US20140147655A1 - Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof - Google Patents

Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof Download PDF

Info

Publication number
US20140147655A1
US20140147655A1 US14/171,985 US201414171985A US2014147655A1 US 20140147655 A1 US20140147655 A1 US 20140147655A1 US 201414171985 A US201414171985 A US 201414171985A US 2014147655 A1 US2014147655 A1 US 2014147655A1
Authority
US
United States
Prior art keywords
silicone
water
perlite
natural mineral
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/171,985
Inventor
Jikang Yuan
He Dong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovanano Inc
Original Assignee
Innovanano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovanano Inc filed Critical Innovanano Inc
Priority to US14/171,985 priority Critical patent/US20140147655A1/en
Publication of US20140147655A1 publication Critical patent/US20140147655A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/048Breaking emulsions by changing the state of aggregation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/681Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of solid materials for removing an oily layer on water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1051Organo-metallic compounds; Organo-silicon compounds, e.g. bentone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • C02F2103/322Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters from vegetable oil production, e.g. olive oil production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to the field of making hydrophobic and oleophilic materials.
  • the present invention relates to vapor deposition coating on a wide variety of porous natural materials to modify their surface properties so that water repellent and selective absorption of oil from water is imparted.
  • U.S. Pat. Nos. 4,255,489, 5,348,760, 5,964,934 and 6,268,423 have disclosed methods to coat the building material with different silicone compound, including silicone polymers, poly-metric siloxanes, reactive silane monomers, siliconates and other organic silicon-containing materials to make building materials water resistant.
  • U.S. Pat. Nos. 2,040,818, 3,382,170, 4,175,159, and 5,302,570 have further disclosed methods to coat perlite, vermiculite or diatomite with silicone as the oil absorbent.
  • the disclosures of U.S. Pat. Nos. 2,040,818, 3,382,170, 4,175,159, 4,255,489, 5,302,570, 5,348,760, 5,964,934 and 6,268,423 are hereby incorporated in this application by reference.
  • the commonality of the coating methods disclosed by the above references is the utilization of the wet-coating method, in which the silicone compound is dissolved or thinned with liquid solvent and the mixed solution or emulsion is sprayed onto the targeted mineral. Then the soaked mineral is dried at certain temperature.
  • the silicone compound emulsion is available in commercial products, such as Dow Corning 36, 346, 39 or 349 emulsions, Union Carbide L45 emulsions, or General Electric SM 62 or 2163 emulsions, etc.
  • the weight of the consumed silicone compound takes a few percent of the target minerals.
  • a method for making a hydrophobic material includes providing a natural mineral, providing a silicone-based material, heating the silicone-based material to release vaporous molecules of the silicone-based material, and depositing the vaporous molecules of the silicone-based material to form a layer of the silicone-based material on surfaces of the natural mineral.
  • the silicone-based material is a recycled silicone rubber, and it is reusable for subsequent coating on natural minerals.
  • a method for removing oil from water includes applying a hydrophobic and oleophilic material to a body of water comprising of oil to be removed, where the hydrophobic and oleophilic material is obtained by vapor deposition coating of a silicone-based material on a natural mineral, absorbing oil using the hydrophobic and oleophilic material, and removing oil soaked hydrophobic and oleophilic material from the body of water.
  • This method may be applied in a water treatment system of a restaurant, a municipal water treatment plant, or a petroleum refinery plant.
  • a hydrophobic material in yet another embodiment, includes a natural mineral, and a silicone-based material, where the silicone-based material is coated on the natural mineral through a process of vapor deposition to form a layer of the silicone-based material on surfaces of the natural mineral.
  • the surfaces of the natural mineral include internal and external surfaces, and the layer of the silicone-based material is less than 20 nanometers.
  • the silicone-based material includes polymerized siloxane, which further includes at least one of polydimethylsiloxane (PDMS) or a vulcanized network of PMDS.
  • PDMS polydimethylsiloxane
  • a building material made with hydrophobic materials obtained by vapor deposition coating of a silicone-based material on a natural mineral.
  • the building material includes at least one of light weight and fire-rated concrete, plaster, mortar, tile, low-density breeze block, acoustic gypsum board, or loose-fill thermal insulation material.
  • porous natural minerals such as pumice, diatomite, bentonite, zeolite, expanded perlite and vermiculite, etc.
  • the resource of porous natural minerals is abundant on earth.
  • the porosity of the natural minerals may be formed either in certain natural environment or under a specific artificial condition.
  • the pumice is formed when super-heated, highly pressurized lava is violently ejected from a volcano or meet with water, when the depressurization creates bubbles and the simultaneous cooling freezes the bubbles;
  • diatomite also known as diatomaceous earth, is the fossilized remains of diatoms, a type of hard-shelled algae;
  • expanded perlite is formed when raw perlite ore is heated to 850-900° C., water trapped in the structure vaporizes rapidly and causes the expansion of the material to many times of its original volume with about 90% of the volume are trapped bubbles.
  • the pore size varies from nanometer scale, such as that in zeolite, to micrometer or even millimeter scales in pumice, perlite, etc.
  • the density of these porous mineral is far less than water.
  • the bulk density of expanded perlite can be as low as 0.03 g/cm 3 .
  • the surface area ranges from 0.1 m 2 /g to 100 m 2 /g.
  • the porous natural mineral is usually composed of multiple amorphous components, such as silicon dioxide, aluminum oxide, silicate, aluminate, carbonate, and other metal oxide; they are physical and chemical stable at temperature as high as 1000° C.
  • the availability, relative low cost, and the unique characteristics can make silicone-treated porous natural minerals according to embodiments of the present invention applicable to numerous industries, such as construction materials, filtration media, and absorbing media, etc.
  • the pumice and the expanded perlite can be used to make lightweight and fire-rated concrete, plasters, mortars, ceiling tiles or low-density breeze blocks, acoustic gypsum boards, etc.
  • the porous structure makes the perlite and vermiculite very good thermal insulation materials, which do not settle over the time like glass fibers. Nevertheless, for these applications, a hydrophobic coating needs to be applied to the material surfaces to enable water repellency.
  • the coating method according to embodiments of the present invention can change the surface attribute from hydrophilic to hydrophobic. Furthermore, the modified surface may become oleophilic, so that the coated porous mineral can function as the oil-selective absorbent or filter media.
  • silicone polymers can offer better long term resistance to extreme environmental conditions. With appropriate formulation, the chemical, electrical and mechanical properties of silicones remain virtually unchanged at temperatures from ⁇ 50° C. to 250° C. These durable polymers are unaffected by ultraviolet light or ozone and has been successfully tested in accelerated aging machines for extended periods. Silicones have a low flammability rating, so they do not support or promote flame and do not produce toxic combustion by-products. Silicones resist acids, bases, solvents, chemicals, oils and water. Silicone is also known safe to the environment. When waste silicone is in landfill, it degrades ultimately to SiO 2 , CO 2 and H 2 O. All these attributes make silicones a good candidate for hydrophobic and oleophilic applications.
  • using methods of vapor deposition may produce a coating layer as thin as a few nano-meters, which in turn greatly reduces the consumption of silicone in the coating process.
  • the methods of vapor deposition provide better control over the quantity and location of the film of silicone being deposited on the target material.
  • cured silicone rubber may be used as the starting material to release the hydrophobic agent at certain temperature for the coating of porous natural minerals without the requirement of a catalyst or a curing agent.
  • Cured silicone rubber is composed of vulcanized network of polymerized siloxane, for example, Polydimethylsiloxane (PDMS).
  • PDMS Polydimethylsiloxane
  • High thermal stability is one of the important attributes of PDMS.
  • the vapor pressure of PDMS is less than 10 ⁇ 3 mmHg at 25° C.
  • the presence of residual polymerization catalyst, curing agent, or metal oxide may change the crosslink and scissions ratio.
  • the relative importance of these reactions varies based on the materials used and the environmental conditions.
  • the volatile silicone molecules in the form of short polysiloxane chains or cyclosiloxane are vaporized.
  • the porous natural minerals which are mainly composed of the silicon dioxide, aluminum oxide, silicate, aluminate, and other metal oxide, present in the vapor, the polysiloxane and cyclosiloxane molecules have high affinity for the surface of the mineral grains, mainly having the metal-oxygen bonds or silicon-oxygen bonds or carbon-oxygen bonds.
  • the vaporous molecules of polysiloxane and cyclosiloxane also enter the connected pores through the process of diffusion.
  • a conformal layer of silicone is formed on both external surface of the mineral grain and the internal surface of the pores; and the subsequent crosslinking reactions are prompted and a thin layer of hydrophobic silicone rubber is coated on both outer and inner surface of the porous natural mineral grains.
  • the silicone rubber layer on the surface of mineral align themselves with the pores and capillary walls, whereas the polar siloxane backbone of the thin silicone rubber layer is attracted by polar surface of the mineral.
  • the non-polar organic groups, for example the methyl group, of the silicone rubber layer are repelled by the polar surface of the minerals, and forms the hydrophobic interfaces.
  • silicon dioxide presents in the mineral, the affinity of the silicone rubber layer for the structurally related silicon dioxide is strengthened by the formation of chemical bonds between them.
  • the hydrophobic coating material is cured silicone rubber, which is prepared using commercial available two-part elastomer kits, such as Dow Corning's Sylgard® 160 or 184 Silicone Elastomer.
  • the two liquid components are thoroughly mixed in a container, the mixture cures to a flexible elastomer at room temperature or heated temperature for accelerated cure.
  • the cured silicone rubber and the porous natural mineral of various weight ratios between 1:1 and 1:10 are then put in an enclosed heating chamber, such as a covered glass or aluminum container, and heated at various temperatures between 100° C. and 400° C. in a furnace with automatic temperature controls for various periods of times from 10 minutes to 90 minutes.
  • the cured silicone rubber herein can be re-used for hundreds of times.
  • the elastomer becomes hardened after being used 50 times, with an average of 40 minutes each time. This is due to the degradation of the silicone rubber at the elevated temperature. However, no negative effect on the coating processes is observed.
  • the weight lost of the silicone rubber is measured over the repeated heating processes and it is observed that the average weight lost due to the vaporization of PDMS molecules for each 60 minutes is less than 0.1%.
  • the consumption rate of the silicone rubber may be optimized to 0.1% or lower. In other words, it consumes 1 kilogram or less silicone rubber to coat 1 metric ton of porous natural minerals using the vapor deposition method in a large scale industry manufacturing process. Since the recycled silicone materials, such as silicone rubber mold, pipe, and board, can be used as the starting materials, the material cost can be further reduced in manufacturing.
  • silicone vapor deposition coating method can be extended to other non-porous natural minerals, such as sand, stone, ceramic, clay, gem, etc. This method can also be used for other artificial materials, for example, silica aero gel and glass fiber, that have similar ingredient to natural mineral.
  • the silicone vapor deposition coating process is integrated with an expanding process of perlite and vermiculite, so that the energy cost of the vapor deposition coating can be reduced or eliminated.
  • the raw perlite or vermiculite ore is heated to 760° C. to 980° C. for expansion in the furnace.
  • a suction fan draws the expanded particles out of the furnace and transports them pneumatically to a cyclone classifier system to be collected.
  • the air-suspended perlite or vermiculite particles are cooled as they are transported by the air stream to the collection equipment.
  • the cyclone classifier system separates the expanded perlite or vermiculite particles from the air stream, which is released to the atmosphere.
  • the expanded perlite or vermiculite particles are mixed with silicone rubber in an enclosed container, so that the silicone rubber layer forms on the external and internal surface of the porous perlite or vermiculite grain.
  • the thickness of the silicone layer formed on the porous mineral grain by the vapor deposition method is between 1 nm and 3 nm.
  • The, weight gained by the coated silicone layer is less than 0.1%.
  • the size of the grain may vary from 0.01 um to 10 cm; the size of the pore in the porous mineral grain may vary from 1 nm to 1 cm; the surface area of the porous mineral may vary from 0.1 m 2 /g to 100 m 2 /g; the bulk density of the porous mineral may vary from 0.02 g/cm 3 to 2 g/cm 3 .
  • the silicone coated porous coarse mineral grains such as pumice or expanded perlite, by the vapor deposition method, may be crushed by external forces. It is observed that the smaller grains and fine powders as the result of crushing and grinding retain the hydrophobic and oleophilic attribute. It is because the walls between the pores are very thin; the silicone layer is formed on both external surface of the mineral grains and internal surface of the pores. Crushing the coarse grains exposes the sub-surface, which is hydrophobic.
  • the vapor deposition of silicone rubber may be applied to fine mineral, clay or ceramic powder with the surface area varied from 0.1 m 2 /g to 100 m 2 /g to prevent the agglomeration or change the absorbability from polarized molecules to non-polarized molecules.
  • the vapor deposition of silicone rubber is applied to pumice stone, so that it can keep floating for prolonged period of time.
  • One advantage of this invention comparing to prior wet-coating method is the vapor deposition coating method maintains the original porosity of the mineral grain.
  • the viscous liquid may block the entrance of some pores and result to the degradation of absorbing capability.
  • a variety of materials with water-repellent attributes may be created that is suitable for various construction materials, such as lightweight and fire-rated concrete, plasters, mortars, ceiling tiles, low-density breeze blocks, acoustic gypsum boards, or loose fill thermal insulation materials, etc.
  • an oily water stream may be passed over a particulate bed made of natural minerals coated with hydrophobic materials according to vapor deposition methods described in the present disclosure.
  • an oily water stream may be passed through a cartridge made of the natural minerals coated with hydrophobic materials, so that the oil emulsion is filtered by the particulate bed or cartridge.
  • the oil includes but not limited to crude petroleum, gasoline, diesel, kerosene, vegetable oil, animal oil, etc.
  • the particulate bed and cartridge can be any form and shape. The amount of the coated material used in particulate bed or cartridge depends on the flow-rate of the water stream, the percentage of the oil in the water stream, and the intervening period between replacing the filtration media.
  • perlite or vermiculite particles coated with hydrophobic materials according to vapor deposition methods described in the present disclosure may be used for oil cleanup applications.
  • oil cleanup application is to treat the surface of ocean that is contaminated with leaked or spilled oil, such as crude petroleum, gasoline, diesel, kerosene, etc.
  • the coated perlite or vermiculite particles may be spread over the contaminated water in loose form or contained in woven bags.
  • coated perlite or vermiculite particles absorb the leaked oil and float on the water so that they can be removed.
  • One kilogram of the coated perlite or vermiculite particles may treat up to ten kilograms of oil.
  • coated pumice powders prepared by the present disclosure may be used to spread over the surface of the water that is contaminated with leaked or spilled oil. The pumice powders absorb the oil, agglomerate into large blocks, then sink to the bottom of the water and become harmless to the environment.
  • hydrophobic and oleophilic coated natural minerals and the oils being absorbed may be recycled according to embodiments of the present invention.
  • the hydrophobic and oleophilic coated natural minerals may have absorbed a volatile oil, such as gasoline or diesel
  • the compound may be heated to the boiling point of the absorbed oil (e.g. gasoline) allowing the absorbed oil to evaporate and be collected.
  • the hydrophobic and oleophilic coated natural minerals may then be dried and reused.
  • the hydrophobic and oleophilic coated natural minerals may be mixed with an organic solvent, for example ethanol.
  • the absorbed vegetable or animal oil is released because the affinity of the ethanol molecules to the hydrophobic and oleophilic coating layer is stronger than the affinity of the vegetable or animal oil molecules to the hydrophobic and oleophilic coating layer on the surfaces of the natural minerals.
  • the natural minerals are heated to release the ethanol, and then be dried and reused.
  • This example shows the maximum water repellent capability is reached after a certain period of time of the vapor coating, in this case less than 30 minute.
  • Example 1 Use the cured silicone rubber prepared in Example 1. 1 g of PDMS and various amount of expanded perlite are put into covered glass containers respectively and heated at about 250° C. for about 30 minutes. Sample A has 1 g perlite. Sample B has 2 g perlite, and sample C has 5 g perlite. The coated perlite A, B and C do not show significant difference of water retaining ability.
  • This example shows the weight ratio between the silicone rubber and perlite doesn't affect the coating result.
  • Example 1 Use the cured silicone rubber prepared in Example 1. Approximately 1 g PDMS and 1 g expanded perlite are put into covered glass containers respectively and heated at various temperatures for about 30 minutes. Sample A is heated at 100° C. Sample B is heated at 150° C. Sample C is heated at 200° C. Sample D is heated at 250° C. Sample E is heated at 300° C. Sample F is heated at 350° C. Sample G is heated at 400° C. The seven samples are submerged into approximately 100 ml tap water for 5 minutes and removed from the water. By measuring the weight of the samples before submerged into water and after removed from water, the gained weight represents the water retained by the samples. It is observed that Sample A gained approximately 250%, Sample B gained approximately 210%, Sample C gained approximately 130%. Sample D, E, F and G gained approximately between 5% and 10%. It is also observed that the PDMS used in the Sample E and F shown signs of wearing-out after 30 minutes and the PDMS used in Sample G was worn out quickly.
  • This example shows the maximum water repellent capability can be achieved at the temperature about 250° C. and higher for the PDMS (Dow Corning Sylgard® 184) used in this example. However if the temperature is too high, the reusability of the PDMS is shortened. Note that the optimum temperature may be different for other silicone rubber materials.
  • Example 1 Use the cured silicone rubber prepared in Example 1 and finely grounded diatomite powder. Heat the cured silicone rubber and the grounded diatomite powder at about 250° C. for 30 minutes. The coated diatomite powder is casted on to 100 ml tap water. Stirring. There is no visual sign of mixing of the coated powder and the water. Leave the coated powder on the surface of the water for about a month. There is still no sign of mixing the powder and the water.
  • uncoated diatomite powder is casted onto the water, which quickly sunk to the bottom of the water.
  • this example shows the vapor deposition coating is an effective method to water-proof the fine powder of natural minerals, such as clay, etc.
  • This example demonstrates the oil absorbability of the coated expanded perlite.
