271A (en) * 2022-03-21 2022-06-28 西南石油大学 Preparation method of efficient, durable, high-temperature-resistant and high-pressure-resistant oil-water separation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055828A (en) * 2004-08-20 2006-03-02 Chubu Electric Power Co Inc Method for recycling calcium silicate molding and fuel for making cement
CN114669271A (en) * 2022-03-21 2022-06-28 西南石油大学 Preparation method of efficient, durable, high-temperature-resistant and high-pressure-resistant oil-water separation material

Similar Documents

Publication Publication Date Title
KR101321730B1 (en) Environmental-friendly shrinkage reducing agent and environmental-friendly plastering cement and mortar containing the same
Zhou et al. Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments
JPH08295578A (en) Permeable concrete material
JP2007520415A5 (en)
KR101055317B1 (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
US20140147655A1 (en) Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof
CN109265108B (en) Water-purifying ecological concrete and preparation method thereof
JP2004277636A (en) Oil absorbing material
CN109138355A (en) The environmental protection construction method on hydrophobic cement ground
KR101200278B1 (en) Sewage sludge solidified agent and menufacturing method of artificial soil usign the same
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP2007332700A (en) Pavement block
JP4644561B2 (en) Pavement injection material and water retentive pavement
Qasem et al. The effect of palm oil fuel clinker powder and cockleshell powder as cement replacement on durability properties of the concrete mortar
Liu et al. An experimental study on cement-solidified cd-contaminated soils under drying-wetting cycles
KR102201653B1 (en) Eco-friendly system for management of storm water using porous concrete base carrier
Sinica et al. Investigation of sorption properties in crushed autoclaved aerated concrete waste
Abhinaya et al. Effects of using palm flower biochar in mechanical and water purification properties of pervious concrete
Razak et al. Controlled low-strength material using industrial waste incineration bottom ash and refined kaolin
JP4190831B2 (en) Breathable mortar, its production method, its use, breathable concrete, breathable structure and vegetation base structure
JP2007204294A (en) Solidifying material and solidified body utilizing the solidifying material
CN111574157A (en) Preparation method of water-permeable and oil-resistant concrete
Razali et al. The Effects of Chicken Eggshell Powder as Fine Aggregate Replacement on Mortar Pore Structure
CN216766008U (en) Odor adsorption system in middle of landfill site that building rubbish found
JP7369539B2 (en) How to absorb carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20051121

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Effective date: 20090907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105