JP2004277481A - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP2004277481A
JP2004277481A JP2003067850A JP2003067850A JP2004277481A JP 2004277481 A JP2004277481 A JP 2004277481A JP 2003067850 A JP2003067850 A JP 2003067850A JP 2003067850 A JP2003067850 A JP 2003067850A JP 2004277481 A JP2004277481 A JP 2004277481A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
fiber
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003067850A
Other languages
Japanese (ja)
Other versions
JP4475880B2 (en
Inventor
Hideaki Tominaga
秀明 富永
Yoshihiro Endo
善博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2003067850A priority Critical patent/JP4475880B2/en
Publication of JP2004277481A publication Critical patent/JP2004277481A/en
Application granted granted Critical
Publication of JP4475880B2 publication Critical patent/JP4475880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition which can give a fiber-reinforced composite molded article having excellent rigidity and toughness, when used as a matrix resin for a fiber-reinforced composite molding material, to provide a prepreg using the same, and to provide a fiber-reinforced composite molded article using the same. <P>SOLUTION: This epoxy resin composition is characterized by comprising 100 pts. mass of an epoxy resin (A) containing ≥80 mass % of an epoxy resin having at least three epoxy groups in the molecule, 30 to 50 pts. mass of a thermoplastic resin (B) and 20 to 50 pts. mass of an aromatic amine-based curing agent (C). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂組成物、それを用いるプリプレグ及び繊維強化複合成形体に関し、更に詳しくは、繊維強化複合成形材料のマトリックス樹脂として用いた際に剛性及び靭性に優れた繊維強化複合成形体を得ることができるエポキシ樹脂組成物、それを用いるプリプレグ及び繊維強化複合成形体に関する。
【0002】
【従来の技術】
エポキシ樹脂組成物は、従来より繊維強化複合成形材料用のマトリックス樹脂として使用されている。特に、炭素繊維を強化材繊維とする複合成形材料のマトリックス樹脂としてエポキシ樹脂組成物は広く使用されている。このような複合成形材料から得られる繊維強化複合成形体は、例えばゴルフシャフトや釣竿のようなスポーツ・レジャー用途から、航空機の二次構造材、更には一次構造材に至るまで使用範囲が拡大している。
【0003】
航空機のような分野に使用されるエポキシ樹脂組成物およびプリプレグとして、樹脂組成物の揮発成分を少なくし、しかも耐熱性を高く、良好なる接着性を有する自己接着ハニカムサンドイッチパネルの表面材用のエポキシ樹脂組成物及び該エポキシ樹脂組成物を用いたプリプレグが提案されている(特許文献1)。
【0004】
特許文献(1)で提案されている技術は、揮発分の含有率及び硬化時最低粘度が特定範囲のエポキシ樹脂組成物であり、その骨子は(a)グリシジルアミノ基を有する多官能エポキシ樹脂、(b)(a)以外のエポキシ樹脂、(c)ポリイソシアネート、(d)熱可塑性樹脂及び(e)芳香族アミン硬化剤を必須成分として含むものである。
【0005】
しかしながら、従来の繊維強化複合材料成形体は剛性又は靱性のいずれか一方に優れていても、両者を兼ね備えたものはなかった。近年、剛性に加えて更に優れた靭性を兼ね備えた繊維強化複合成形体の要求が高まり、上記など従来技術の改良が望まれている。
【0006】
【特許文献1】
特開2001−031838
【0007】
【発明が解決しようとする課題】
本発明は、繊維強化複合成形材料のマトリックス樹脂として用いた際に剛性(例えば、圧縮強度)及び靭性(例えば、衝撃後圧縮強度)に優れた繊維強化複合成形体を得ることができるエポキシ樹脂組成物、それを用いたプリプレグ及び繊維強化複合成形体を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載のものである。
【0009】
[1] 一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むエポキシ樹脂(A)100質量部に対し、熱可塑性樹脂(B)30〜50質量部及び芳香族アミン系硬化剤(C)20〜50質量部を含むことを特徴とするエポキシ樹脂組成物。
【0010】
[2] エポキシ樹脂(A)が、テトラグリシジルジアミノジフェニルメタン、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール及びフェノールノボラック型エポキシ樹脂よりなる群から選ばれる少なくとも1種である[1]記載のエポキシ樹脂組成物。
【0011】
[3] 熱可塑性樹脂(B)として、ポリエーテルイミド及びポリエーテルスルホンを含む[1]記載のエポキシ樹脂組成物。
【0012】
[4] 芳香族アミン系硬化剤(C)が、3,3’−ジアミノジフェニルスルホン及び/又は4,4’−ジアミノジフェニルスルホンである[1]記載のエポキシ樹脂組成物。
【0013】
[5] ポリエーテルイミドが完全に溶解せず微分散の状態で、且つポリエーテルスルホンが溶解された状態でエポキシ樹脂組成物中に配合されている[2]記載のエポキシ樹脂組成物。
【0014】
[6] [1]記載のエポキシ樹脂組成物を用いたプリプレグ。
【0015】
[7] [6]記載のプリプレグを用いて得られる炭素繊維強化樹脂成形体。
【0016】
【発明の実施の形態】
本発明のエポキシ樹脂組成物は、一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むエポキシ樹脂(A)100質量部に対し、熱可塑性樹脂(B)30〜50質量部及び芳香族アミン系硬化剤(C)20〜50質量部を含むことを特徴とする。
【0017】
本発明におけるエポキシ樹脂(A)は、一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むものである。
【0018】
この一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン(4官能エポキシ樹脂:Epikote 604:ジャパンエポキシレジン株式会社製(登録商標))、フェノールノボラック型エポキシ樹脂(3官能以上のエポキシ樹脂を主成分とする:EPPN−201:日本化薬株式会社製(登録商標))、m−アミノフェノール系エポキシ樹脂(3官能エポキシ樹脂ELM−120:住友化学株式会社製(登録商標))等を挙げることができる。
【0019】
これらの一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂(以下、『多官能エポキシ樹脂』ということがある)は、エポキシ樹脂(A)中に80質量%以上存在することが必要である。この多官能エポキシ樹脂の割合がエポキシ樹脂(A)中80質量%未満であると、優れた圧縮強度の繊維強化複合成形体を得ることができない。
【0020】
尚、本発明におけるエポキシ樹脂(A)中には、官能基が1〜2のエポキシ樹脂が20質量%未満の割合で含まれていてもよい。このようなエポキシ樹脂としては、例えば、ビスフェノールF型エポキシ樹脂(2官能エポキシ樹脂:Epikote 807:ジャパンエポキシレジン株式会社製(登録商標))や、ビスフェノールA型エポキシ樹脂(2官能エポキシ樹脂:Epikote 828:ジャパンエポキシレジン株式会社製(登録商標))等の2官能エポキシ樹脂を好ましい例として挙げることができる。
【0021】
本発明における熱可塑性樹脂(B)は、エンジニアリングプラスチックとして用いられる熱可塑性樹脂であることが好ましく、エポキシ樹脂(A)と相溶するか、或は親和性を有する熱可塑性樹脂が特に好ましい。このような熱可塑性樹脂としては、例えば、ポリアクリレート、ポリイミド、ポリアミド、ポリエーテルイミド(PEI)、ポリアミドイミド、ポリアリールエーテル、フェノキシ樹脂、ポリアリールスルホン、ポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル及びポリカーボネートを挙げることができる。これらのうち、ポリエーテルスルホン(PES)とポリエーテルイミド(PEI)が好ましく、この2種を併用することが特に好ましい。
【0022】
本発明において、エポキシ樹脂組成物中に占める熱可塑性樹脂(B)の割合は、エポキシ樹脂(A)100質量部に対し30〜50質量部であることが必要である。熱可塑性樹脂(B)の上記割合が50質量部を超えると、エポキシ樹脂組成物を用いて得られる硬化物の剛性が低下するだけでなく、樹脂組成物の粘度が高くなるため、本発明のエポキシ樹脂組成物を用いて作製したプリプレグの取り扱い性が低下する。また、熱可塑性樹脂(B)の上記割合が30質量部未満であると、エポキシ樹脂組成物を用いて得られる硬化物の靭性が低下する。上記の理由から、エポキシ樹脂(A)100質量部に対する熱可塑性樹脂(B)の割合は、35〜45質量部であることが好ましい。
【0023】
尚、熱可塑性樹脂(B)として、ポリエーテルスルホン(PES)とポリエーテルイミド(PEI)を併用する場合、ポリエーテルイミドが完全に溶解せず微分散の状態で、且つポリエーテルスルホンが溶解された状態でエポキシ樹脂組成物中に配合されていることが、圧縮強度に代表される剛性の発現と、衝撃後圧縮強度に代表される耐衝撃性を発現を両立させるという理由で好ましい。
【0024】
本発明のエポキシ樹脂組成物に用いられる芳香族アミン硬化剤(C)は、ジアミノジフェニルスルホン(DDS)、ジアミノジフェニルメタン(DDM)等、エポキシ樹脂の硬化剤として用いられる芳香族アミン化合物である。これらは単独で、或は2種以上の混合物として使用できる。エポキシ樹脂組成物を用いて得られる硬化物の耐熱性をより良好なものとするには、DDS或はその誘導体を単独で用いることが好ましい。
【0025】
本発明において、エポキシ樹脂組成物中に占める芳香族アミン硬化剤(C)の割合は、エポキシ樹脂(A)100質量部に対し20〜50質量部であることが必要である。芳香族アミン硬化剤(C)の上記割合が50質量部を超えると、架橋点数は増加するが架橋密度が低下し、また芳香族アミン硬化剤(C)の余剰量が多くなるため、このようなエポキシ樹脂組成物を用いて得られる硬化物は剛性及び耐湿熱性が低下する。また、芳香族アミン硬化剤(C)の上記割合が20質量部未満であると、架橋点数及び架橋密度ともに低下するため、このようなエポキシ樹脂組成物を用いて得られる硬化物は耐熱性及び耐衝撃性がともに低下する。上記の理由から、エポキシ樹脂(A)100質量部に対する芳香族アミン硬化剤(C)の割合は、25〜45質量部であることが好ましい。
【0026】
本発明のエポキシ樹脂組成物は、ポリイソシアネートを成分として含まないことが好ましい。一般に、ポリイソシアネートはエポキシ樹脂に含まれる水酸基と反応することで、増粘或は硬化剤としての効果を示すが、本発明における樹脂組成物の主成分である多官能エポキシ樹脂には水酸基がほとんど含まれないため、ポリイソシアネートを配合することによる効果もほとんどない。従って、本発明のエポキシ樹脂組成物中には、ポリイソシアネートを必要としないが、例えばエポキシ樹脂中の不純物として存在する程度の1000ppm以下の量であれば含まれていてもよい。
【0027】
本発明のエポキシ樹脂組成物は、上述した(A)、(B)及び(C)成分を必須とするものであるが、本発明の効果を損なわない範囲で、必要に応じて上述の(A)、(B)及び(C)以外の公知の硬化剤、熱硬化性樹脂、充填剤、安定剤、難燃剤、顔料等の各種添加剤を含有させてもよい。
【0028】
本発明のプリプレグは、繊維集合体に本発明のエポキシ樹脂組成物を含浸させることによって得られる。プリプレグ中のエポキシ樹脂組成物の割合は、30〜50質量%であることが好ましい。エポキシ樹脂組成物の割合がこの範囲であれば、プリプレグを熱硬化させて得られる繊維強化複合成形体の剛性及び靭性が優れたものになる。
【0029】
本発明のプリプレグを製造する方法としては、本発明のエポキシ樹脂組成物を離型紙の上に薄いフィルム状に塗布したいわゆる樹脂フィルムを、繊維集合体の上下に配置し、加熱及び加圧することでエポキシ樹脂組成物を繊維集合体に含浸させるホットメルト法や、エポキシ樹脂組成物を適当な溶媒を用いてワニス状にし、このワニスを強化繊維に含浸させる溶剤法を挙げることができる。
【0030】
本発明のプリプレグに使用できる強化繊維としては、炭素繊維、黒鉛繊維、アラミド繊維、ガラス繊維等を挙げることができる。これらの強化繊維のうち、炭素繊維が特に好ましい。炭素繊維を用いる場合、ストランドの引張強度は4000MPa以上のものが好ましく、4500MPa以上のものが特に好ましい。これらの強化繊維は、一方向に引き揃えられた繊維束状、或は織物状の形態で使用することができる。
【0031】
また、本発明の繊維強化複合成形体は、上記本発明のプリプレグを通常の熱硬化成形、例えば、オートクレーブ成形、または、ホットプレス成形等、により得ることができる。
【0032】
【実施例】
以下、実施例により本発明を更に具体的に説明する。本実施例及び比較例において各種試験方法は下記に従って行った。
【0033】
(1)圧縮強度
プリプレグを一方向に6枚積層してバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板を作製した。この間オートクレーブ内を圧空で0.5MPaに加圧し、バッグ内を真空(13kPa以下)に保った。得られた成形板について、超音波探傷装置にて該成形板の内部にボイド等の欠陥が発生していないことを確認後、SACMA SRM1R−94に準拠して圧縮試験を行い、成形板の圧縮強度[MPa]を測定した。
【0034】
尚、本試験では試験片のVf(繊維体積含有率)の影響を大きく受けるため、測定値はVf=60%に統一して換算した。
【0035】
(2)衝撃後圧縮強度
プリプレグを[+45°/0°/−45°/90°]の方向に4枚積層したものを3セット重ね合わせた12枚の積層物と、[90°/−45°/0°/+45°]の方向に4枚積層したもの3セット重ね合わせた12枚の積層物を、それぞれ90°方向が合わさるように合計24枚の積層物としてバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板を作製した。この間オートクレーブ内を圧空で0.5MPaに加圧し、バッグ内を真空(13kPa以下)に保った。得られた成形板について、超音波探傷装置にて該成形板の内部にボイド等の欠陥が発生していないことを確認後、SACMA SRM2R−94に準拠して圧縮試験を行い、成形板の衝撃後圧縮強度[MPa]を測定した。
【0036】
尚、本試験では試験片のVf(繊維体積含有率)の影響が小さいため、測定値はVf換算しない実測値として計算した。
【0037】
[実施例1〜4]
下記表1に示す組成の(A)成分と(B)成分の一部((B)成分のうちエポキシ樹脂に溶解して配合させる部分)をニーダー中にて加熱・混合させた。次いで、得られた(A)成分の混合物をロールミルに移し、表1に示す(B)成分の残り((B)成分のうちエポキシ樹脂に微粉末として配合させる部分)及び(C)成分を添加し、良く混練して実施例1〜4のエポキシ樹脂組成物を得た。
【0038】
次いで、得られたエポキシ樹脂組成物を、炭素繊維束(東邦テナックス株式会社製・ベスファイトIM600−24K(登録商標)・フィラメント数:24000本、引張強度:5790MPa、引張弾性率:285MPa)に含浸させて、炭素繊維目付が190g/m、樹脂含有率が35質量%の一方向プリプレグを得た。これらのプリプレグから成形した成形板の圧縮強度及び衝撃後圧縮強度の測定結果を表1に示す。
【0039】
【表1】

Figure 2004277481
【0040】
*1:実施例1〜4において、PEIはいずれもエポキシ樹脂組成物に微分散された状態であった。
【0041】
*2:繊維体積比率Vf=60%換算値
表1に示した結果から明らかなように、実施例1〜4の本発明のエポキシ樹脂組成物を用いたプリプレグから得られた繊維強化複合成形体は剛性(圧縮強度)及び靭性(衝撃後圧縮強度)のいずれも優れたものであった。
【0042】
[比較例1〜4]
[A]成分、[B]成分及び[C]成分の種類及び量を下記表2に示すものに変えた以外は実施例1と同様にエポキシ樹脂組成物を得た。
【0043】
次いで、得られたエポキシ樹脂組成物を、実施例1と同様に炭素繊維束に含浸させてプリプレグを得た。これらのプリプレグから成形した成形板の圧縮強度及び衝撃後圧縮強度の測定結果を表2に示す。
【0044】
【表2】
Figure 2004277481
【0045】
*3:比較例4において、PEIはエポキシ樹脂組成物に微分散された状態であった。
【0046】
*4:繊維体積比率Vf=60%換算値
表2に示した結果から明らかなように、比較例1〜4のエポキシ樹脂組成物を用いたプリプレグから得られた繊維強化複合成形体は剛性(圧縮強度)及び靭性(衝撃後圧縮強度)のいずれか、或は両方とも本発明のエポキシ樹脂組成物から得られたものに比べて劣るものであった。
【0047】
尚、表1及び表2中の各成分は以下に示すものである。
・Epikote 604:テトラグリシジルアミノジフェニルメタン(4官能エポキシ樹脂:ジャパンエポキシレジン株式会社製(登録商標))、
・EPPN−201:フェノールノボラック型エポキシ樹脂(3官能以上のエポキシ樹脂を主成分とする:日本化薬株式会社製(登録商標))
・ELM−120:m−アミノフェノール系エポキシ樹脂(3官能エポキシ樹脂:住友化学株式会社製(登録商標))
・Epikote 807:ビスフェノールF型エポキシ樹脂(2官能エポキシ樹脂: ジャパンエポキシレジン株式会社製(登録商標))
・Epikote 828:ビスフェノールA型エポキシ樹脂(2官能エポキシ樹脂: ジャパンエポキシレジン株式会社製(登録商標))
・PES:ポリエーテルスルホン(住友化学株式会社製・熱可塑性樹脂)
・PEI:ポリエーテルイミド(ジー・イー・プラスチック株式会社製・熱可塑性樹脂)
・3,3’−DDS:3,3’−ジアミノジフェニルスルフォン(芳香族アミン系硬化剤)
・4,4’−DDS:4,4’−ジアミノジフェニルスルフォン(芳香族アミン系硬化剤)
【0048】
【発明の効果】
本発明のエポキシ樹脂組成物によれば、繊維強化複合成形材料のマトリックス樹脂として用いた際に剛性及び靭性に優れた繊維強化複合成形体を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an epoxy resin composition, a prepreg and a fiber-reinforced composite molded article using the same, and more particularly, to a fiber-reinforced composite molded article having excellent rigidity and toughness when used as a matrix resin of a fiber-reinforced composite molding material. The present invention relates to an epoxy resin composition that can be obtained, a prepreg using the same, and a fiber-reinforced composite molded article.
[0002]
[Prior art]
Epoxy resin compositions have been conventionally used as matrix resins for fiber-reinforced composite molding materials. In particular, epoxy resin compositions are widely used as matrix resins of composite molding materials using carbon fibers as reinforcing fibers. The range of use of fiber-reinforced composite moldings obtained from such composite molding materials has been expanded from sports and leisure applications such as golf shafts and fishing rods to secondary structural materials for aircraft and even primary structural materials. ing.
[0003]
Epoxy resin compositions and prepregs used in fields such as aircraft, which reduce the volatile components of the resin composition, have high heat resistance, and have good adhesiveness, are used as epoxy for surface materials of self-adhesive honeycomb sandwich panels. A resin composition and a prepreg using the epoxy resin composition have been proposed (Patent Document 1).
[0004]
The technology proposed in Patent Document (1) is an epoxy resin composition in which the content of volatile matter and the minimum viscosity during curing are in a specific range, and the gist thereof is (a) a polyfunctional epoxy resin having a glycidylamino group; (B) An epoxy resin other than (a), (c) a polyisocyanate, (d) a thermoplastic resin, and (e) an aromatic amine curing agent as essential components.
[0005]
However, even though the conventional fiber-reinforced composite material molded article is excellent in either rigidity or toughness, none of them has both. In recent years, there has been an increasing demand for fiber-reinforced composite molded articles having more excellent toughness in addition to rigidity, and improvements in the prior art such as those described above are desired.
[0006]
[Patent Document 1]
JP 2001-031838A
[0007]
[Problems to be solved by the invention]
The present invention provides an epoxy resin composition capable of obtaining a fiber-reinforced composite molded article having excellent rigidity (for example, compressive strength) and toughness (for example, compressive strength after impact) when used as a matrix resin of a fiber-reinforced composite molded material. It is an object to provide a product, a prepreg and a fiber-reinforced composite molded product using the same.
[0008]
[Means for Solving the Problems]
The present invention that achieves the above object is as described below.
[0009]
[1] 30 to 50 parts by mass of a thermoplastic resin (B) and 100 parts by mass of an epoxy resin (A) containing 80% by mass or more of an epoxy resin having at least three epoxy groups in one molecule and an aromatic amine-based resin An epoxy resin composition comprising 20 to 50 parts by mass of a curing agent (C).
[0010]
[2] The epoxy resin (A) comprises tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol and phenol novolak type epoxy resin. The epoxy resin composition according to [1], which is at least one member selected from the group.
[0011]
[3] The epoxy resin composition according to [1], wherein the thermoplastic resin (B) contains polyetherimide and polyethersulfone.
[0012]
[4] The epoxy resin composition according to [1], wherein the aromatic amine-based curing agent (C) is 3,3′-diaminodiphenylsulfone and / or 4,4′-diaminodiphenylsulfone.
[0013]
[5] The epoxy resin composition according to [2], wherein the polyetherimide is not completely dissolved but is in a finely dispersed state, and the polyether sulfone is dissolved in the epoxy resin composition.
[0014]
[6] A prepreg using the epoxy resin composition according to [1].
[0015]
[7] A carbon fiber reinforced resin molded product obtained using the prepreg according to [6].
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The epoxy resin composition of the present invention contains 30 to 50 parts by mass of the thermoplastic resin (B) based on 100 parts by mass of the epoxy resin (A) containing 80% by mass or more of the epoxy resin having at least three epoxy groups in one molecule. And an aromatic amine-based curing agent (C) in an amount of 20 to 50 parts by mass.
[0017]
The epoxy resin (A) in the present invention contains at least 80% by mass of an epoxy resin having at least three epoxy groups in one molecule.
[0018]
Examples of the epoxy resin having at least three epoxy groups in one molecule include tetraglycidyl diaminodiphenylmethane (tetrafunctional epoxy resin: Epikote 604: (registered trademark) manufactured by Japan Epoxy Resin Co., Ltd.), phenol novolak type epoxy resin (Based on a trifunctional or higher epoxy resin: EPPN-201: Nippon Kayaku Co., Ltd. (registered trademark)), m-aminophenol-based epoxy resin (trifunctional epoxy resin ELM-120: manufactured by Sumitomo Chemical Co., Ltd.) (Registered trademark)).
[0019]
The epoxy resin having at least three epoxy groups in one molecule (hereinafter, sometimes referred to as a “polyfunctional epoxy resin”) must be present in the epoxy resin (A) in an amount of 80% by mass or more. . When the proportion of the polyfunctional epoxy resin is less than 80% by mass in the epoxy resin (A), a fiber-reinforced composite molded article having excellent compressive strength cannot be obtained.
[0020]
The epoxy resin (A) in the present invention may contain an epoxy resin having a functional group of 1 to 2 at a ratio of less than 20% by mass. Examples of such an epoxy resin include a bisphenol F type epoxy resin (bifunctional epoxy resin: Epikote 807: manufactured by Japan Epoxy Resin Co., Ltd.) and a bisphenol A type epoxy resin (bifunctional epoxy resin: Epikote 828). : Japan Epoxy Resin Co., Ltd. (registered trademark)) and the like.
[0021]
The thermoplastic resin (B) in the present invention is preferably a thermoplastic resin used as an engineering plastic, and is particularly preferably a thermoplastic resin which is compatible with or has affinity with the epoxy resin (A). Examples of such a thermoplastic resin include polyacrylate, polyimide, polyamide, polyetherimide (PEI), polyamideimide, polyarylether, phenoxy resin, polyarylsulfone, polyethersulfone (PES), and polyetheretherketone. (PEEK), polyphenylene ether and polycarbonate. Of these, polyethersulfone (PES) and polyetherimide (PEI) are preferred, and it is particularly preferred to use these two in combination.
[0022]
In the present invention, the proportion of the thermoplastic resin (B) in the epoxy resin composition needs to be 30 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A). When the above proportion of the thermoplastic resin (B) exceeds 50 parts by mass, not only does the rigidity of the cured product obtained using the epoxy resin composition decrease, but also the viscosity of the resin composition increases, so that the present invention The handleability of the prepreg prepared using the epoxy resin composition is reduced. Moreover, when the said ratio of a thermoplastic resin (B) is less than 30 mass parts, the toughness of the hardened | cured material obtained using an epoxy resin composition will fall. For the above reasons, the ratio of the thermoplastic resin (B) to 100 parts by mass of the epoxy resin (A) is preferably from 35 to 45 parts by mass.
[0023]
When polyethersulfone (PES) and polyetherimide (PEI) are used in combination as the thermoplastic resin (B), the polyethersulfone is dissolved in a finely dispersed state without being completely dissolved. It is preferable that the epoxy resin composition is blended in the epoxy resin composition in a state in which both the development of rigidity represented by compressive strength and the impact resistance represented by compressive strength after impact are achieved at the same time.
[0024]
The aromatic amine curing agent (C) used in the epoxy resin composition of the present invention is an aromatic amine compound used as a curing agent for an epoxy resin, such as diaminodiphenylsulfone (DDS) and diaminodiphenylmethane (DDM). These can be used alone or as a mixture of two or more. In order to improve the heat resistance of the cured product obtained using the epoxy resin composition, it is preferable to use DDS or a derivative thereof alone.
[0025]
In the present invention, the proportion of the aromatic amine curing agent (C) in the epoxy resin composition needs to be 20 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin (A). When the proportion of the aromatic amine curing agent (C) exceeds 50 parts by mass, the number of crosslinking points increases, but the crosslinking density decreases, and the excess amount of the aromatic amine curing agent (C) increases. A cured product obtained by using such an epoxy resin composition has reduced rigidity and wet heat resistance. Further, when the proportion of the aromatic amine curing agent (C) is less than 20 parts by mass, both the number of cross-linking points and the cross-linking density decrease, so that the cured product obtained using such an epoxy resin composition has heat resistance and Both impact resistance decreases. For the reasons described above, the ratio of the aromatic amine curing agent (C) to 100 parts by mass of the epoxy resin (A) is preferably 25 to 45 parts by mass.
[0026]
The epoxy resin composition of the present invention preferably does not contain a polyisocyanate as a component. In general, a polyisocyanate shows an effect as a thickener or a curing agent by reacting with a hydroxyl group contained in an epoxy resin, but almost no hydroxyl group is contained in a polyfunctional epoxy resin which is a main component of the resin composition in the present invention. Since it is not contained, there is almost no effect by blending the polyisocyanate. Therefore, the epoxy resin composition of the present invention does not require a polyisocyanate, but may contain, for example, an amount of 1000 ppm or less, which is an amount present as an impurity in the epoxy resin.
[0027]
The epoxy resin composition of the present invention essentially contains the above-mentioned components (A), (B) and (C), but if necessary, the above-mentioned (A) as long as the effects of the present invention are not impaired. ), Known additives other than (B) and (C), various additives such as a thermosetting resin, a filler, a stabilizer, a flame retardant, and a pigment.
[0028]
The prepreg of the present invention is obtained by impregnating a fiber aggregate with the epoxy resin composition of the present invention. The proportion of the epoxy resin composition in the prepreg is preferably 30 to 50% by mass. When the proportion of the epoxy resin composition is within this range, the rigidity and toughness of the fiber-reinforced composite molded product obtained by thermosetting the prepreg will be excellent.
[0029]
As a method for producing the prepreg of the present invention, a so-called resin film obtained by applying the epoxy resin composition of the present invention in the form of a thin film on release paper is disposed above and below the fiber assembly, and heated and pressed. The hot melt method of impregnating the fiber assembly with the epoxy resin composition and the solvent method of impregnating the epoxy resin composition into a varnish using an appropriate solvent and impregnating the varnish into the reinforcing fibers can be exemplified.
[0030]
Examples of the reinforcing fibers that can be used in the prepreg of the present invention include carbon fibers, graphite fibers, aramid fibers, and glass fibers. Among these reinforcing fibers, carbon fibers are particularly preferred. When using carbon fiber, the tensile strength of the strand is preferably 4000 MPa or more, and particularly preferably 4500 MPa or more. These reinforcing fibers can be used in the form of a bundle of fibers aligned in one direction or in the form of a woven fabric.
[0031]
Further, the fiber-reinforced composite molded article of the present invention can be obtained by subjecting the prepreg of the present invention to ordinary thermosetting molding, for example, autoclave molding or hot press molding.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In the examples and comparative examples, various test methods were performed as follows.
[0033]
(1) Six compressive strength prepregs were laminated in one direction and put in a bag, which was heated at 180 ° C. for 2 hours in an autoclave and cured to produce a molded plate. During this time, the inside of the autoclave was pressurized to 0.5 MPa with compressed air, and the inside of the bag was kept at a vacuum (13 kPa or less). With respect to the obtained molded plate, after confirming that no defects such as voids are generated inside the molded plate with an ultrasonic flaw detector, a compression test is performed in accordance with SACMA SRM1R-94, and the compression of the molded plate is performed. The strength [MPa] was measured.
[0034]
In addition, in this test, since the influence of Vf (fiber volume content) of the test piece was greatly affected, the measured value was uniformly converted to Vf = 60%.
[0035]
(2) Twelve laminates obtained by laminating four sets of four layers of the post-impact compressive strength prepreg in the [+ 45 ° / 0 ° / −45 ° / 90 °] direction, and [90 ° / −45]. [0 ° / 0 ° / + 45 °], 12 sets of 3 sets of four sets stacked in the direction of 90 ° are put in a bag as a total of 24 sheets so that the 90 ° directions are aligned. It was heated at 180 ° C. for 2 hours in an autoclave and cured to produce a molded plate. During this time, the inside of the autoclave was pressurized to 0.5 MPa with compressed air, and the inside of the bag was kept at a vacuum (13 kPa or less). For the obtained molded plate, after confirming that no defects such as voids have occurred inside the molded plate with an ultrasonic flaw detector, a compression test is performed in accordance with SACMA SRM2R-94, and the impact of the molded plate is measured. After compression strength [MPa] was measured.
[0036]
In this test, since the influence of Vf (fiber volume content) of the test piece was small, the measured value was calculated as an actually measured value without Vf conversion.
[0037]
[Examples 1 to 4]
The components (A) and (B) of the compositions shown in Table 1 below (parts of the component (B) to be dissolved and mixed in the epoxy resin) were heated and mixed in a kneader. Next, the obtained mixture of the component (A) was transferred to a roll mill, and the remaining component (B) of the component (B) shown in Table 1 (part of the component (B) to be blended into the epoxy resin as a fine powder) and the component (C) were added. And kneaded well to obtain the epoxy resin compositions of Examples 1 to 4.
[0038]
Next, the obtained epoxy resin composition is impregnated into a carbon fiber bundle (Vesfight IM600-24K (registered trademark) manufactured by Toho Tenax Co., Ltd., number of filaments: 24,000, tensile strength: 5790 MPa, tensile elastic modulus: 285 MPa). Thus, a unidirectional prepreg having a carbon fiber weight of 190 g / m 2 and a resin content of 35% by mass was obtained. Table 1 shows the measurement results of the compressive strength and the compressive strength after impact of the molded plate molded from these prepregs.
[0039]
[Table 1]
Figure 2004277481
[0040]
* 1: In Examples 1 to 4, PEI was in a state of being finely dispersed in the epoxy resin composition.
[0041]
* 2: Fiber volume ratio Vf = 60% conversion value As is clear from the results shown in Table 1, a fiber-reinforced composite molded article obtained from the prepreg using the epoxy resin composition of the present invention of Examples 1 to 4. Was excellent in both rigidity (compression strength) and toughness (compression strength after impact).
[0042]
[Comparative Examples 1-4]
An epoxy resin composition was obtained in the same manner as in Example 1, except that the types and amounts of the components [A], [B] and [C] were changed to those shown in Table 2 below.
[0043]
Next, the obtained epoxy resin composition was impregnated into a carbon fiber bundle in the same manner as in Example 1 to obtain a prepreg. Table 2 shows the measurement results of the compressive strength and the compressive strength after impact of a molded plate formed from these prepregs.
[0044]
[Table 2]
Figure 2004277481
[0045]
* 3: In Comparative Example 4, PEI was finely dispersed in the epoxy resin composition.
[0046]
* 4: Fiber volume ratio Vf = 60% conversion value As is clear from the results shown in Table 2, the fiber-reinforced composite molded body obtained from the prepreg using the epoxy resin compositions of Comparative Examples 1 to 4 has rigidity ( Either or both of the compression strength) and the toughness (compression strength after impact) were inferior to those obtained from the epoxy resin composition of the present invention.
[0047]
In addition, each component in Table 1 and Table 2 is shown below.
-Epikote 604: tetraglycidylaminodiphenylmethane (tetrafunctional epoxy resin: (registered trademark) manufactured by Japan Epoxy Resin Co., Ltd.),
EPPN-201: phenol novolak type epoxy resin (based on trifunctional or higher epoxy resin: Nippon Kayaku Co., Ltd. (registered trademark))
ELM-120: m-aminophenol-based epoxy resin (trifunctional epoxy resin: (registered trademark) manufactured by Sumitomo Chemical Co., Ltd.)
-Epikote 807: bisphenol F type epoxy resin (bifunctional epoxy resin: Japan Epoxy Resin Co., Ltd. (registered trademark))
-Epikote 828: bisphenol A type epoxy resin (bifunctional epoxy resin: Japan Epoxy Resin Co., Ltd. (registered trademark))
-PES: polyether sulfone (thermoplastic resin manufactured by Sumitomo Chemical Co., Ltd.)
-PEI: Polyetherimide (thermoplastic resin manufactured by GE Plastics Co., Ltd.)
-3,3'-DDS: 3,3'-diaminodiphenyl sulfone (aromatic amine-based curing agent)
· 4,4'-DDS: 4,4'-diaminodiphenylsulfone (aromatic amine-based curing agent)
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the epoxy resin composition of this invention, when used as a matrix resin of a fiber reinforced composite molding material, a fiber reinforced composite molded article excellent in rigidity and toughness can be obtained.

Claims (7)

一分子中に少なくとも3個のエポキシ基を有するエポキシ樹脂を80質量%以上含むエポキシ樹脂(A)100質量部に対し、熱可塑性樹脂(B)30〜50質量部及び芳香族アミン系硬化剤(C)20〜50質量部を含むことを特徴とするエポキシ樹脂組成物。30 to 50 parts by mass of a thermoplastic resin (B) and an aromatic amine-based curing agent (100 parts by mass of an epoxy resin (A) containing 80% by mass or more of an epoxy resin having at least three epoxy groups in one molecule) C) An epoxy resin composition comprising 20 to 50 parts by mass. エポキシ樹脂(A)が、テトラグリシジルジアミノジフェニルメタン、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール及びフェノールノボラック型エポキシ樹脂よりなる群から選ばれる少なくとも1種である請求項1記載のエポキシ樹脂組成物。The epoxy resin (A) is selected from the group consisting of tetraglycidyldiaminodiphenylmethane, N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol and phenol novolak type epoxy resin. The epoxy resin composition according to claim 1, which is at least one of the following. 熱可塑性樹脂(B)として、ポリエーテルイミド及びポリエーテルスルホンを含む請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein the thermoplastic resin (B) contains polyetherimide and polyethersulfone. 芳香族アミン系硬化剤(C)が、3,3’−ジアミノジフェニルスルホン及び/又は4,4’−ジアミノジフェニルスルホンである請求項1記載のエポキシ樹脂組成物。The epoxy resin composition according to claim 1, wherein the aromatic amine-based curing agent (C) is 3,3'-diaminodiphenylsulfone and / or 4,4'-diaminodiphenylsulfone. ポリエーテルイミドが完全に溶解せず微分散の状態で、且つポリエーテルスルホンが溶解された状態でエポキシ樹脂組成物中に配合されている請求項2記載のエポキシ樹脂組成物。3. The epoxy resin composition according to claim 2, wherein the polyetherimide is not completely dissolved but is in a finely dispersed state, and the polyether sulfone is dissolved in the epoxy resin composition. 請求項1記載のエポキシ樹脂組成物を用いたプリプレグ。A prepreg using the epoxy resin composition according to claim 1. 請求項6記載のプリプレグを用いて得られる繊維強化複合成形体。A fiber-reinforced composite molded article obtained by using the prepreg according to claim 6.
JP2003067850A 2003-03-13 2003-03-13 Epoxy resin composition Expired - Lifetime JP4475880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067850A JP4475880B2 (en) 2003-03-13 2003-03-13 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067850A JP4475880B2 (en) 2003-03-13 2003-03-13 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2004277481A true JP2004277481A (en) 2004-10-07
JP4475880B2 JP4475880B2 (en) 2010-06-09

Family

ID=33285338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067850A Expired - Lifetime JP4475880B2 (en) 2003-03-13 2003-03-13 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4475880B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095516A1 (en) * 2005-03-09 2006-09-14 The Yokohama Rubber Co., Ltd. Curable resin composition, prepreg and composite material using same
JP2006291095A (en) * 2005-04-13 2006-10-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber reinforced composite materials
WO2007034679A1 (en) * 2005-09-22 2007-03-29 Toho Tenax Co., Ltd. Resin composition for radiation curing and prepreg
WO2007125926A1 (en) * 2006-04-25 2007-11-08 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
WO2007125925A1 (en) * 2006-04-25 2007-11-08 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
JP2008088277A (en) * 2006-09-30 2008-04-17 Toho Tenax Co Ltd Resin composition for heat or radiation curing and prepreg
JP2008144110A (en) * 2006-12-13 2008-06-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
JP2010505990A (en) * 2006-10-02 2010-02-25 ヘクセル コンポジット、リミテッド Composite materials with improved performance
JP2010525101A (en) * 2007-04-17 2010-07-22 ヘクセル コーポレイション Composite materials containing blends of thermoplastic particles
JP2011057736A (en) * 2009-09-07 2011-03-24 Toho Tenax Co Ltd Epoxy resin composition and prepreg using the same
US20120294824A1 (en) * 2009-12-28 2012-11-22 Mitsubishi Rayon Co., Ltd. Method for producing antifouling coating resin dispersion
JP2015507648A (en) * 2011-12-09 2015-03-12 サイテク・テクノロジー・コーポレーシヨン Surface film for composite structure and method for producing the same
JP2021505743A (en) * 2017-12-12 2021-02-18 ヘクセル コーポレイション Semi-preg with thermoplastic reinforced novolac epoxy resin matrix
WO2021241734A1 (en) * 2020-05-29 2021-12-02 東レ株式会社 Epoxy resin composition, fiber-reinforced composite material, and method for producing same
WO2022039104A1 (en) * 2020-08-20 2022-02-24 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product
CN116162225A (en) * 2023-01-09 2023-05-26 华东理工大学 Epoxy resin material and preparation method and application thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095516A1 (en) * 2005-03-09 2006-09-14 The Yokohama Rubber Co., Ltd. Curable resin composition, prepreg and composite material using same
JP2006291095A (en) * 2005-04-13 2006-10-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber reinforced composite materials
WO2007034679A1 (en) * 2005-09-22 2007-03-29 Toho Tenax Co., Ltd. Resin composition for radiation curing and prepreg
EP1947130A1 (en) * 2005-09-22 2008-07-23 Toho Tenax Co., Ltd. Resin composition for radiation curing and prepreg
EP1947130A4 (en) * 2005-09-22 2009-07-22 Toho Tenax Co Ltd Resin composition for radiation curing and prepreg
US8137786B2 (en) 2006-04-25 2012-03-20 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
WO2007125926A1 (en) * 2006-04-25 2007-11-08 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
WO2007125925A1 (en) * 2006-04-25 2007-11-08 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
US8142875B2 (en) 2006-04-25 2012-03-27 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber-reinforced composite material
JP2008088277A (en) * 2006-09-30 2008-04-17 Toho Tenax Co Ltd Resin composition for heat or radiation curing and prepreg
JP2010505990A (en) * 2006-10-02 2010-02-25 ヘクセル コンポジット、リミテッド Composite materials with improved performance
US8668983B2 (en) * 2006-12-13 2014-03-11 The Yokohama Rubber Co., Ltd. Epoxy resin composition for fiber reinforced composite material
JP2008144110A (en) * 2006-12-13 2008-06-26 Yokohama Rubber Co Ltd:The Epoxy resin composition for fiber-reinforced composite material
JP2010525101A (en) * 2007-04-17 2010-07-22 ヘクセル コーポレイション Composite materials containing blends of thermoplastic particles
JP2011057736A (en) * 2009-09-07 2011-03-24 Toho Tenax Co Ltd Epoxy resin composition and prepreg using the same
US20120294824A1 (en) * 2009-12-28 2012-11-22 Mitsubishi Rayon Co., Ltd. Method for producing antifouling coating resin dispersion
JP2015507648A (en) * 2011-12-09 2015-03-12 サイテク・テクノロジー・コーポレーシヨン Surface film for composite structure and method for producing the same
JP2021505743A (en) * 2017-12-12 2021-02-18 ヘクセル コーポレイション Semi-preg with thermoplastic reinforced novolac epoxy resin matrix
JP7348181B2 (en) 2017-12-12 2023-09-20 ヘクセル コーポレイション Semi-preg with thermoplastic reinforced novolak epoxy resin matrix
WO2021241734A1 (en) * 2020-05-29 2021-12-02 東レ株式会社 Epoxy resin composition, fiber-reinforced composite material, and method for producing same
WO2022039104A1 (en) * 2020-08-20 2022-02-24 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product
CN116162225A (en) * 2023-01-09 2023-05-26 华东理工大学 Epoxy resin material and preparation method and application thereof
CN116162225B (en) * 2023-01-09 2024-04-02 华东理工大学 Epoxy resin material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4475880B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
KR102081662B1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
US20110111663A1 (en) Epoxy resin composition and prepreg using the same
JP4475880B2 (en) Epoxy resin composition
EP3613788B1 (en) Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
CN109196026B (en) Prepreg and method for producing same
US7208228B2 (en) Epoxy resin for fiber reinforced composite materials
WO2014030638A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
EP3135718A1 (en) Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
JP4821163B2 (en) Epoxy resin composition for fiber reinforced composite materials
WO2014030636A1 (en) Epoxy resin composition and film, prepreg, and fiber-reinforced plastic using same
KR20140127869A (en) Fiber-reinforced composite material
JP4687167B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
EP3345949A1 (en) Epoxy resin composition, prepreg, and carbon fiber-reinforced composite material
JP2006265458A (en) Resin composition for prepregs, and prepreg
WO2019167579A1 (en) Heat-curable resin composition, prepreg, and fiber-reinforced composite material
JP2003026768A (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP4428978B2 (en) Epoxy resin composition
CN110461919B (en) Method for producing fiber-reinforced composite material
JP4857587B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JP5017794B2 (en) Epoxy resin composition for fiber reinforced composite materials
AU2015362756B2 (en) Epoxy-based resin composition for composite materials
JPH02113031A (en) Epoxy resin mixture for fibrous composite material
JP2007284545A (en) Epoxy resin composition for fiber-reinforced composite material
JPS6236421A (en) Epoxy resin composition for prepreg

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Ref document number: 4475880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term