  • An oil-water emulsion is prepared by mixing 10 ml of tap water and 0.5 ml of vegetable oil in a 24 ml glass vial. The oil is died by a blue solvent to magnify the visual effect. Shake the vial forcefully for 30 second. Then 0.2 g coated expanded perlite grain prepared in Example 2 is casted on the surface of the emulsion. Shake the vial again for 30 seconds. Most oil is absorbed by the silicone coated expanded perlite and there is no trace of blue color in the water by visual inspection. The oil soaked expanded perlite is still floating on the surface of the water.
  • the uncoated expanded perlite is used, and it is observed that the perlite does not absorb any oil due to the presence of the water and the affinity of the water molecules and the uncoated perlite surface is stronger than the affinity of oil and uncoated perlite surface.
  • Example 5 The same as Example 5, except using silicone coated pumice powder in the place of coated perlite.
  • the pumice powder absorbed most oil and agglomerated into large blocks and sunk to the bottom of the water.
  • Example 5 and Example 6 show some effective methods to remove the leaked petroleum from the ocean.
  • One method is to use the silicone rubber coated perlite to selectively absorb the leaked oil, then remove the oil soaked perlite.
  • Another method is to use the silicone rubber coated pumice powder. The oil soaked pumice powder sinks to the bottom of the ocean.
  • Example 5 The oil soaked perlite grains in Example 5 is removed from the water, and dried in room temperature, then is casted into a vial contain 10 ml 99.9% ethanol. The oil is released from the perlite and sunk to the bottom of the ethanol. The perlite grains are then removed from the ethanol and dried in 60° C. The result perlite still show character of hydrophobic and oleophilic.
  • This example shows a method to recycle the absorbed oil and reuse the silicone coated materials.
  • Example 2 Two grams (2 g) of silicone rubber coated perlite grain prepared in Example 2 is put into a sieve of 5 cm in diameter and a collector is put under the sieve. The oil-water emulsion prepared in Example 5 is poured onto the coated perlite. The water collected by the collector under the sieve shown no trace of oil by visual inspection.
  • This example provided a method to remove the oil or other hydrocarbon, such as gasoline, diesel, etc. from water by filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Methods are provided for vapor deposition coating of hydrophobic materials and applications thereof. The method for making a hydrophobic material includes providing a natural mineral, providing a silicone-based material, heating the silicone-based material to release vaporous molecules of the silicone-based material, and depositing the vaporous molecules of the silicone-based material to form a layer of the silicone-based material on surfaces of the natural mineral.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of making hydrophobic and oleophilic materials. In particular, the present invention relates to vapor deposition coating on a wide variety of porous natural materials to modify their surface properties so that water repellent and selective absorption of oil from water is imparted.
  • BACKGROUND OF THE INVENTION
  • Applying a coating to materials to make them water repellent or waterproof has been practiced in various industries. For example, U.S. Pat. Nos. 4,255,489, 5,348,760, 5,964,934 and 6,268,423 have disclosed methods to coat the building material with different silicone compound, including silicone polymers, poly-metric siloxanes, reactive silane monomers, siliconates and other organic silicon-containing materials to make building materials water resistant. U.S. Pat. Nos. 2,040,818, 3,382,170, 4,175,159, and 5,302,570 have further disclosed methods to coat perlite, vermiculite or diatomite with silicone as the oil absorbent. The disclosures of U.S. Pat. Nos. 2,040,818, 3,382,170, 4,175,159, 4,255,489, 5,302,570, 5,348,760, 5,964,934 and 6,268,423 are hereby incorporated in this application by reference.
  • The commonality of the coating methods disclosed by the above references is the utilization of the wet-coating method, in which the silicone compound is dissolved or thinned with liquid solvent and the mixed solution or emulsion is sprayed onto the targeted mineral. Then the soaked mineral is dried at certain temperature. The silicone compound emulsion is available in commercial products, such as Dow Corning 36, 346, 39 or 349 emulsions, Union Carbide L45 emulsions, or General Electric SM 62 or 2163 emulsions, etc. In general, with the wet-coating method, the weight of the consumed silicone compound takes a few percent of the target minerals. In other words, to coat I ton of the porous mineral, such as perlite, would require about 5 to 40 kilograms of silicone compound to achieve a reasonable result. As shown in U.S. Pat. No. 4,175,159, if less silicone compound is used, the water repellent effect may be faded, because some surfaces may not be coated.
  • Another drawback with the wet-coating method is that, even using the optimized process as disclosed in U.S. Pat. No. 4,175,159, the cost of the silicone compound remains to be a significant part of the total cost for manufacturing silicone-treated porous natural minerals, as the thickness of the silicone layer generated by the wet-coating method is usually in the range of several micro meters and lots of raw materials are wasted.
  • Therefore, it is an object of the present invention to provide economical methods to coat the silicone on the porous natural minerals, which consumes less silicone compound and is useful for large scale manufacturing.
  • It is another object of the present invention to provide a method to coat silicone on the porous natural minerals that can use recycled silicone materials, such as silicone rubber mold, pipe, board, etc.
  • It is yet another object of the present invention to provide a method to integrate the coating process with the thermal expansion of the perlite or vermiculite so that as little energy is used as possible.
  • It is still a further object of the present invention to provide a method to form a uniform silicone layer on both main surface and subsurface of porous mineral grains, such that even if the grains are crushed, the hydrophobic and oleophilic attributes would remain.
  • SUMMARY
  • The present invention relates to methods for vapor deposition coating of hydrophobic materials and applications for using the materials created. In one embodiment, a method for making a hydrophobic material includes providing a natural mineral, providing a silicone-based material, heating the silicone-based material to release vaporous molecules of the silicone-based material, and depositing the vaporous molecules of the silicone-based material to form a layer of the silicone-based material on surfaces of the natural mineral. In this embodiment, the silicone-based material is a recycled silicone rubber, and it is reusable for subsequent coating on natural minerals.
  • In another embodiment, a method for removing oil from water includes applying a hydrophobic and oleophilic material to a body of water comprising of oil to be removed, where the hydrophobic and oleophilic material is obtained by vapor deposition coating of a silicone-based material on a natural mineral, absorbing oil using the hydrophobic and oleophilic material, and removing oil soaked hydrophobic and oleophilic material from the body of water. This method may be applied in a water treatment system of a restaurant, a municipal water treatment plant, or a petroleum refinery plant.
  • In yet another embodiment, a hydrophobic material includes a natural mineral, and a silicone-based material, where the silicone-based material is coated on the natural mineral through a process of vapor deposition to form a layer of the silicone-based material on surfaces of the natural mineral. The surfaces of the natural mineral include internal and external surfaces, and the layer of the silicone-based material is less than 20 nanometers. The silicone-based material includes polymerized siloxane, which further includes at least one of polydimethylsiloxane (PDMS) or a vulcanized network of PMDS.
  • In yet another embodiment, a building material made with hydrophobic materials obtained by vapor deposition coating of a silicone-based material on a natural mineral. The building material includes at least one of light weight and fire-rated concrete, plaster, mortar, tile, low-density breeze block, acoustic gypsum board, or loose-fill thermal insulation material.
  • DESCRIPTION OF EMBODIMENTS
  • Methods are provided for making hydrophobic materials by vapor deposition coating of a silicone-based material and applications for using the same. The following descriptions are presented to enable any person skilled in the art to make and use the invention. Descriptions of specific embodiments and applications are provided only as examples. Various modifications and combinations of the examples described herein will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the invention. Thus, the present invention is not intended to be limited to the examples described and shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
  • The resource of porous natural minerals such as pumice, diatomite, bentonite, zeolite, expanded perlite and vermiculite, etc., is abundant on earth. The porosity of the natural minerals may be formed either in certain natural environment or under a specific artificial condition. For example, the pumice is formed when super-heated, highly pressurized lava is violently ejected from a volcano or meet with water, when the depressurization creates bubbles and the simultaneous cooling freezes the bubbles; diatomite, also known as diatomaceous earth, is the fossilized remains of diatoms, a type of hard-shelled algae; expanded perlite is formed when raw perlite ore is heated to 850-900° C., water trapped in the structure vaporizes rapidly and causes the expansion of the material to many times of its original volume with about 90% of the volume are trapped bubbles. The pore size varies from nanometer scale, such as that in zeolite, to micrometer or even millimeter scales in pumice, perlite, etc. In general, the density of these porous mineral is far less than water. For example, the bulk density of expanded perlite can be as low as 0.03 g/cm3. The surface area ranges from 0.1 m2/g to 100 m2/g. The porous natural mineral is usually composed of multiple amorphous components, such as silicon dioxide, aluminum oxide, silicate, aluminate, carbonate, and other metal oxide; they are physical and chemical stable at temperature as high as 1000° C.
  • The availability, relative low cost, and the unique characteristics can make silicone-treated porous natural minerals according to embodiments of the present invention applicable to numerous industries, such as construction materials, filtration media, and absorbing media, etc. For example, due to its low density and thermal stability, the pumice and the expanded perlite can be used to make lightweight and fire-rated concrete, plasters, mortars, ceiling tiles or low-density breeze blocks, acoustic gypsum boards, etc. The porous structure makes the perlite and vermiculite very good thermal insulation materials, which do not settle over the time like glass fibers. Nevertheless, for these applications, a hydrophobic coating needs to be applied to the material surfaces to enable water repellency. The coating method according to embodiments of the present invention can change the surface attribute from hydrophilic to hydrophobic. Furthermore, the modified surface may become oleophilic, so that the coated porous mineral can function as the oil-selective absorbent or filter media.
  • The following disclosures provide economic and environment-friendly vapor deposition coating techniques by which the surface properties of a variety of materials, such as porous natural minerals, are modified from hydrophilic to hydrophobic and oleophilic. According to embodiments of the present invention, silicone polymers can offer better long term resistance to extreme environmental conditions. With appropriate formulation, the chemical, electrical and mechanical properties of silicones remain virtually unchanged at temperatures from −50° C. to 250° C. These durable polymers are unaffected by ultraviolet light or ozone and has been successfully tested in accelerated aging machines for extended periods. Silicones have a low flammability rating, so they do not support or promote flame and do not produce toxic combustion by-products. Silicones resist acids, bases, solvents, chemicals, oils and water. Silicone is also known safe to the environment. When waste silicone is in landfill, it degrades ultimately to SiO2, CO2 and H2O. All these attributes make silicones a good candidate for hydrophobic and oleophilic applications.
  • According to embodiments of the present invention, using methods of vapor deposition may produce a coating layer as thin as a few nano-meters, which in turn greatly reduces the consumption of silicone in the coating process. In addition, the methods of vapor deposition provide better control over the quantity and location of the film of silicone being deposited on the target material.
  • According to embodiments of the present invention, cured silicone rubber may be used as the starting material to release the hydrophobic agent at certain temperature for the coating of porous natural minerals without the requirement of a catalyst or a curing agent. Cured silicone rubber is composed of vulcanized network of polymerized siloxane, for example, Polydimethylsiloxane (PDMS). High thermal stability is one of the important attributes of PDMS. The vapor pressure of PDMS is less than 10−3 mmHg at 25° C. When the cured silicone rubber is heated at an elevated temperature, for example between 100° C. and 400° C., both crosslink and scissions occur simultaneously. The crosslinking reactions produce high molecular weight chains. The scissions reactions produce low molecular weight chains.
  • Note that the presence of residual polymerization catalyst, curing agent, or metal oxide may change the crosslink and scissions ratio. The relative importance of these reactions varies based on the materials used and the environmental conditions. In these cases, the volatile silicone molecules in the form of short polysiloxane chains or cyclosiloxane are vaporized. When the porous natural minerals, which are mainly composed of the silicon dioxide, aluminum oxide, silicate, aluminate, and other metal oxide, present in the vapor, the polysiloxane and cyclosiloxane molecules have high affinity for the surface of the mineral grains, mainly having the metal-oxygen bonds or silicon-oxygen bonds or carbon-oxygen bonds. The vaporous molecules of polysiloxane and cyclosiloxane also enter the connected pores through the process of diffusion. Thus a conformal layer of silicone is formed on both external surface of the mineral grain and the internal surface of the pores; and the subsequent crosslinking reactions are prompted and a thin layer of hydrophobic silicone rubber is coated on both outer and inner surface of the porous natural mineral grains. The silicone rubber layer on the surface of mineral align themselves with the pores and capillary walls, whereas the polar siloxane backbone of the thin silicone rubber layer is attracted by polar surface of the mineral. The non-polar organic groups, for example the methyl group, of the silicone rubber layer are repelled by the polar surface of the minerals, and forms the hydrophobic interfaces. When silicon dioxide presents in the mineral, the affinity of the silicone rubber layer for the structurally related silicon dioxide is strengthened by the formation of chemical bonds between them.
  • In some embodiments of this invention, the hydrophobic coating material is cured silicone rubber, which is prepared using commercial available two-part elastomer kits, such as Dow Corning's Sylgard® 160 or 184 Silicone Elastomer. When the two liquid components are thoroughly mixed in a container, the mixture cures to a flexible elastomer at room temperature or heated temperature for accelerated cure. The cured silicone rubber and the porous natural mineral of various weight ratios between 1:1 and 1:10 are then put in an enclosed heating chamber, such as a covered glass or aluminum container, and heated at various temperatures between 100° C. and 400° C. in a furnace with automatic temperature controls for various periods of times from 10 minutes to 90 minutes. The cured silicone rubber herein can be re-used for hundreds of times. In one approach, it is observed that the elastomer becomes hardened after being used 50 times, with an average of 40 minutes each time. This is due to the degradation of the silicone rubber at the elevated temperature. However, no negative effect on the coating processes is observed. The weight lost of the silicone rubber is measured over the repeated heating processes and it is observed that the average weight lost due to the vaporization of PDMS molecules for each 60 minutes is less than 0.1%. Thus, the consumption rate of the silicone rubber may be optimized to 0.1% or lower. In other words, it consumes 1 kilogram or less silicone rubber to coat 1 metric ton of porous natural minerals using the vapor deposition method in a large scale industry manufacturing process. Since the recycled silicone materials, such as silicone rubber mold, pipe, and board, can be used as the starting materials, the material cost can be further reduced in manufacturing.
  • Note that the silicone vapor deposition coating method can be extended to other non-porous natural minerals, such as sand, stone, ceramic, clay, gem, etc. This method can also be used for other artificial materials, for example, silica aero gel and glass fiber, that have similar ingredient to natural mineral.
  • In some embodiments of this invention, the silicone vapor deposition coating process is integrated with an expanding process of perlite and vermiculite, so that the energy cost of the vapor deposition coating can be reduced or eliminated. The raw perlite or vermiculite ore is heated to 760° C. to 980° C. for expansion in the furnace. A suction fan draws the expanded particles out of the furnace and transports them pneumatically to a cyclone classifier system to be collected. The air-suspended perlite or vermiculite particles are cooled as they are transported by the air stream to the collection equipment. The cyclone classifier system separates the expanded perlite or vermiculite particles from the air stream, which is released to the atmosphere. At the collecting stage when the temperature is dropped between 200° C. and 300° C., the expanded perlite or vermiculite particles are mixed with silicone rubber in an enclosed container, so that the silicone rubber layer forms on the external and internal surface of the porous perlite or vermiculite grain.
  • In some embodiments of this invention, the thickness of the silicone layer formed on the porous mineral grain by the vapor deposition method is between 1 nm and 3 nm. The, weight gained by the coated silicone layer is less than 0.1%. The size of the grain may vary from 0.01 um to 10 cm; the size of the pore in the porous mineral grain may vary from 1 nm to 1 cm; the surface area of the porous mineral may vary from 0.1 m2/g to 100 m2/g; the bulk density of the porous mineral may vary from 0.02 g/cm3 to 2 g/cm3.
  • In some embodiments of this invention, the silicone coated porous coarse mineral grains, such as pumice or expanded perlite, by the vapor deposition method, may be crushed by external forces. It is observed that the smaller grains and fine powders as the result of crushing and grinding retain the hydrophobic and oleophilic attribute. It is because the walls between the pores are very thin; the silicone layer is formed on both external surface of the mineral grains and internal surface of the pores. Crushing the coarse grains exposes the sub-surface, which is hydrophobic.
  • In some embodiments of this invention, the vapor deposition of silicone rubber may be applied to fine mineral, clay or ceramic powder with the surface area varied from 0.1 m2/g to 100 m2/g to prevent the agglomeration or change the absorbability from polarized molecules to non-polarized molecules.
  • In some embodiments of this invention, the vapor deposition of silicone rubber is applied to pumice stone, so that it can keep floating for prolonged period of time.
  • One advantage of this invention comparing to prior wet-coating method is the vapor deposition coating method maintains the original porosity of the mineral grain. In wet-coating method, the viscous liquid may block the entrance of some pores and result to the degradation of absorbing capability.
  • Using the disclosed methods of vapor deposition coating, a variety of materials with water-repellent attributes may be created that is suitable for various construction materials, such as lightweight and fire-rated concrete, plasters, mortars, ceiling tiles, low-density breeze blocks, acoustic gypsum boards, or loose fill thermal insulation materials, etc.
  • In addition, using the disclosed methods of vapor deposition coating, a variety of materials may be created with surface properties such that the affinity to non-polar molecules, for example, gasoline, is much stronger than the affinity to polar molecules, for example water. The surface area, density, form (bulk or powder, or assembled into specific shapes) vary so that they are suitable for various water cleanup applications. According to some embodiments of the invention, an oily water stream may be passed over a particulate bed made of natural minerals coated with hydrophobic materials according to vapor deposition methods described in the present disclosure. In another approach, an oily water stream may be passed through a cartridge made of the natural minerals coated with hydrophobic materials, so that the oil emulsion is filtered by the particulate bed or cartridge. These exemplary applications may be useful with a filtration system in a restaurant, in a water treatment plant, or in a petroleum refinery plant. The oil includes but not limited to crude petroleum, gasoline, diesel, kerosene, vegetable oil, animal oil, etc. The particulate bed and cartridge can be any form and shape. The amount of the coated material used in particulate bed or cartridge depends on the flow-rate of the water stream, the percentage of the oil in the water stream, and the intervening period between replacing the filtration media.
  • Moreover, using the disclosed methods of vapor deposition coating, surface properties of a variety of materials (natural minerals) may be modified in such a way that the resulting materials are capable of removing large quantity as well as small trace of oil/sheen on water. The method has low cost and high throughput, and the materials used are environmental-friendly. In some embodiments, perlite or vermiculite particles coated with hydrophobic materials according to vapor deposition methods described in the present disclosure may be used for oil cleanup applications. One example of such oil cleanup application is to treat the surface of ocean that is contaminated with leaked or spilled oil, such as crude petroleum, gasoline, diesel, kerosene, etc. The coated perlite or vermiculite particles may be spread over the contaminated water in loose form or contained in woven bags. The coated perlite or vermiculite particles absorb the leaked oil and float on the water so that they can be removed. One kilogram of the coated perlite or vermiculite particles may treat up to ten kilograms of oil. In other applications, coated pumice powders prepared by the present disclosure may be used to spread over the surface of the water that is contaminated with leaked or spilled oil. The pumice powders absorb the oil, agglomerate into large blocks, then sink to the bottom of the water and become harmless to the environment.
  • Note that the hydrophobic and oleophilic coated natural minerals and the oils being absorbed may be recycled according to embodiments of the present invention. In one approach, if the hydrophobic and oleophilic coated natural minerals have absorbed a volatile oil, such as gasoline or diesel, the compound may be heated to the boiling point of the absorbed oil (e.g. gasoline) allowing the absorbed oil to evaporate and be collected. The hydrophobic and oleophilic coated natural minerals may then be dried and reused. In another approach, if the hydrophobic and oleophilic coated natural minerals have absorbed a non-volatile oil, such as vegetable oil or animal oil, the compound may be mixed with an organic solvent, for example ethanol. In this case, the absorbed vegetable or animal oil is released because the affinity of the ethanol molecules to the hydrophobic and oleophilic coating layer is stronger than the affinity of the vegetable or animal oil molecules to the hydrophobic and oleophilic coating layer on the surfaces of the natural minerals. The natural minerals are heated to release the ethanol, and then be dried and reused.
  • EXAMPLE 1
  • Approximately ten grams (10 g) of Dow Corning Sylgard® 184 Part A and 1 g of part B are mixed in a vinyl container and left in room temperature for about 48 hours until it cures. The cured silicone rubber is removed from the vinyl container and cut into small pieces, weights approximately 1 g each. 1 g cured silicone rubber and 1 g expanded perlite with grain size range from 3 mm to 6 mm are then put in a covered glass plate, which is then heated at about 250° C. in a furnace with digital thermometer for about 10 minutes to get the sample A, for 30 minutes to get sample B, and for 60 minutes to get sample C. The three samples are submerged into approximately 100 ml tap water for 5 minutes and removed from the water. By measuring the weight of the samples before submerged into water and after removed from water, the gained weight represents the water retained by the samples. It is observed that Sample A gained approximately 20%, Sample B and C gained approximately 5 percent. The gained weight varied slightly among different batches of the same set of experiments.
  • Then the perlite grains of Sample A, B and C are crushed and casted into water again. It is observed that some powder from sample A is sunk into water, while it does not happen for B or C.
  • This example shows the maximum water repellent capability is reached after a certain period of time of the vapor coating, in this case less than 30 minute.
  • EXAMPLE 2
  • Use the cured silicone rubber prepared in Example 1. 1 g of PDMS and various amount of expanded perlite are put into covered glass containers respectively and heated at about 250° C. for about 30 minutes. Sample A has 1 g perlite. Sample B has 2 g perlite, and sample C has 5 g perlite. The coated perlite A, B and C do not show significant difference of water retaining ability.
  • This example shows the weight ratio between the silicone rubber and perlite doesn't affect the coating result.
  • EXAMPLE 3
  • Use the cured silicone rubber prepared in Example 1. Approximately 1 g PDMS and 1 g expanded perlite are put into covered glass containers respectively and heated at various temperatures for about 30 minutes. Sample A is heated at 100° C. Sample B is heated at 150° C. Sample C is heated at 200° C. Sample D is heated at 250° C. Sample E is heated at 300° C. Sample F is heated at 350° C. Sample G is heated at 400° C. The seven samples are submerged into approximately 100 ml tap water for 5 minutes and removed from the water. By measuring the weight of the samples before submerged into water and after removed from water, the gained weight represents the water retained by the samples. It is observed that Sample A gained approximately 250%, Sample B gained approximately 210%, Sample C gained approximately 130%. Sample D, E, F and G gained approximately between 5% and 10%. It is also observed that the PDMS used in the Sample E and F shown signs of wearing-out after 30 minutes and the PDMS used in Sample G was worn out quickly.
  • This example shows the maximum water repellent capability can be achieved at the temperature about 250° C. and higher for the PDMS (Dow Corning Sylgard® 184) used in this example. However if the temperature is too high, the reusability of the PDMS is shortened. Note that the optimum temperature may be different for other silicone rubber materials.
  • EXAMPLE 4
  • Use the cured silicone rubber prepared in Example 1 and finely grounded diatomite powder. Heat the cured silicone rubber and the grounded diatomite powder at about 250° C. for 30 minutes. The coated diatomite powder is casted on to 100 ml tap water. Stirring. There is no visual sign of mixing of the coated powder and the water. Leave the coated powder on the surface of the water for about a month. There is still no sign of mixing the powder and the water.
  • As a comparison, uncoated diatomite powder is casted onto the water, which quickly sunk to the bottom of the water.
  • this example shows the vapor deposition coating is an effective method to water-proof the fine powder of natural minerals, such as clay, etc.
  • EXAMPLE 5
  • This example demonstrates the oil absorbability of the coated expanded perlite. An oil-water emulsion is prepared by mixing 10 ml of tap water and 0.5 ml of vegetable oil in a 24 ml glass vial. The oil is died by a blue solvent to magnify the visual effect. Shake the vial forcefully for 30 second. Then 0.2 g coated expanded perlite grain prepared in Example 2 is casted on the surface of the emulsion. Shake the vial again for 30 seconds. Most oil is absorbed by the silicone coated expanded perlite and there is no trace of blue color in the water by visual inspection. The oil soaked expanded perlite is still floating on the surface of the water.
  • As a comparison, the uncoated expanded perlite is used, and it is observed that the perlite does not absorb any oil due to the presence of the water and the affinity of the water molecules and the uncoated perlite surface is stronger than the affinity of oil and uncoated perlite surface.
  • Similar experiments are performed by using the gasoline instead of the vegetable oil. And the similar results are observed.
  • EXAMPLE 6
  • The same as Example 5, except using silicone coated pumice powder in the place of coated perlite. The pumice powder absorbed most oil and agglomerated into large blocks and sunk to the bottom of the water.
  • Similar experiments are performed by using the gasoline instead of the vegetable oil. And similar results are observed.
  • Example 5 and Example 6 show some effective methods to remove the leaked petroleum from the ocean. One method is to use the silicone rubber coated perlite to selectively absorb the leaked oil, then remove the oil soaked perlite. Another method is to use the silicone rubber coated pumice powder. The oil soaked pumice powder sinks to the bottom of the ocean.
  • EXAMPLE 7
  • The oil soaked perlite grains in Example 5 is removed from the water, and dried in room temperature, then is casted into a vial contain 10 ml 99.9% ethanol. The oil is released from the perlite and sunk to the bottom of the ethanol. The perlite grains are then removed from the ethanol and dried in 60° C. The result perlite still show character of hydrophobic and oleophilic.
  • This example shows a method to recycle the absorbed oil and reuse the silicone coated materials.
  • EXAMPLE 8
  • Two grams (2 g) of silicone rubber coated perlite grain prepared in Example 2 is put into a sieve of 5 cm in diameter and a collector is put under the sieve. The oil-water emulsion prepared in Example 5 is poured onto the coated perlite. The water collected by the collector under the sieve shown no trace of oil by visual inspection.
  • This example provided a method to remove the oil or other hydrocarbon, such as gasoline, diesel, etc. from water by filtration.
  • One skilled in the relevant art will recognize that many possible modifications and combinations of the disclosed embodiments may be used, while still employing the same basic underlying mechanisms and methodologies. The foregoing description, for purposes of explanation, has been written with references to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described to explain the principles of the invention and their practical applications, and to enable others skilled in the art to best utilize the invention and various embodiments with various modifications as suited to the particular use contemplated.

Claims (10)

1-29. (canceled)
30. A material having a hydrophobic surface, comprising:
a natural mineral comprising perlite or vermiculite; and
a silicone-based material comprising vulcanized network of polymerized siloxane, wherein the silicone-based material is coated on the natural mineral through a process of vapor deposition forming a hydrophobic layer.
31. The material of claim 30, wherein the natural mineral exhibits internal and external surfaces coated with the hydrophobic layer.
32. The material of claim 30, wherein the hydrophobic layer is less than about 20 nanometers in thickness.
33. The material of claim 30, wherein the perlite or vermiculite is heated to an expanded form.
34. The material of claim 30, wherein the natural mineral further comprises pumice.
35. The material of claim 30, wherein the natural mineral further comprises one or more of diatomite, bentonite and zeolite.
36. The material of claim 30, wherein the natural mineral comprises one or more of silicon dioxide, aluminum oxide, silicate, aluminate and carbonate.
37. The material of claim 30, wherein the silicone-based material comprises a vulcanized network of polydimethylsiloxane (PDMS).
38. The material of claim 30, wherein the natural mineral has:
a grain size from about 0.01 mm to about 10 cm;
a pore size in the grain of the natural mineral from about 1 nm to about 1 cm;
a surface area from about from about 0.1 m2/g to about 100 m2/g; and
a bulk density from about 0.02 g/cm3 to about 2 g/cm3.
US14/171,985 2009-06-08 2014-02-04 Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof Abandoned US20140147655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/171,985 US20140147655A1 (en) 2009-06-08 2014-02-04 Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/480,598 US8673393B2 (en) 2009-06-08 2009-06-08 Hydrophobic materials made by vapor deposition coating and applications thereof
US14/171,985 US20140147655A1 (en) 2009-06-08 2014-02-04 Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/480,598 Continuation US8673393B2 (en) 2009-06-08 2009-06-08 Hydrophobic materials made by vapor deposition coating and applications thereof

Publications (1)

Publication Number Publication Date
US20140147655A1 true US20140147655A1 (en) 2014-05-29

Family

ID=43309151

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/480,598 Expired - Fee Related US8673393B2 (en) 2009-06-08 2009-06-08 Hydrophobic materials made by vapor deposition coating and applications thereof
US14/171,985 Abandoned US20140147655A1 (en) 2009-06-08 2014-02-04 Hydrophobic Materials Made By Vapor Deposition Coating and Applications Thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/480,598 Expired - Fee Related US8673393B2 (en) 2009-06-08 2009-06-08 Hydrophobic materials made by vapor deposition coating and applications thereof

Country Status (6)

Country Link
US (2) US8673393B2 (en)
EP (1) EP2440402A4 (en)
JP (1) JP5731492B2 (en)
KR (1) KR20120044967A (en)
CN (2) CN104085141A (en)
WO (1) WO2010144167A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050578A1 (en) * 2016-09-08 2019-03-14 Morehouse School Of Medicine Liquid loading composition, method of making and use thereof
CN109824269A (en) * 2019-03-27 2019-05-31 蔡连和 A kind of diatom glaze and the method using diatom glaze manufacture diatom glazed brick
US10604729B2 (en) 2016-09-08 2020-03-31 Morehouse School Of Medicine Liquid loading composition, method of making and use thereof
JP2020104090A (en) * 2018-12-26 2020-07-09 三菱瓦斯化学株式会社 Oil adsorbent composed of inorganic porous body, and production method of the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9811130B2 (en) 2011-09-12 2017-11-07 The Boeing Company Power management control system
KR101462726B1 (en) * 2012-10-05 2014-11-21 성균관대학교산학협력단 Powder particles or fiber having surfaces coated with silicon-carbon complex for removing oil and organic pollutants
KR101486058B1 (en) * 2013-05-27 2015-01-23 박종길 The liquid resin composition and produce method thereof
JP2016012638A (en) * 2014-06-27 2016-01-21 パナソニックIpマネジメント株式会社 Method of manufacturing solar battery module, method of manufacturing translucent substrate and solar battery module
CN104927771B (en) * 2015-06-15 2017-06-30 安徽联合安全科技有限公司 It is a kind of to extend the method that environment protection snow-dissolved agent plays snow melt action time
KR101579143B1 (en) * 2015-09-21 2015-12-23 케이알엠건설 주식회사 Grout composition and grouting method using the same
NO345092B1 (en) * 2017-03-17 2020-09-28 M Vest Water As Process for the preparation and use of product for the removal of contaminants in water
NO345142B1 (en) * 2017-03-17 2020-10-19 M Vest Water As An oil coalescing granular media product, and a process for the preparation and use of such a product
KR20190030261A (en) * 2017-09-13 2019-03-22 국민대학교산학협력단 Ventilator for prevention of oil adhesion and manufacturing method thereof
US20190169444A1 (en) * 2017-12-04 2019-06-06 Applied Materials, Inc. Anti-wetting coating
CN108553693A (en) * 2018-05-17 2018-09-21 江汉大学 The preparation method of resisting gram-positive bacteria coating and medical instrument comprising coating
KR101957367B1 (en) * 2018-10-04 2019-03-13 신우산업주식회사 A method of manufacturing a durability-reinforced synthetic plastic pipe
US11921259B2 (en) * 2019-04-17 2024-03-05 Apple Inc. Oleophobic coatings for glass structures in electronic devices
CN110586050A (en) * 2019-09-18 2019-12-20 天津大学 Hydrophobic Y molecular sieve for VOCs adsorption and preparation method thereof
CN114504844B (en) * 2020-10-28 2023-08-08 中国石油化工股份有限公司 Coalescence material, preparation method thereof and oil removal method
CN114477194B (en) * 2022-01-18 2023-09-05 中国科学院工程热物理研究所 Method for preparing hydrophobic silica aerogel based on chemical vapor deposition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525388A (en) * 1983-12-23 1985-06-25 Usg Corporation Process for expanding and coating perlite
US4882225A (en) * 1985-07-29 1989-11-21 Shiseido Company Ltd. Modified powder or particulate material
US20050009953A1 (en) * 2003-07-09 2005-01-13 Shea Timothy Michael Durable hydrophobic surface coatings using silicone resins
WO2008034806A1 (en) * 2006-09-18 2008-03-27 Dow Corning Corporation Fillers, pigments and mineral powders treated with organopolysiloxanes

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2040818A (en) * 1932-07-29 1936-05-19 Johns Manville Coated diatomaceous earth product and method of making the same
DE1195220B (en) 1964-11-13 1965-06-16 Perlite G M B H Deutsche Use of perlite to absorb oil floating on water
US3447789A (en) 1967-05-31 1969-06-03 Chemrock Corp Portable perlite handling apparatus and method
US3630891A (en) 1969-02-28 1971-12-28 Conwed Corp Method of removing oil from the surface of water
US4022152A (en) * 1969-03-29 1977-05-10 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Apparatus for making particulate materials, particularly oxides, hydrophobic
US3562153A (en) 1970-02-05 1971-02-09 Cabot Corp Oil absorbent compositions
US3696051A (en) 1970-10-01 1972-10-03 Gulf Research Development Co Method of removing oil from the surface of water and composition therefor
US4011175A (en) 1973-09-28 1977-03-08 Paul Preus Composition for separating hydrocarbons from water
JPS5275682A (en) 1975-12-19 1977-06-24 Agency Of Ind Science & Technol Oil adsorbent
US4175159A (en) 1978-07-31 1979-11-20 General Electric Company Silicone emulsions for treating silicate particulate matter
US4255489A (en) 1979-03-12 1981-03-10 Grefco, Inc. Perlite filler
JPS61268763A (en) * 1984-11-26 1986-11-28 Shiseido Co Ltd Production of treated powder
US4686253A (en) * 1986-02-20 1987-08-11 United States Gypsum Company Lightweight joint compound having improved paintability
US5037557A (en) 1989-09-12 1991-08-06 General Electric Company Treated silica for oil absorption
US5035804A (en) 1990-09-17 1991-07-30 Clnzall Corporation Oil spill water treatment
US5571768A (en) * 1992-03-12 1996-11-05 Mobil Oil Corporation Zeolite functionalized with organosiliceous groups
JPH0641728A (en) * 1992-07-22 1994-02-15 Mitsui Eng & Shipbuild Co Ltd Formation of water-repellent coating film
US5302570A (en) 1992-11-02 1994-04-12 Enviro-Clean Alaska, Inc. Environmental product capable of absorbing oil from the surface of water, and process
US5348760A (en) 1993-10-12 1994-09-20 Aluminum Company Of America Surface treated ceramic powders
AU7329598A (en) * 1997-05-28 1998-12-30 Global Surface Aktiengesellschaft Method for coating a surface
CN1201796A (en) * 1997-06-06 1998-12-16 吴世维 Method for producing organic silicon rings from waste silicon rubber by pyrolysis
WO1999004911A1 (en) * 1997-07-28 1999-02-04 Massachusetts Institute Of Technology Pyrolytic chemical vapor deposition of silicone films
US5939141A (en) * 1997-08-11 1999-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Waterproof silicone coatings of thermal insulation and vaporization method
DE19752659A1 (en) 1997-11-27 1999-06-24 Wacker Chemie Gmbh Building materials containing hydrophobizing powders containing organosilicon compounds
US5964934A (en) * 1997-12-18 1999-10-12 Usg Interiors, Inc. Acoustical tile containing treated perlite
JP2002241695A (en) * 2000-12-15 2002-08-28 Dow Corning Toray Silicone Co Ltd Water-repellent silicone coating agent composition
WO2003038143A1 (en) 2001-10-30 2003-05-08 Massachusetts Institute Of Technology Fluorocarbon-organosilicon copolymers and coatings prepared by hot-filament chemical vapor deposition
US20040242729A1 (en) * 2003-05-30 2004-12-02 3M Innovative Properties Company Stabilized particle dispersions containing surface-modified inorganic nanoparticles
JP4319878B2 (en) * 2003-09-17 2009-08-26 電気化学工業株式会社 Alumina cement composition and method for producing amorphous refractory
CN1316058C (en) * 2005-03-24 2007-05-16 上海交通大学 Method for modifying surface of polymer microffow chip by sputtering TiO2
JP2007131827A (en) * 2005-10-12 2007-05-31 Adeka Corp Additive for outer jacketing material and outer jacketing material containing the additive
EA017089B1 (en) * 2006-07-07 2012-09-28 Ранка, Сима Аджай Methods of treating surfaces with ionic organosilicon compositions
WO2008116122A1 (en) * 2007-03-22 2008-09-25 World Minerals, Inc. Mineral ore expanion using microwave energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525388A (en) * 1983-12-23 1985-06-25 Usg Corporation Process for expanding and coating perlite
US4882225A (en) * 1985-07-29 1989-11-21 Shiseido Company Ltd. Modified powder or particulate material
US20050009953A1 (en) * 2003-07-09 2005-01-13 Shea Timothy Michael Durable hydrophobic surface coatings using silicone resins
WO2008034806A1 (en) * 2006-09-18 2008-03-27 Dow Corning Corporation Fillers, pigments and mineral powders treated with organopolysiloxanes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050578A1 (en) * 2016-09-08 2019-03-14 Morehouse School Of Medicine Liquid loading composition, method of making and use thereof
US10604729B2 (en) 2016-09-08 2020-03-31 Morehouse School Of Medicine Liquid loading composition, method of making and use thereof
CN111741678A (en) * 2016-09-08 2020-10-02 莫尔豪斯医学院 Liquid load composition, method of making and use thereof
US11162058B2 (en) 2016-09-08 2021-11-02 Morehouse School Of Medicine Liquid loading composition, method of making and use thereof
US12116549B2 (en) 2016-09-08 2024-10-15 Morehouse School Of Medicine Liquid loading composition, method of making and use thereof
JP2020104090A (en) * 2018-12-26 2020-07-09 三菱瓦斯化学株式会社 Oil adsorbent composed of inorganic porous body, and production method of the same
JP7308040B2 (en) 2018-12-26 2023-07-13 三菱瓦斯化学株式会社 Oil adsorbent made of inorganic porous material, and method for producing the same
CN109824269A (en) * 2019-03-27 2019-05-31 蔡连和 A kind of diatom glaze and the method using diatom glaze manufacture diatom glazed brick

Also Published As

Publication number Publication date
CN102448719A (en) 2012-05-09
CN102448719B (en) 2014-07-09
CN104085141A (en) 2014-10-08
KR20120044967A (en) 2012-05-08
WO2010144167A1 (en) 2010-12-16
JP5731492B2 (en) 2015-06-10
US8673393B2 (en) 2014-03-18
EP2440402A1 (en) 2012-04-18
JP2012529420A (en) 2012-11-22
US20120292256A1 (en) 2012-11-22
EP2440402A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
US8673393B2 (en) Hydrophobic materials made by vapor deposition coating and applications thereof
Dong et al. Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation
Pang et al. Inner superhydrophobic materials based on waste fly ash: Microstructural morphology of microetching effects
KR102187089B1 (en) Hydrophobic absorber and method for manufacturing
Wang et al. Durably superhydrophobic textile based on fly ash coating for oil/water separation and selective oil removal from water
Wang et al. Preparation and properties of foundry dust/Portland cement based composites and superhydrophobic coatings
US8216674B2 (en) Superhydrophobic diatomaceous earth
CN112169375B (en) Super-hydrophilic-underwater super-oleophobic particle for oily sewage treatment and preparation and application methods thereof
Luo et al. Bio-inspired modification of silicon carbide foams for oil/water separation and rapid power-free absorption towards highly viscous oils
CN103172299B (en) A kind of oily water separation material and preparation method thereof
CN107857593A (en) A kind of high hydrophobic foam silicon carbide ceramics and its preparation method and application
Zhou et al. An effective method for improving the permeation flux of a ceramic membrane: Single-matrix spherical ceramic membrane
Xu et al. Preparation of a new superhydrophobic/superoleophilic corn straw fiber used as an oil absorbent for selective absorption of oil from water
US10322544B1 (en) Liquid resin modification for volumetric superhydrophobic 3D printing
KR20190069548A (en) Hydrophobicized fiber cement product, its manufacture, and method of use
CN107312196A (en) super-hydrophobic sponge material and preparation method thereof
Guo et al. The fabrication of 3D porous PDMS sponge for Oil and organic solvent absorption
Ruan et al. Molecular-level hybridized hydrophobic geopolymer ceramics for corrosion protection
Zhao et al. Preparation and performance of epoxy resin permeable bricks for sponge city construction
Ho et al. Characteristics of porous ceramics prepared from sandblasting waste and waste diatomite by co‐sintering process
KR20200062795A (en) Film with improved water repellency and oil elution properties and preparation method thereof
CN112358213A (en) Water permeable material and application thereof
CN113564917A (en) Preparation method and application of hydrophobic aerogel heat insulation material
CN112250468A (en) Self-cleaning light high-strength porous ceramic using waste glass as raw material and preparation method and application thereof
CN116217169B (en) Method for preparing oil stain adsorption plant-growing concrete and plant-growing concrete

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION