JP2004277487A - Polymerizable liquid crystal composition - Google Patents

Polymerizable liquid crystal composition Download PDF

Info

Publication number
JP2004277487A
JP2004277487A JP2003067943A JP2003067943A JP2004277487A JP 2004277487 A JP2004277487 A JP 2004277487A JP 2003067943 A JP2003067943 A JP 2003067943A JP 2003067943 A JP2003067943 A JP 2003067943A JP 2004277487 A JP2004277487 A JP 2004277487A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
crystal composition
polymerizable liquid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003067943A
Other languages
Japanese (ja)
Other versions
JP4505708B2 (en
Inventor
Hiroshi Hasebe
浩史 長谷部
Kiyobumi Takeuchi
清文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003067943A priority Critical patent/JP4505708B2/en
Publication of JP2004277487A publication Critical patent/JP2004277487A/en
Application granted granted Critical
Publication of JP4505708B2 publication Critical patent/JP4505708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymerizable liquid crystal composition which causes a nematic liquid crystal phase to appear at a temperature as low as inducing no unintended thermal polymerization, has a high nematic phase-isotropic liquid phase transition temperature, and, when polymerized, gives a polymer which has a Δn controlled low and is resistant to yellowing due to the exposure to ultraviolet rays; and a polymer yielded by polymerizing the composition. <P>SOLUTION: The polymerizable liquid crystal composition contains three compounds represented by general formulas (I), (II), and (III). The polymer is produced by polymerizing the composition. The polymer produced from the composition is useful as a material for constituting an optically anisotropic body and the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は重合性液晶組成物と該重合性液晶組成物の重合体に関する。
【0002】
【従来の技術】
重合性官能基を有する液晶性化合物(以下、重合性液晶化合物)又はこのような化合物を少なくとも一つ含有する重合性液晶組成物を、液晶状態で配向させた後、その状態で紫外線や電子線を照射すると、液晶分子の配向状態構造を固定化した重合体を作製することができる。このようにして得られた重合体は、屈折率、誘電率、磁化率、弾性率、熱膨張率等の物理的性質の異方性を有していることから、例えば、位相差板、偏光板、偏光プリズム、導波路、圧電素子、非線形光学素子、各種光フィルター、コレステリック液晶相等の選択反射を利用した顔料、光ファイバー等の被覆剤として応用可能である。
【0003】
重合性液晶組成物の重合体の光学異方体として応用に関しては、重合体の屈折率の異方性Δnの制御は重要であり、Δnとして0.12以下、このましくは0.07以下、さらに好ましくは0.05以下に制御できる重合性液晶組成物が望まれている。これに応える技術として、特許文献1には、重合時において液晶材料の配向度を減じる役割を果たす重合性化合物を添加した重合性液晶組成物が開示されており、重合体のΔnとして0.025〜0.125を達成している。しかしながら、当該文献においては紫外線照射時の温度が85〜110℃と高いという問題があった。これは、該重合性液晶組成物がネマチック液晶相を呈する温度が85〜110℃付近と高いことに起因するもので、このように照射温度が高いと、紫外線による重合を行う前に意図しない熱重合が誘起されて配向状態が乱れ、ムラや濁りを引き起こしてしまうという問題やハンドリング性が良くないという問題があった。そのため、重合する前は意図しない熱重合が誘起されないような低い温度、好ましくは30℃以下、特に好ましくは25℃においてもネマチック液晶相を発現することも重要である。
【0004】
特許文献2には、30℃以下においてもネマチック液晶相を発現し、かつ重合後のΔnとして0.12以下を達成可能な重合性液晶材料が開示されている。
【化4】

Figure 2004277487
(%は質量%を表す)しかしながら、この組成物は室温でネマチック相を示すものの、ネマチック−等方性液体相転移温度が37℃と低いという問題があった。ネマチック−等方性液体相転移温度が40℃より低いと、重合時の温度変化により、Δnが大きく変動してしまいやすい傾向がある。
【0005】
又、当該引用文献には以下の組成物
【化5】
Figure 2004277487
(%は質量%を表す)も例示されており、この組成物のネマチック−等方性液体相転移温度は41℃となっている。しかしながら、炭素炭素の三重結合を持つ化合物を含有しているため、重合体が紫外線に曝露されると黄変しやすいという問題があった。
【0006】
特許文献3には、以下の組成物
【化6】
Figure 2004277487
(%は質量%を表す)が開示されており要求されるΔn、ネマチック相温度範囲を有するが、炭素−炭素三重結合を持つ化合物を含有しているため、重合体が紫外線に曝露されると黄変しやすいという問題があった。
【特許文献1】
国際公開第98/49253号パンフレット
【特許文献2】
特開平11−148076号公報(11〜12頁)
【特許文献3】
特開2002−145830号公報(17頁)
【0007】
【発明が解決しようとする課題】
本発明における課題は、意図しない熱重合が誘起されないような低い温度においてネマチック液晶相を発現し、ネマチック相−等方性液体相転移温度が高く、この重合性液晶組成物を重合した重合体のΔnが低く制御でき、さらに重合体が紫外線の曝露により黄変しにくい重合性液晶組成物及びこれを重合した重合体を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために重合性液晶化合物の化学構造と液晶温度範囲を検討した結果、次に示す重合性液晶組成物が有用であることを見いだしたものである。即ち、本発明は一般式(I)
【0009】
【化7】
Figure 2004277487
(式中、Xは水素原子またはメチル基を表し、Rは炭素原子数1〜18のアルキル基を表す)で表される化合物、一般式(II)
【化8】
Figure 2004277487
(式中、Xは水素原子またはメチル基を表し、Rは炭素原子数1〜18のアルキル基を表す)で表される化合物及び一般式(III)
【0010】
【化9】
Figure 2004277487
(式中、W、Wはそれぞれ独立的に単結合、−O−を表し、Y、Yはそれぞれ独立的に−COO−、−OCO−を表し、p、qはそれぞれ独立的に2〜12の整数を表す)で表される化合物を含有する重合性液晶組成物及び当該重合性液晶組成物の重合体を提供する。
【0011】
特許文献1には、重合時において液晶材料の配向度を減じる役割を果たす重合性化合物の一般式を開示しており、該一般式に本発明の一般式(II)の化合物は含まれるが、該一般式は多くの化学構造の組合せを示しているにすぎず、本発明の一般式(II)の化合物を用いることにより、重合前の液晶温度を低くできることについては記述が無い。さらに、本発明の一般式(I)の化合物、及び一般式(III)の化合物との組合せについての記載も無い。
【0012】
【発明の実施の形態】
以下に本発明の一例について説明する。
【0013】
一般式(I)において重合体の耐熱性を確保する観点から、Rは炭素原子数1〜18のアルキル基が好ましく、1〜5のアルキル基が好ましく、1〜3のアルキル基が特に好ましい。Xは水素原子、またはメチル基が好ましく、水素原子が特に好ましい。
【0014】
一般式(II)において重合体の耐熱性を確保する観点から、Rは炭素原子数1〜18のアルキル基が好ましく、1〜5のアルキル基が好ましく、1〜3のアルキル基が特に好ましい。Xは水素原子、またはメチル基が好ましく、水素原子が特に好ましい。
【0015】
一般式(III)において重合体の耐熱性を確保や製造コスト低減の観点から、W、Wはそれぞれ独立的に単結合、−O−が好ましく、−O−が特に好ましく、Y、Yはそれぞれ独立的に−COO−、−OCO−が好ましく、Yが−COO−、Yが−OCO−が特に好ましく、p、qはそれぞれ独立的に2〜12の整数が好ましく、2〜6の整数が特に好ましい。
【0016】
本発明の重合性液晶組成物において、一般式(I)〜(III)の化合物の含有量は、重合体の特性として耐熱性を重視するか、光散乱が小さいことを重視するかによって調節するのが好ましい。耐熱性を重視する場合には、一般式(III)の化合物は2〜20質量%含有するのがこのましく、3〜15質量%含有するのが好ましく、4〜10質量%含有するのが特に好ましい。一般式(I)と一般式(II)の合計は80〜98質量%含有するのが好ましく、85〜97質量%含有するのがさらに好ましく、90〜96質量%含有するのが特に好ましい。一般式(I)と一般式(II)の化合物の質量%比は、2:5〜5:2の範囲で調節するのが好ましく、1:2〜2:1になるようにするのがさらに好ましく、2:3〜3:2になるようにするのが特に好ましい。
【0017】
光散乱が小さいことを重視する場合には、一般式(I)の化合物は20〜60質量%含有することが好ましく、25〜45質量%含有することがさらに好ましく、30〜40質量%含有するのが特に好ましい。一般式(I)と一般式(II)の合計は55〜75質量%含有するのが好ましい。一般式(I)と一般式(II)の化合物の質量%比は、2:5〜5:2の範囲で調節するのが好ましく、1:2〜2:1になるようにするのがさらに好ましく、2:3〜3:2になるようにするのが特に好ましい。
【0018】
総じて、一般式(I)の化合物は20〜60質量%、一般式(II)の化合物は20〜60質量%、一般式(III)の化合物は10〜40質量%に調節するのが好ましい。一般式(III)の化合物を10質量%より多く含有させる場合、液晶温度の下限を低く保つ目的で、2種以上の化合物を使用することも好ましい。
【0019】
本発明の重合性液晶組成物のネマチック液晶相下限温度は35℃以下であることが望ましい。液晶下限温度が低いほど、低い温度において配向させることや、低い温度において紫外線等の活性エネルギー線の照射により配向固定を行うことができ、良好な均一性の確保が容易になる。このことから、液晶下限温度は30℃以下がさらに好ましく、25℃以下が特に好ましい。
【0020】
本発明の重合性液晶組成物のネマチック−等方性液体相転移温度は、40〜90℃の範囲に調製するのが好ましく、40〜80℃の範囲に調整するのがより好ましく、40〜60℃の範囲に調整するのが特に好ましい。透明点が90℃より高い場合、注入工程等において本発明の組成物を等方性液体相にする必要がある場合において、意図しない熱重合を誘起させてしまう危険があり、透明点が40℃より低いと20〜25℃の室温で重合を行う場合において、温度変化が屈折率の異方性に大きな影響を与えてしまいやすくなる危険がある。
【0021】
本発明の重合性液晶組成物には、その重合反応性を向上させることを目的として、光重合開始剤を添加することができる。光重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド等が挙げられる。その添加量は、液晶組成物に対して0.01〜5質量%が好ましく、0.02〜1質量%がさらに好ましく、0.03〜1質量%の範囲が特に好ましい。また、本発明の組成物には、その保存安定性を向上させるために、安定剤を添加することもできる。使用できる安定剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類、ニトロソ化合物等が挙げられる。安定剤を使用する場合の添加量は、液晶組成物に対して0.005〜1質量%の範囲が好ましく、0.02〜0.5質量%がさらに好ましく、0.03〜0.1質量%が特に好ましい。
【0022】
本発明の重合性液晶組成物には、液晶骨格の螺旋構造を内部に有する重合体を得ることを目的として、キラル化合物を添加することもできる。そのような目的で使用するキラル化合物は、それ自体が液晶性を示す必要は無く、また重合性官能基を有していても、有していなくても良い。また、その螺旋の向きは、重合体の使用用途によって適宜選択することができる。そのようなキラル化合物としては、例えば、キラル基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール、キラル基として2−メチルブチル基を有するビーディーエイチ社(BDH社;イギリス国)製の「CB−15」、「C−15」、メルク社(ドイツ国)製の「S−1082」、チッソ社製の「CM−19」、「CM−20」、「CM」;キラル基として1−メチルヘプチル基を有するメルク社製の「S−811」、チッソ社製の「CM−21」、「CM−22」などを挙げることができる。キラル化合物を添加する場合の好ましい添加量は、液晶組成物の用途によるが、重合して得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1〜100の範囲となる量が好ましく、0.1〜20の範囲となる量がさらに好ましい。
【0023】
次に本発明の重合体について説明する。本発明の重合性液晶組成物を重合させることによって製造される重合体は種々の用途に利用できる。本発明の組成物を配向させた状態において、重合させることにより製造された重合体は、物理的性質に異方性があるため有用である。このような重合体は、例えば、本発明の重合性液晶組成物を、布等でラビング処理した基板、もしくは有機薄膜を形成した基板表面を布等でラビング処理した基板、あるいはSiOを斜方蒸着した配向膜を有する基板上に担持させるか、基板間に挟持させた後、本発明の組成物を重合させることによって製造することができる。
【0024】
本発明の重合性液晶組成物を重合させる方法としては、迅速な重合の進行が望ましいので、紫外線又は電子線等を照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は紫外線や電子線に対して適当な透明性が与えられていなければならない。また、光照射時にマスクを用いて特定の部分のみを重合させた後、電場や磁場または温度等の条件を変化させることにより、未重合部分の配向状態を変化させて、さらに活性エネルギー線を照射して重合させるという手段を用いても良い。また、照射時の温度は、本発明の組成物の液晶状態が保持される温度範囲内であることが好ましい。特に、光重合によって重合体を製造しようとする場合には、意図しない熱重合の誘起を避ける意味からも可能な限り室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。紫外線や電子線の強度は、0.1mW/cm〜2W/cmが好ましい。強度が0.1mW/cm以下の場合、光重合を完了させるのに多大な時間が必要になり生産性が悪化してしまい、2W/cm以上の場合、重合性液晶組成物が劣化してしまう危険がある。
【0025】
重合によって得られた本発明の重合体は、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理を施すこともできる。熱処理の温度は50〜250℃の範囲で、また熱処理時間は30秒〜24時間の範囲が好ましい。
【0026】
このような方法によって製造される本発明の重合体は、基板から剥離して単体で用いても、剥離せずに用いても良い。また、得られた重合体を積層しても、他の基板に貼り合わせて用いてもよい。
【0027】
又、重合体のΔnとして0.12以下であることが好ましく、0.07以下であることがさらに好ましく、0.05以下であることが特に好ましい。
【0028】
【実施例】
以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。
【0029】
(実施例1) 重合性液晶組成物の調製(1)
化合物(I−1)
【化10】
Figure 2004277487
(本化合物はモノトロピックネマチック液晶相を示す。結晶−等方性液体相転移温度は55℃で、等方性液体相−ネマチック液晶相転移温度は50℃)45質量%、化合物(II−1)
【化11】
Figure 2004277487
【0030】
45質量%、及び化合物(III−1)
【化12】
Figure 2004277487
10質量%からなる重合性液晶組成物(A−1)を調製した。本発明の重合性液晶組成物(A−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は44℃であった。波長550nmにおけるΔnは0.130であった。
【0031】
(実施例2) 重合性液晶組成物の調製(2)
化合物(I−1)が40質量%、化合物(II−1)が50質量%、化合物(III−1)が10質量%からなる本発明の重合性液晶組成物(B−1)を調製した。本発明の重合性液晶組成物(B−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は43℃であった。波長550nmにおけるΔnは0.124であった。
【0032】
(実施例3) 重合性液晶組成物の調製(3)
化合物(I−1)が35質量%、化合物(II−1)が55質量%、化合物(III−1)が10質量%からなる本発明の重合性液晶組成物(C−1)を調製した。本発明の重合性液晶組成物(C−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は42℃であった。波長550nmにおけるΔnは0.123であった。
【0033】
(実施例4) 重合性液晶組成物の調製(4)
化合物(I−1)が30質量%、化合物(II−1)が60質量%、化合物(III−1)が10質量%からなる本発明の重合性液晶組成物(D−1)を調製した。本発明の重合性液晶組成物(D−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は41℃であった。波長550nmにおけるΔnは0.116であった。
【0034】
(実施例5) 重合性液晶組成物の調製(5)
化合物(I−1)が31.5質量%、化合物(II−1)が58.5質量%、化合物(III−1)が10質量%からなる本発明の重合性液晶組成物(E−1)を調製した。本発明の重合性液晶組成物(E−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は41℃であった。波長550nmにおけるΔnは0.116であった。20℃における粘度は、59mPa・sであった。
【0035】
(実施例6) 重合性液晶組成物の調製(6)
化合物(I−1)が22質量%、化合物(II−1)が33質量%、化合物(III−1)が22質量%、化合物(III−2)
【化13】
Figure 2004277487
が18質量%、化合物(1)
【化14】
Figure 2004277487
【0036】
が5質量%からなる本発明の重合性液晶組成物(F−1)を調製した。本発明の重合性液晶組成物(F−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は54℃であった。波長589nmにおけるΔnは0.141であった。
【0037】
(実施例7) 重合性液晶組成物の調製(7)
化合物(I−1)が33質量%、化合物(II−1)が22質量%、化合物(III−1)が22質量%、化合物(III−2)が18質量%、化合物(1)が5質量%からなる本発明の重合性液晶組成物(G−1)を調製した。本発明の重合性液晶組成物(G−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は55℃であった。波長589nmにおけるΔnは0.156であった。
【0038】
(実施例8) 重合体の製造(1)
実施例1で調製した本発明の重合性液晶組成物(A−1)99.85質量%、光重合開始剤ルシリンTPO(BASF社製)0.10質量%、4−メトキシフェノール0.05質量%からなる本発明の重合性液晶組成物(A−2)を調製した。さらにこの組成物を孔径1μmのフッ素樹脂製メンブランフィルターで濾過した。この濾過した組成物(A−2)をセルギャップ6μmのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に室温にて注入した。注入後、均一な一軸配向が得られているのが確認できた。次に、室温(25℃)にてSP−III(ウシオ電機社製)を用いて4mW/cmの紫外線を2分間照射して重合体を得た。得られた重合体は方向によって屈折率が異なっており、一軸の光学異方体として機能することが確かめられた。また、均一性も優れており、ムラや濁りなども観察されなかった。波長550nmにおけるΔnは0.041であった。このガラスセルにいれたままの重合体を150℃のオーブンに20分間静置してエージングした。重合体をオーブンから取り出して冷却後に観察したところ、一軸の光学異方体として機能し、ムラや濁りなども観察されなかった。波長550nmにおけるΔnは0.052であった。複数回実験を行ったが、このΔnは安定した値が得られた。
【0039】
(実施例9) 重合体の製造(2)〜(12)
実施例8において、紫外線照射温度を変えるか又は、重合性液晶組成物(A−1)に換えて重合性液晶組成物(B−1)、(C−1)、(D−1)又は(E−1)を使用した以外は同様にして重合体を製造した。いずれの場合でも、均一性に優れ、ムラや濁りが無い、一軸の光学異方体として機能する重合体が得られた。これらの結果を表1にまとめた。Δnは波長550nmにおける値である。
【0040】
【表1】
Figure 2004277487
【0041】
(比較例1)
化合物(I−1)50質量%、及び化合物(II−1)50質量%からなる重合性液晶組成物(A−0)を調製した。重合性液晶組成物(A−0)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は36℃であった。
【0042】
重合性液晶組成物(A−1)に変えて、重合性液晶組成物(A−0)を使用する以外は実施例8と同様にして重合体を製造した。均一性に優れ、ムラや濁りが無い、一軸の光学異方体として機能する重合体が得られたものの、複数回実験を行った時のΔnの再現性が悪かった。これは、ネマチック−等方性液体相転移温度が低いため紫外線照射時の温度上昇によりΔnが変化しやすいことに起因すると考えられる。
実施例8と本比較例の比較から、ネマチック−等方性液体相転移温度が40℃以上確保されている本重合性液晶組成物を使用すると、特性が安定した重合体を製造できることがわかる。
【0043】
(実施例10) 重合体の製造(13)
実施例6で調製した本発明の重合性液晶組成物(F−1)99.85質量%、光重合開始剤ルシリンTPO(BASF社製)0.10質量%、4−メトキシフェノール0.05質量%からなる本発明の重合性液晶組成物(F−2)を調製した。さらにこの組成物を孔径1μmのフッ素樹脂製メンブランフィルターで濾過した。この濾過した組成物(F−2)をセルギャップ6μmのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に室温にて注入した。注入後、均一な一軸配向が得られているのが確認できた。次に、室温(25℃)にてSP−III(ウシオ電機社製)を用いて4mW/cmの紫外線を2分間照射して重合体を得た。得られた重合体は方向によって屈折率が異なっており、一軸の光学異方体として機能することが確かめられた。また、均一性も優れており、ムラや濁りなども観察されなかった。波長589nmにおけるΔnは0.070であった。このガラスセルにいれたままの重合体を80℃のオーブンに20時間静置してエージングした。重合体をオーブンから取り出して冷却後に観察したところ、一軸の光学異方体として機能し、ムラや濁りなども観察されなかった。波長589nmにおけるΔnは0.053であった。
【0044】
(実施例11) 重合体の製造(14)
実施例7で調製した本発明の重合性液晶組成物(G−1)99.85質量%、光重合開始剤ルシリンTPO(BASF社製)0.10質量%、4−メトキシフェノール0.05質量%からなる本発明の重合性液晶組成物(G−2)を調製した。さらにこの組成物を孔径1μmのフッ素樹脂製メンブランフィルターで濾過した。この濾過した組成物(G−2)をセルギャップ6μmのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に室温にて注入した。注入後、均一な一軸配向が得られているのが確認できた。次に、室温(25℃)にてSP−III(ウシオ電機社製)を用いて4mW/cmの紫外線を2分間照射して重合体を得た。得られた重合体は方向によって屈折率が異なっており、一軸の光学異方体として機能することが確かめられた。また、均一性も優れており、ムラや濁りなども観察されなかった。波長589nmにおけるΔnは0.086であった。このガラスセルにいれたままの重合体を80℃のオーブンに20時間静置してエージングした。重合体をオーブンから取り出して冷却後に観察したところ、一軸の光学異方体として機能し、ムラや濁りなども観察されなかった。波長589nmにおけるΔnは0.064であった。
【0045】
(実施例12)
セルギャップ50μmのアンチパラレル配向液晶ガラスセルを用いた以外は実施例11と同様にして重合体を製造した。このガラスセルにいれたままの重合体にSP−III(ウシオ電機社製)を用いて40mW/cm2の紫外線を12分30秒照射しても、目立った黄変は観察されなかった。
【0046】
(比較例2)
化合物(II−1)が47質量%、化合物(III−1)が22質量%、化合物(III−2)が18質量%、化合物(1)が5質量%、化合物(2)
【化15】
Figure 2004277487
が8質量%からなる本発明の重合性液晶組成物(H−1)を調製した。本発明の重合性液晶組成物(H−1)は室温(25℃)でネマチック液晶相を示し、ネマチック−等方性液体相転移温度は52℃であった。波長589nmにおけるΔnは0.133であった。
【0047】
重合性液晶組成物(H−1)99.85質量%、光重合開始剤ルシリンTPO(BASF社製)0.10質量%、4−メトキシフェノール0.05質量%からなる重合性液晶組成物(H−2)を調製した。さらにこの組成物を孔径1μmのフッ素樹脂製メンブランフィルターで濾過した。この濾過した組成物(H−2)をセルギャップ6μmのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に室温にて注入した。注入後、均一な一軸配向が得られているのが確認できた。次に、室温(25℃)にてSP−III(ウシオ電機社製)を用いて4mW/cmの紫外線を2分間照射して重合体を得た。得られた重合体は方向によって屈折率が異なっており、一軸の光学異方体として機能することが確かめられた。また、均一性も優れており、ムラや濁りなども観察されなかった。このガラスセルにいれたままの重合体を80℃のオーブンに20時間静置してエージングした。重合体をオーブンから取り出して冷却後に観察したところ、一軸の光学異方体として機能し、ムラや濁りなども観察されなかった。波長589nmにおけるΔnは0.063であった。
【0048】
次に、セルギャップ50μmのアンチパラレル配向液晶ガラスセルを用いた以外は上記と同様にして重合体を製造した。このガラスセルにいれたままの重合体にSP−III(ウシオ電機社製)を用いて40mW/cm2の紫外線を12分30秒照射したところ、黄変が観察された。
【0049】
実施例12と本比較例の比較から、本発明の重合性液晶組成物を用いた重合体は黄変しにくいことがわかる。
【0050】
【発明の効果】
本発明の重合性液晶組成物は、意図しない熱重合が誘起されないような低い温度においてネマチック液晶相を発現し、ネマチック相−等方性液体相転移温度が高く、この重合性液晶組成物を重合した重合体のΔnが低く制御でき、さらに重合体が紫外線の曝露により黄変しにくい特徴を有する、そのため、当該重合性液晶組成物を用いて製造した重合体は光学異方体等の構成材料として有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymerizable liquid crystal composition and a polymer of the polymerizable liquid crystal composition.
[0002]
[Prior art]
After aligning a liquid crystal compound having a polymerizable functional group (hereinafter, polymerizable liquid crystal compound) or a polymerizable liquid crystal composition containing at least one such compound in a liquid crystal state, ultraviolet light or an electron beam in that state. Irradiation, a polymer in which the alignment state structure of liquid crystal molecules is fixed can be produced. Since the polymer thus obtained has anisotropy of physical properties such as refractive index, dielectric constant, magnetic susceptibility, elastic modulus, and thermal expansion coefficient, for example, a retardation plate, a polarized light It can be applied as a coating material such as a plate, a polarizing prism, a waveguide, a piezoelectric element, a nonlinear optical element, various optical filters, a pigment utilizing selective reflection of a cholesteric liquid crystal phase or the like, and an optical fiber.
[0003]
Regarding the application of the polymerizable liquid crystal composition as an optically anisotropic polymer, it is important to control the anisotropy Δn of the refractive index of the polymer, and the Δn is 0.12 or less, preferably 0.07 or less. Further, a polymerizable liquid crystal composition that can be controlled to 0.05 or less is desired. As a technique for responding to this, Patent Literature 1 discloses a polymerizable liquid crystal composition to which a polymerizable compound that plays a role of reducing the degree of alignment of a liquid crystal material during polymerization is added. 0.10.125 is achieved. However, the literature has a problem that the temperature at the time of ultraviolet irradiation is as high as 85 to 110 ° C. This is due to the fact that the temperature at which the polymerizable liquid crystal composition exhibits a nematic liquid crystal phase is as high as about 85 to 110 ° C. When the irradiation temperature is high, unintentional heat before polymerization by ultraviolet rays is performed. There has been a problem that the polymerization is induced to disturb the alignment state, causing unevenness and turbidity, and a problem that handling properties are not good. For this reason, it is important to develop a nematic liquid crystal phase even at a low temperature, preferably 30 ° C. or lower, particularly preferably 25 ° C., at which unintended thermal polymerization is not induced before polymerization.
[0004]
Patent Document 2 discloses a polymerizable liquid crystal material that exhibits a nematic liquid crystal phase even at 30 ° C. or less and can achieve Δn of 0.12 or less after polymerization.
Embedded image
Figure 2004277487
(% Represents mass%) However, although this composition shows a nematic phase at room temperature, there is a problem that the nematic-isotropic liquid phase transition temperature is as low as 37 ° C. When the nematic-isotropic liquid phase transition temperature is lower than 40 ° C., Δn tends to greatly fluctuate due to a temperature change during polymerization.
[0005]
In addition, the cited reference contains the following composition
Embedded image
Figure 2004277487
(% Represents mass%) is also exemplified, and the composition has a nematic-isotropic liquid phase transition temperature of 41 ° C. However, since the polymer contains a compound having a carbon-carbon triple bond, there is a problem that the polymer is liable to yellow when exposed to ultraviolet rays.
[0006]
Patent Document 3 discloses the following composition
Embedded image
Figure 2004277487
(% Represents mass%) is disclosed and has the required Δn, nematic phase temperature range, but contains a compound having a carbon-carbon triple bond, so that when the polymer is exposed to ultraviolet light, There was a problem that yellowing easily occurred.
[Patent Document 1]
International Publication No. 98/49253 pamphlet
[Patent Document 2]
JP-A-11-148076 (pages 11 to 12)
[Patent Document 3]
JP-A-2002-145830 (p. 17)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to develop a nematic liquid crystal phase at such a low temperature that unintentional thermal polymerization is not induced, and have a high nematic phase-isotropic liquid phase transition temperature, and a polymer obtained by polymerizing the polymerizable liquid crystal composition. An object of the present invention is to provide a polymerizable liquid crystal composition in which Δn can be controlled to be low and the polymer is not easily yellowed by exposure to ultraviolet rays, and a polymer obtained by polymerizing the composition.
[0008]
[Means for Solving the Problems]
The present invention, as a result of studying the chemical structure and the liquid crystal temperature range of a polymerizable liquid crystal compound in order to solve the above problems, has found that the following polymerizable liquid crystal composition is useful. That is, the present invention provides a compound represented by the general formula (I):
[0009]
Embedded image
Figure 2004277487
(Where X 1 Represents a hydrogen atom or a methyl group; 1 Represents an alkyl group having 1 to 18 carbon atoms), a compound represented by the general formula (II):
Embedded image
Figure 2004277487
(Where X 2 Represents a hydrogen atom or a methyl group; 2 Represents an alkyl group having 1 to 18 carbon atoms), and a compound represented by the general formula (III):
[0010]
Embedded image
Figure 2004277487
(Where W 1 , W 2 Each independently represents a single bond or -O-; 1 , Y 2 Each independently represents -COO- or -OCO-, p and q each independently represent an integer of 2 to 12), and a polymerizable liquid crystal composition containing the compound A polymer of the product.
[0011]
Patent Document 1 discloses a general formula of a polymerizable compound that plays a role in reducing the degree of alignment of a liquid crystal material during polymerization, and the general formula includes the compound of the general formula (II) of the present invention. The general formula only shows a combination of many chemical structures, and there is no description that the liquid crystal temperature before polymerization can be lowered by using the compound of the general formula (II) of the present invention. Furthermore, there is no description about the compound of the general formula (I) of the present invention and the combination with the compound of the general formula (III).
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of the present invention will be described.
[0013]
In the general formula (I), from the viewpoint of ensuring the heat resistance of the polymer, R 1 Is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms. X 1 Is preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
[0014]
In the general formula (II), from the viewpoint of ensuring the heat resistance of the polymer, R 2 Is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms. X 2 Is preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
[0015]
In the general formula (III), from the viewpoint of securing the heat resistance of the polymer and reducing the production cost, W 1 , W 2 Are preferably each independently a single bond, -O-, particularly preferably -O-, 1 , Y 2 Is preferably each independently -COO- or -OCO-; 1 Is -COO-, Y 2 Is particularly preferably -OCO-, p and q are each independently preferably an integer of 2 to 12, and particularly preferably an integer of 2 to 6.
[0016]
In the polymerizable liquid crystal composition of the present invention, the content of the compounds of the general formulas (I) to (III) is adjusted depending on whether the heat resistance or the small light scattering is emphasized as the characteristics of the polymer. Is preferred. When heat resistance is emphasized, the compound of the general formula (III) is preferably contained in an amount of 2 to 20% by mass, more preferably 3 to 15% by mass, and preferably 4 to 10% by mass. Particularly preferred. The total content of the general formulas (I) and (II) is preferably from 80 to 98% by mass, more preferably from 85 to 97% by mass, particularly preferably from 90 to 96% by mass. The mass% ratio of the compounds of the general formulas (I) and (II) is preferably adjusted in the range of 2: 5 to 5: 2, more preferably 1: 2 to 2: 1. It is particularly preferable that the ratio be 2: 3 to 3: 2.
[0017]
When importance is placed on low light scattering, the compound of the general formula (I) is preferably contained in an amount of 20 to 60% by mass, more preferably 25 to 45% by mass, and more preferably 30 to 40% by mass. Is particularly preferred. The total content of the general formulas (I) and (II) is preferably 55 to 75% by mass. The mass% ratio of the compounds of the general formulas (I) and (II) is preferably adjusted in the range of 2: 5 to 5: 2, more preferably 1: 2 to 2: 1. It is particularly preferable that the ratio be 2: 3 to 3: 2.
[0018]
In general, it is preferable to adjust the compound of the general formula (I) to 20 to 60% by mass, the compound of the general formula (II) to 20 to 60% by mass, and the compound of the general formula (III) to 10 to 40% by mass. When the compound of the general formula (III) is contained in an amount of more than 10% by mass, it is also preferable to use two or more compounds in order to keep the lower limit of the liquid crystal temperature low.
[0019]
The minimum temperature of the nematic liquid crystal phase of the polymerizable liquid crystal composition of the present invention is desirably 35 ° C. or lower. As the lower limit temperature of the liquid crystal is lower, the alignment can be performed at a lower temperature or the alignment can be fixed by irradiating active energy rays such as ultraviolet rays at a lower temperature, so that good uniformity can be easily secured. For this reason, the lower limit temperature of the liquid crystal is more preferably 30 ° C or lower, and particularly preferably 25 ° C or lower.
[0020]
The nematic-isotropic liquid phase transition temperature of the polymerizable liquid crystal composition of the present invention is preferably adjusted in the range of 40 to 90 ° C, more preferably in the range of 40 to 80 ° C, and more preferably in the range of 40 to 60 ° C. It is particularly preferable to adjust the temperature in the range of ° C. When the clearing point is higher than 90 ° C., there is a risk of inducing unintended thermal polymerization when the composition of the present invention needs to be made into an isotropic liquid phase in an injection step or the like. If the temperature is lower than that, there is a risk that a temperature change tends to greatly affect the anisotropy of the refractive index when the polymerization is performed at room temperature of 20 to 25 ° C.
[0021]
A photopolymerization initiator can be added to the polymerizable liquid crystal composition of the present invention for the purpose of improving the polymerization reactivity. Examples of the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxide, and the like. The addition amount is preferably from 0.01 to 5% by mass, more preferably from 0.02 to 1% by mass, and particularly preferably from 0.03 to 1% by mass, based on the liquid crystal composition. Further, a stabilizer can be added to the composition of the present invention in order to improve the storage stability. Examples of usable stabilizers include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols, nitroso compounds, and the like. . When the stabilizer is used, the amount added is preferably in the range of 0.005 to 1% by mass, more preferably 0.02 to 0.5% by mass, and more preferably 0.03 to 0.1% by mass, based on the liquid crystal composition. % Is particularly preferred.
[0022]
A chiral compound may be added to the polymerizable liquid crystal composition of the present invention for the purpose of obtaining a polymer having a helical structure of a liquid crystal skeleton therein. The chiral compound used for such a purpose need not itself exhibit liquid crystallinity, and may or may not have a polymerizable functional group. The direction of the helix can be appropriately selected depending on the intended use of the polymer. As such a chiral compound, for example, "CB-" manufactured by BDH (BDH; UK) having a cholesteryl group as a chiral group, cholesterol stearate and a 2-methylbutyl group as a chiral group. 15 "," C-15 "," S-1082 "manufactured by Merck (Germany)," CM-19 "," CM-20 "," CM "manufactured by Chisso; 1-methylheptyl as a chiral group Examples include "S-811" manufactured by Merck and "CM-21" and "CM-22" manufactured by Chisso having a group. The preferable amount of addition of the chiral compound depends on the use of the liquid crystal composition, but the value (d / d / h) obtained by dividing the thickness (d) of the polymer obtained by polymerization by the helical pitch (P) in the polymer. The amount in which P) is in the range of 0.1 to 100 is preferable, and the amount in which P) is in the range of 0.1 to 20 is more preferable.
[0023]
Next, the polymer of the present invention will be described. The polymer produced by polymerizing the polymerizable liquid crystal composition of the present invention can be used for various uses. The polymer produced by polymerizing the composition of the present invention in an oriented state is useful because the polymer has anisotropic physical properties. Such a polymer is, for example, a substrate obtained by rubbing the polymerizable liquid crystal composition of the present invention with a cloth or the like, or a substrate obtained by rubbing the surface of a substrate on which an organic thin film is formed with a cloth, or SiO 2 2 May be carried on a substrate having an obliquely deposited alignment film, or may be sandwiched between substrates, and then polymerized with the composition of the present invention.
[0024]
As a method for polymerizing the polymerizable liquid crystal composition of the present invention, rapid polymerization is desirable, and therefore, a method of polymerizing by irradiating an ultraviolet ray or an electron beam is preferable. When ultraviolet light is used, a polarized light source or a non-polarized light source may be used. In the case where polymerization is carried out in a state where the liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must have appropriate transparency to ultraviolet rays and electron beams. Also, at the time of light irradiation, only a specific portion is polymerized using a mask, and then the orientation state of the unpolymerized portion is changed by changing conditions such as an electric field, a magnetic field, or temperature, and the active energy ray is further irradiated. Alternatively, a method of performing polymerization by using the same may be used. The temperature at the time of irradiation is preferably within a temperature range in which the liquid crystal state of the composition of the present invention is maintained. In particular, when a polymer is to be produced by photopolymerization, the polymerization should be performed at a temperature as close to room temperature as possible from the viewpoint of avoiding unintentional thermal polymerization, that is, typically at a temperature of 25 ° C. Is preferred. UV and electron beam intensity is 0.1mW / cm 2 ~ 2W / cm 2 Is preferred. Strength is 0.1mW / cm 2 In the following cases, a large amount of time is required to complete photopolymerization, and the productivity is deteriorated. 2 In the case described above, there is a risk that the polymerizable liquid crystal composition is deteriorated.
[0025]
The polymer of the present invention obtained by polymerization may be subjected to a heat treatment for the purpose of reducing the initial property change and stably exhibiting the property. The heat treatment temperature is preferably in the range of 50 to 250 ° C., and the heat treatment time is preferably in the range of 30 seconds to 24 hours.
[0026]
The polymer of the present invention produced by such a method may be peeled off from the substrate and used alone, or may be used without peeling. Further, the obtained polymer may be laminated or bonded to another substrate for use.
[0027]
Further, Δn of the polymer is preferably 0.12 or less, more preferably 0.07 or less, and particularly preferably 0.05 or less.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0029]
(Example 1) Preparation of polymerizable liquid crystal composition (1)
Compound (I-1)
Embedded image
Figure 2004277487
(This compound shows a monotropic nematic liquid crystal phase. The crystal-isotropic liquid phase transition temperature is 55 ° C., and the isotropic liquid phase-nematic liquid crystal phase transition temperature is 50 ° C.) 45% by mass, compound (II-1) )
Embedded image
Figure 2004277487
[0030]
45% by mass, and compound (III-1)
Embedded image
Figure 2004277487
A polymerizable liquid crystal composition (A-1) consisting of 10% by mass was prepared. The polymerizable liquid crystal composition (A-1) of the present invention exhibited a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 44 ° C. Δn at a wavelength of 550 nm was 0.130.
[0031]
(Example 2) Preparation of polymerizable liquid crystal composition (2)
A polymerizable liquid crystal composition (B-1) of the present invention comprising 40% by mass of the compound (I-1), 50% by mass of the compound (II-1), and 10% by mass of the compound (III-1) was prepared. . The polymerizable liquid crystal composition (B-1) of the present invention exhibited a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 43 ° C. Δn at a wavelength of 550 nm was 0.124.
[0032]
(Example 3) Preparation of polymerizable liquid crystal composition (3)
A polymerizable liquid crystal composition (C-1) of the present invention comprising 35% by mass of the compound (I-1), 55% by mass of the compound (II-1), and 10% by mass of the compound (III-1) was prepared. . The polymerizable liquid crystal composition (C-1) of the present invention showed a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 42 ° C. Δn at a wavelength of 550 nm was 0.123.
[0033]
(Example 4) Preparation of polymerizable liquid crystal composition (4)
A polymerizable liquid crystal composition (D-1) of the present invention, comprising 30% by mass of the compound (I-1), 60% by mass of the compound (II-1), and 10% by mass of the compound (III-1) was prepared. . The polymerizable liquid crystal composition (D-1) of the present invention exhibited a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 41 ° C. Δn at a wavelength of 550 nm was 0.116.
[0034]
(Example 5) Preparation of polymerizable liquid crystal composition (5)
The polymerizable liquid crystal composition (E-1) of the present invention comprising 31.5% by mass of the compound (I-1), 58.5% by mass of the compound (II-1), and 10% by mass of the compound (III-1). ) Was prepared. The polymerizable liquid crystal composition (E-1) of the present invention showed a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 41 ° C. Δn at a wavelength of 550 nm was 0.116. The viscosity at 20 ° C. was 59 mPa · s.
[0035]
(Example 6) Preparation of polymerizable liquid crystal composition (6)
Compound (I-1) 22% by mass, Compound (II-1) 33% by mass, Compound (III-1) 22% by mass, Compound (III-2)
Embedded image
Figure 2004277487
Is 18% by mass, compound (1)
Embedded image
Figure 2004277487
[0036]
Was prepared from the polymerizable liquid crystal composition (F-1) of the present invention. The polymerizable liquid crystal composition (F-1) of the present invention exhibited a nematic liquid crystal phase at room temperature (25 ° C), and the nematic-isotropic liquid phase transition temperature was 54 ° C. Δn at a wavelength of 589 nm was 0.141.
[0037]
(Example 7) Preparation of polymerizable liquid crystal composition (7)
Compound (I-1) 33% by mass, Compound (II-1) 22% by mass, Compound (III-1) 22% by mass, Compound (III-2) 18% by mass, Compound (1) 5% A polymerizable liquid crystal composition (G-1) of the present invention was prepared in an amount of 1% by mass. The polymerizable liquid crystal composition (G-1) of the present invention showed a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 55 ° C. Δn at a wavelength of 589 nm was 0.156.
[0038]
(Example 8) Production of polymer (1)
99.85% by mass of the polymerizable liquid crystal composition (A-1) of the present invention prepared in Example 1, 0.10% by mass of photopolymerization initiator lucilin TPO (manufactured by BASF), 0.05% by mass of 4-methoxyphenol % Of the polymerizable liquid crystal composition (A-2) of the present invention. The composition was further filtered through a fluororesin membrane filter having a pore size of 1 μm. The filtered composition (A-2) was injected at room temperature into an antiparallel-aligned liquid crystal glass cell having a cell gap of 6 μm (a glass cell having been subjected to an alignment treatment so that the liquid crystal was uniaxially aligned). After the injection, it was confirmed that uniform uniaxial orientation was obtained. Next, at room temperature (25 ° C.), 4 mW / cm using SP-III (manufactured by Ushio Inc.) 2 Was irradiated for 2 minutes to obtain a polymer. The obtained polymer had a different refractive index depending on the direction, and it was confirmed that the polymer functions as a uniaxial optically anisotropic body. In addition, the uniformity was excellent, and no unevenness or turbidity was observed. Δn at a wavelength of 550 nm was 0.041. The polymer left in the glass cell was aged in a 150 ° C. oven for 20 minutes. When the polymer was taken out of the oven and observed after cooling, it functioned as a uniaxial optically anisotropic body, and no unevenness or turbidity was observed. Δn at a wavelength of 550 nm was 0.052. The experiment was performed several times, and a stable value of Δn was obtained.
[0039]
(Example 9) Production of polymer (2) to (12)
In Example 8, the polymerizable liquid crystal composition (B-1), (C-1), (D-1), or (D) was changed in the ultraviolet irradiation temperature or in place of the polymerizable liquid crystal composition (A-1). A polymer was produced in the same manner except that E-1) was used. In each case, a polymer having excellent uniformity and free from unevenness and turbidity and functioning as a uniaxial optically anisotropic material was obtained. These results are summarized in Table 1. Δn is a value at a wavelength of 550 nm.
[0040]
[Table 1]
Figure 2004277487
[0041]
(Comparative Example 1)
A polymerizable liquid crystal composition (A-0) comprising 50% by mass of the compound (I-1) and 50% by mass of the compound (II-1) was prepared. The polymerizable liquid crystal composition (A-0) showed a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 36 ° C.
[0042]
A polymer was produced in the same manner as in Example 8, except that the polymerizable liquid crystal composition (A-0) was used instead of the polymerizable liquid crystal composition (A-1). Although a polymer functioning as a uniaxial optically anisotropic body having excellent uniformity and no unevenness or turbidity was obtained, reproducibility of Δn was poor when a plurality of experiments were performed. This is considered to be due to the fact that Δn tends to change due to a temperature rise during ultraviolet irradiation because the nematic-isotropic liquid phase transition temperature is low.
From a comparison between Example 8 and this comparative example, it can be seen that a polymer having stable properties can be produced by using the present polymerizable liquid crystal composition having a nematic-isotropic liquid phase transition temperature of 40 ° C. or higher.
[0043]
(Example 10) Production of polymer (13)
99.85% by mass of the polymerizable liquid crystal composition (F-1) of the present invention prepared in Example 6, 0.10% by mass of photopolymerization initiator lucilin TPO (manufactured by BASF), 0.05% by mass of 4-methoxyphenol % Of the polymerizable liquid crystal composition (F-2) of the present invention. The composition was further filtered through a fluororesin membrane filter having a pore size of 1 μm. The filtered composition (F-2) was injected at room temperature into an anti-parallel alignment liquid crystal glass cell having a cell gap of 6 μm (a glass cell having been subjected to an alignment treatment so that the liquid crystal was uniaxially aligned). After the injection, it was confirmed that uniform uniaxial orientation was obtained. Next, at room temperature (25 ° C.), 4 mW / cm using SP-III (manufactured by Ushio Inc.) 2 Was irradiated for 2 minutes to obtain a polymer. The obtained polymer had a different refractive index depending on the direction, and it was confirmed that the polymer functions as a uniaxial optically anisotropic body. In addition, the uniformity was excellent, and no unevenness or turbidity was observed. Δn at a wavelength of 589 nm was 0.070. The polymer left in the glass cell was aged in an oven at 80 ° C. for 20 hours. When the polymer was taken out of the oven and observed after cooling, it functioned as a uniaxial optically anisotropic body, and no unevenness or turbidity was observed. Δn at a wavelength of 589 nm was 0.053.
[0044]
(Example 11) Production of polymer (14)
99.85% by mass of the polymerizable liquid crystal composition (G-1) of the present invention prepared in Example 7, 0.10% by mass of photopolymerization initiator lucilin TPO (manufactured by BASF), 0.05% by mass of 4-methoxyphenol % Of the polymerizable liquid crystal composition (G-2) of the present invention. The composition was further filtered through a fluororesin membrane filter having a pore size of 1 μm. The filtered composition (G-2) was injected at room temperature into an anti-parallel alignment liquid crystal glass cell having a cell gap of 6 μm (a glass cell having been subjected to an alignment treatment so that the liquid crystal was uniaxially aligned). After the injection, it was confirmed that uniform uniaxial orientation was obtained. Next, at room temperature (25 ° C.), 4 mW / cm using SP-III (manufactured by Ushio Inc.) 2 Was irradiated for 2 minutes to obtain a polymer. The obtained polymer had a different refractive index depending on the direction, and it was confirmed that the polymer functions as a uniaxial optically anisotropic body. In addition, the uniformity was excellent, and no unevenness or turbidity was observed. Δn at a wavelength of 589 nm was 0.086. The polymer left in the glass cell was aged in an oven at 80 ° C. for 20 hours. When the polymer was taken out of the oven and observed after cooling, it functioned as a uniaxial optically anisotropic body, and no unevenness or turbidity was observed. Δn at a wavelength of 589 nm was 0.064.
[0045]
(Example 12)
A polymer was produced in the same manner as in Example 11 except that an anti-parallel alignment liquid crystal glass cell having a cell gap of 50 μm was used. Even when the polymer left in the glass cell was irradiated with UV light of 40 mW / cm2 for 12 minutes and 30 seconds using SP-III (manufactured by Ushio Inc.), no noticeable yellowing was observed.
[0046]
(Comparative Example 2)
Compound (II-1) is 47% by mass, compound (III-1) is 22% by mass, compound (III-2) is 18% by mass, compound (1) is 5% by mass, compound (2)
Embedded image
Figure 2004277487
Was prepared at 8% by mass of the polymerizable liquid crystal composition (H-1) of the present invention. The polymerizable liquid crystal composition (H-1) of the present invention exhibited a nematic liquid crystal phase at room temperature (25 ° C.), and the nematic-isotropic liquid phase transition temperature was 52 ° C. Δn at a wavelength of 589 nm was 0.133.
[0047]
Polymerizable liquid crystal composition comprising 99.85% by mass of polymerizable liquid crystal composition (H-1), 0.10% by mass of photopolymerization initiator lucilin TPO (manufactured by BASF), and 0.05% by mass of 4-methoxyphenol ( H-2) was prepared. The composition was further filtered through a fluororesin membrane filter having a pore size of 1 μm. The filtered composition (H-2) was injected at room temperature into an antiparallel-aligned liquid crystal glass cell having a cell gap of 6 μm (a glass cell having been subjected to an alignment treatment so that the liquid crystal was uniaxially aligned). After the injection, it was confirmed that uniform uniaxial orientation was obtained. Next, at room temperature (25 ° C.), 4 mW / cm using SP-III (manufactured by Ushio Inc.) 2 Was irradiated for 2 minutes to obtain a polymer. It was confirmed that the obtained polymer had a different refractive index depending on the direction and functioned as a uniaxial optically anisotropic body. In addition, the uniformity was excellent, and no unevenness or turbidity was observed. The polymer left in the glass cell was aged in an oven at 80 ° C. for 20 hours. When the polymer was taken out of the oven and observed after cooling, it functioned as a uniaxial optically anisotropic body, and no unevenness or turbidity was observed. Δn at a wavelength of 589 nm was 0.063.
[0048]
Next, a polymer was produced in the same manner as described above except that an anti-parallel alignment liquid crystal glass cell having a cell gap of 50 μm was used. When the polymer in the glass cell was irradiated with 40 mW / cm2 ultraviolet rays for 12 minutes and 30 seconds using SP-III (manufactured by Ushio Inc.), yellowing was observed.
[0049]
Comparison between Example 12 and this comparative example shows that the polymer using the polymerizable liquid crystal composition of the present invention hardly yellows.
[0050]
【The invention's effect】
The polymerizable liquid crystal composition of the present invention exhibits a nematic liquid crystal phase at such a low temperature that unintended thermal polymerization is not induced, and has a high nematic phase-isotropic liquid phase transition temperature. Δn of the polymer obtained can be controlled to be low, and furthermore, the polymer has a feature that it is not easily yellowed by exposure to ultraviolet rays. Therefore, the polymer produced using the polymerizable liquid crystal composition is a constituent material such as an optically anisotropic material. Useful as

Claims (6)

一般式(I)
Figure 2004277487
(式中、Xは水素原子またはメチル基を表し、Rは炭素原子数1〜18のアルキル基を表す)で表される化合物、一般式(II)
Figure 2004277487
(式中、Xは水素原子またはメチル基を表し、Rは炭素原子数1〜18のアルキル基を表す)で表される化合物、一般式(III)
Figure 2004277487
(式中、W、Wはそれぞれ独立的に単結合、−O−を表し、Y、Yはそれぞれ独立的に−COO−、−OCO−を表し、p、qはそれぞれ独立的に2〜12の整数を表す)で表される化合物を含有する重合性液晶組成物。
General formula (I)
Figure 2004277487
(Wherein X 1 represents a hydrogen atom or a methyl group, and R 1 represents an alkyl group having 1 to 18 carbon atoms), a compound represented by the general formula (II):
Figure 2004277487
(Wherein X 2 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 18 carbon atoms), a compound represented by the general formula (III):
Figure 2004277487
(Wherein, W 1 and W 2 each independently represent a single bond, —O—, Y 1 and Y 2 each independently represent —COO— or —OCO—, and p and q each independently represent Which represents an integer of 2 to 12).
は炭素原子数1〜5のアルキル基、Rは炭素原子数1〜5のアルキル基を表す請求項1記載の重合性液晶組成物。R 1 is an alkyl group having 1 to 5 carbon atoms, R 2 is a polymerizable liquid crystal composition according to claim 1, wherein an alkyl group of 1 to 5 carbon atoms. 、Wが−O−、Yが−COO−、Yが−OCO−、p、qはそれぞれ独立的に3〜6の整数である請求項2記載の重合性液晶組成物。W 1, W 2 is -O-, Y 1 is -COO-, Y 2 is -OCO-, p, polymerizable liquid crystal composition according to claim 2, wherein q is each independently an integer of 3 to 6. 組成物がネマチック液晶相を示し、ネマチック液晶相の下限温度が30℃以下である請求項1または2記載の重合性液晶組成物。The polymerizable liquid crystal composition according to claim 1, wherein the composition exhibits a nematic liquid crystal phase, and a minimum temperature of the nematic liquid crystal phase is 30 ° C. or less. 一般式(I)の化合物は20〜60質量%、一般式(II)の化合物は20〜60質量%、一般式(III)の化合物は10〜40質量%含有する請求項1から4のいずれかに記載の重合性液晶組成物。The compound of the general formula (I) contains 20 to 60% by mass, the compound of the general formula (II) contains 20 to 60% by mass, and the compound of the general formula (III) contains 10 to 40% by mass. Or a polymerizable liquid crystal composition according to any one of the above. 請求項1〜5記載の重合性液晶組成物の重合体。A polymer of the polymerizable liquid crystal composition according to claim 1.
JP2003067943A 2003-03-13 2003-03-13 Polymerizable liquid crystal composition Expired - Fee Related JP4505708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067943A JP4505708B2 (en) 2003-03-13 2003-03-13 Polymerizable liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067943A JP4505708B2 (en) 2003-03-13 2003-03-13 Polymerizable liquid crystal composition

Publications (2)

Publication Number Publication Date
JP2004277487A true JP2004277487A (en) 2004-10-07
JP4505708B2 JP4505708B2 (en) 2010-07-21

Family

ID=33285408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067943A Expired - Fee Related JP4505708B2 (en) 2003-03-13 2003-03-13 Polymerizable liquid crystal composition

Country Status (1)

Country Link
JP (1) JP4505708B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133332A1 (en) * 2014-03-04 2015-09-11 Dic株式会社 Polymerizable composition comprising compound having mesogenic group, and polymer thereof
WO2015133331A1 (en) * 2014-03-04 2015-09-11 Dic株式会社 Mixture that includes compound containing mesogenic group
WO2017038267A1 (en) * 2015-09-03 2017-03-09 Dic株式会社 Compound containing mesogenic group and composition containing the compound, and polymer obtained by polymerizing polyermizable composition, optically anisotropic body, and phase difference film
WO2017038266A1 (en) * 2015-09-03 2017-03-09 Dic株式会社 Composition including compound having mesogenic group, polymer and optically anisotropic body obtained by polymerizing polymerizable composition, and phase difference film
WO2019003934A1 (en) * 2017-06-29 2019-01-03 Dic株式会社 Polymerizable liquid crystal composition, and optical film using same and method for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145830A (en) * 2000-11-13 2002-05-22 Dainippon Ink & Chem Inc Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the same and polymer of the composition
JP2003193053A (en) * 2001-12-26 2003-07-09 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optical anisotropic object using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145830A (en) * 2000-11-13 2002-05-22 Dainippon Ink & Chem Inc Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the same and polymer of the composition
JP2003193053A (en) * 2001-12-26 2003-07-09 Dainippon Ink & Chem Inc Polymerizable liquid crystal composition and optical anisotropic object using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539346A (en) * 2014-03-04 2016-12-14 Dainippon Ink & Chemicals Polymerizable composition comprising compound having mesogenic group, and polymer thereof
JPWO2015133332A1 (en) * 2014-03-04 2017-04-06 Dic株式会社 Polymerizable composition containing compound having mesogenic group and polymer thereof
JP5915823B2 (en) * 2014-03-04 2016-05-11 Dic株式会社 Polymerizable composition containing compound having mesogenic group and polymer thereof
CN106029835A (en) * 2014-03-04 2016-10-12 Dic株式会社 Mixture that includes compound containing mesogenic group
CN106030394A (en) * 2014-03-04 2016-10-12 Dic株式会社 Polymerizable composition comprising compound having mesogenic group, and polymer thereof
GB2538689A (en) * 2014-03-04 2016-11-23 Dainippon Ink & Chemicals Mixture that includes compound containing mesogenic group
WO2015133331A1 (en) * 2014-03-04 2015-09-11 Dic株式会社 Mixture that includes compound containing mesogenic group
CN106029835B (en) * 2014-03-04 2022-02-25 Dic株式会社 Mixtures containing compounds having mesogenic groups
WO2015133332A1 (en) * 2014-03-04 2015-09-11 Dic株式会社 Polymerizable composition comprising compound having mesogenic group, and polymer thereof
WO2017038266A1 (en) * 2015-09-03 2017-03-09 Dic株式会社 Composition including compound having mesogenic group, polymer and optically anisotropic body obtained by polymerizing polymerizable composition, and phase difference film
WO2017038267A1 (en) * 2015-09-03 2017-03-09 Dic株式会社 Compound containing mesogenic group and composition containing the compound, and polymer obtained by polymerizing polyermizable composition, optically anisotropic body, and phase difference film
WO2019003934A1 (en) * 2017-06-29 2019-01-03 Dic株式会社 Polymerizable liquid crystal composition, and optical film using same and method for production thereof
JPWO2019003934A1 (en) * 2017-06-29 2020-08-20 Dic株式会社 Polymerizable liquid crystal composition, optical film using the same, and method for producing the same.
JP2022017349A (en) * 2017-06-29 2022-01-25 Dic株式会社 Polymerizable liquid crystal composition, optical film using the same and method for producing the same
JP7082127B2 (en) 2017-06-29 2022-06-07 Dic株式会社 A polymerizable liquid crystal composition, an optical film using the same, and a method for producing the same.

Also Published As

Publication number Publication date
JP4505708B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4360444B2 (en) Polymer-stabilized liquid crystal composition, liquid crystal display element, and method for producing liquid crystal display element
EP2110390B1 (en) Polymerizable composition
JP4843186B2 (en) Method for producing a film containing a polymerized liquid crystal material
KR101802218B1 (en) Liquid crystal alignment film
JP5509569B2 (en) Polymer-stabilized ferroelectric liquid crystal composition, liquid crystal element, and method for producing the display element
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
JP2007092000A (en) Composition for polymer-stabilized liquid crystal display element and polymer-distributed liquid crystal display element
JP5309645B2 (en) Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device
JP2006348227A (en) Liquid crystal and liquid crystal/polymer composite
JP5560532B2 (en) Polymer-stabilized ferroelectric liquid crystal composition and liquid crystal display device
JP2008248061A (en) Polymer-stabilizing liquid crystal composition and polymer-stabilized liquid crystal-displaying element
JP2005113131A (en) Photopolymerizable liquid crystal composition and its polymer or polymer composition and optically anisotropic membrane
JP4802451B2 (en) Polymerizable liquid crystal composition and polymer thereof
JP2005196221A (en) Polymeric liquid crystal composition and method for producing optically anisotropic body
JP4143891B2 (en) Polymerizable liquid crystal composition and optical anisotropic body using the same
JP4334028B2 (en) Manufacturing method of liquid crystal display element
JP3734044B2 (en) Polymerizable liquid crystal composition and method for producing optical anisotropic body
JP4591753B2 (en) Optical anisotropic body and manufacturing method thereof
KR20180037206A (en) Polymerizable liquid crystal composition and optical anisotropic material using the same
JP6318528B2 (en) Liquid crystal / polymer composite material, optical element, method for manufacturing optical element, and method for manufacturing liquid crystal / polymer composite material
JP4505708B2 (en) Polymerizable liquid crystal composition
JPH1195205A (en) Optically anisotropic film and its production as well as liquid crystal display device
JPH09211462A (en) Liquid crystal display device
JP5979828B2 (en) Optical film
JP5148065B2 (en) Polymerized liquid crystal film with low retardation

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees