JP2004276443A - Conductive fibrous material - Google Patents

Conductive fibrous material Download PDF

Info

Publication number
JP2004276443A
JP2004276443A JP2003071764A JP2003071764A JP2004276443A JP 2004276443 A JP2004276443 A JP 2004276443A JP 2003071764 A JP2003071764 A JP 2003071764A JP 2003071764 A JP2003071764 A JP 2003071764A JP 2004276443 A JP2004276443 A JP 2004276443A
Authority
JP
Japan
Prior art keywords
fabric
laminated
metal
cloth
fiber material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003071764A
Other languages
Japanese (ja)
Inventor
Hisanao Kataoka
久尚 片岡
Toru Takegawa
徹 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2003071764A priority Critical patent/JP2004276443A/en
Publication of JP2004276443A publication Critical patent/JP2004276443A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cloth for shielding electromagnetic waves which has high conductivity and high electromagnetic wave shieldability without deteriorating metal adhesiveness and plating processability and a method for producing the cloth. <P>SOLUTION: In an electromagnetic wave shielding material for shielding electromagnetic waves, a metal coat is formed on a cloth laminate. Especially when the cloth to be laminated is a web, a conductive fibrous material obtained by forming the metal coat on an object in which the texture of the web is laminated at a prescribed angle can secure conductivity over the entire cloth. The electromagnetic wave shielding material is excellent in shieldability even when the metal coat is thickened to be thicker than a conventional coat. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、外部からの不要輻射電磁波を遮蔽したり、内部より漏洩する電磁波を遮蔽する為に用いる電磁波シールド材に関する。
【0002】
【従来の技術】近年、パソコンや携帯電話等の電子機器が急速に発展し、小型軽量化、高集積化、高速化されてきたが、それに伴い、これらの電子機器から発生する電磁波による機械の誤動作や、通信妨害等が大きな問題となってきている。さらにこれらの電磁波は、人体に対しても悪影響を及ぼす可能性が指摘されてきている。そのために、このような有害な電磁波障害を防止するための法律による規制化の動きがあり、かかる対応技術の重要性が急速に高まりつつあるのが実情である。
【0003】このような電磁波障害対策のための電磁波シールド材として、銅やステンレススチールなどの金属細線から成る布帛や該細線を繊維布帛に織り込んだもの、或いは、繊維布帛と金属箔を積層したもの、カーボンブラックや金属粉等の導電材を混用した導電性ゴムやプラスチック等の導電性材料や、該導電材を含有する塗料を筐体などに塗布したものを用いることも行われてきたが、これらの材料は柔軟性が十分でなかったり、十分なシールド性が得られにくいなどの問題があり満足のいくものでは無かった。
【0004】上述の問題を解決するものとして、スパッタリングや蒸着などにより金属被膜を合成樹脂フィルムに積層した電磁波シールド材や繊維布帛に金属メッキ処理をした金属メッキ織物が広く使用されてきた。しかし、金属被膜をフィルムに積層したものは、均一な厚さの金属被膜を作りにくく、更には金属被膜の密着強度が小さいため金属被膜が剥離しやすいという問題がある。これに対し、織物や不織布などに金属メッキを施したものは、これらの問題点は解決されてきているが、更なるシールド性、特に高周波域に於いてのシールド性の向上が求められている。更に、最近電子機器の薄型化と高性能化がすすむと共に高いシールド性が要求されるようになってきている。
【0005】この様な要求を満たすために、織物や不織布に金属メッキなどにより金属被膜を形成したもののシールド性を向上させる方法として、▲1▼金属被膜の厚みを厚くする ▲2▼布帛の密度を高める ▲3▼布帛の厚みを厚くして金属被膜の量を増やす 等の方法がある。
しかし、▲1▼の方法では、金属被膜の厚みを大きくすることにより、メッキ加工の時間が増加し生産効率が悪くなる。更に金属被膜が厚くなることで金属被膜が剥がれやすくなり、また、金属被膜を形成した布帛の柔軟性が損なわれる虞がある。また、▲2▼の布帛の密度を高める方法としては、不織布の目付を上げたり、織物の織密度を上げる方法により達成することができる。しかし、この様な方法では布帛の重量が重くなるばかりか、布帛の柔軟性を損なう虞があり、更には、布帛内部まで均一な金属被膜が形成できない虞がある。また、▲3▼の布帛の厚みを厚くすることにより金属被膜の量を増やす方法においては、布帛内部にまで均一な金属被膜が形成することが困難になる虞があるためメッキ加工速度が低下することによる生産性の悪化が懸念され、更には、布帛の柔軟性が損なわれたり、布帛重量が大きくなってしまう虞がある。
【0006】
【発明が解決しようとする課題】本発明は、上記従来技術の問題点を解消し、金属密着性やメッキ加工性を損なうことなく、高い導電性と電磁波シールド性を有する電磁波シールド用布帛、及び、その製造方法を提供するものである。
【0007】
【課題を解決するための手段】上記の問題を解決するために、本発明は、第一に、繊維で構成された基材を複数枚積層したものに金属被膜層が形成されて成る導電性繊維材料である。
【0008】また、第二に、基材が織物である第一記載の導電性繊維材料である。
【0009】また、第三に、積層される織物の織目同士が同一方向に並ばないように角度差を持つように積層して成る第二記載の導電性繊維材料である。
【0010】また、第四に、積層される織物の織目同士の角度差が20〜90度である第三記載の導電性繊維材料である。
【0011】また、第五に、金属被膜層を含む積層された布帛厚みが150μm以下である第一乃至第四記載の導電性繊維材料である。
【発明の実施の形態】
【0012】以下に本発明を詳細に説明する。本発明に使用する繊維とはポリエステル系繊維、ポリアミド系繊維、アクリル系繊維などの合成繊維、アセテートなどの半合成繊維、レーヨンなどの再生繊維、ガラス繊維や炭素繊維などの無機繊維や、綿、羊毛、絹などの天然繊維を用いることができるが、耐薬品性、耐熱性や弾性回復性の点からなどの点からポリエチレンテレフタレートなどのポリエステル系合成繊維が好ましい。本発明に使用する繊維はメッキの基材として用いられる織物や不織布などに使用するものであり、長繊維や短繊維の区別、糸の太さ、撚数等は使用条件や加工条件などにより適宜に決めることができる。
【0013】本発明の積層布帛は織物同士、不織布同士、或いは、織物と不織布とを積層させて得られる。積層は単に二層構造のみならず、三層以上の構造であってもかまわない。布帛枚数や、積層する布帛の種類は、求められるシールド性や布帛厚み等を考慮し適宜に決めることができる。積層する方法は、接着剤を付与して積層する方法が好ましく用いられる。接着する場合の接着剤の種類はエチレン−酢酸ビニル共重合体系、ポリエステル系、ポリアミド系、ポリウレタン系などのホットメルト樹脂を用いることができるが、接着性の点でポリウレタン系ホットメルト樹脂が好ましく用いられる。また、接着剤の布帛への付与方法は、スプレー法、コーティング法、浸漬法などを用いることができるが、積層後の布帛の柔軟性やメッキ加工性等を考慮すると接着剤をドット状に付与できるグラビアロールによるコーティング法が好ましく用いられる。それぞれの布帛に金属被膜層を形成した後、ドット状に接着剤が付与されて布帛が積層されると図1に示すように二枚の布帛に形成された金属層が二層に分かれた状態で積層されるためシールド性が向上する。また、布帛を積層してから金属被膜を形成することにより、積層布帛全体に導通をとることができる。布帛に金属被膜を形成してから積層するか、または、布帛を積層してから金属被膜を形成するかは用途や求められるシールド性により適宜に選択することができる。
【0014】また、本発明に於いて、金属被膜層に用いられる金属は、銀、銅、ニッケルなど公知のものを用いることができる。金属被膜層はこれら少なくとも1種類の金属を用いることができる。金属被膜層形成法としてはスパッタリング法、真空蒸着メッキ法など公知の方法を用いることができるが、形成される金属被膜層の均一性や連続性を考慮すると、無電解メッキ法にて形成されることが好ましい。更に、無電解メッキを行った後に電気メッキを行ってもよい。これらの方法により形成される金属被膜層は異種金属を重ねて積層してもよく、共析或いは合金の形態で形成されても良い。
【0015】積層される基材が織物同士の場合は不織布や編物などに比べて布帛厚みのばらつきが小さく、金属被膜が形成された場合シールド性のばらつきが少なく、また引張強度が優れているため好ましい。また、織物同士を積層する場合は、織目同士が同一方向に並ばないように角度差をつけて積層することが好ましい。角度差を付けることにより積層するお互いの織物の開口部分が他方織物を構成する糸により遮られるためシールド性が向上するのである。例えば、図2及び図3に示すように角度差を20〜90度にすることによりほぼ110dB以上のシールド性を得ることができるため好ましい。
基材を積層する際、この様な織目の角度差を付けて積層することによりシールド性を向上するとともに、積層布帛の破断強度を向上させることができる。
【0016】また、金属被膜層を含む積層後の布帛厚みは150μm以下であることが好ましい。厚みが150μmより大きいと、形成される金属被膜の厚みバラツキが発生したり、金属被膜の密着性が悪化したり、金属被膜形成後の布帛の柔軟性が損なわれる虞がある。
【0017】また、この様な構造を有する導電性繊維材料は電磁波シールド用ガスケットとしてはもちろんテープ材(グランディング材)として用いることができることはいうまでもない。
【0018】本発明の導電性繊維材料は、この様な構造をとることにより、形成される金属被膜を厚くしなくても従来品以上のシールド性を得ることができ、金属被膜形成処理も従来の条件のまま行うことが可能である。そのため金属剥離強度を落とすことなくシールド性を向上させた導電性繊維材料を得ることができる。
【0019】
【実施例】次に実施例により本発明を例証する。実施例で用いた測定方法は次の通りである。
1.金属被膜形成後の布帛厚み
定圧厚さ測定器(ラフロック社製 TYPE PF−11)を用いてJIS L−1098に準じて測定した。
2.金属被膜密着性
試料の上に粘着テープ(日東工業株式会社製 No.3305)を所定の長さに切って貼付する。粘着テープの上から重さ2Kg、ロール幅25.4mmのローラーを転がして10往復加圧する。その後粘着テープを剥がし目視で金属被膜の剥がれ状態を判定する。
○ 金属被膜の剥がれが無い
△ 金属被膜の剥がれが少ない
× 金属被膜の剥がれが多い
3.メッキ加工性
金属被膜形成状態を目視で判断した。
○ 均一に金属被膜が形成されている
△ ほぼ均一に金属被膜が形成されている
× 金属被膜の形成にムラがある
4.剛軟度
JIS L−1096 A法(45°カンチレバー法)に準じて測定した。
5.シールド性
大きさ120mm×120mmの試料を用いて,KEC法によってシールド性を測定した。すなわちシールドボックスの中の送信用と受信用のアンテナの間に試料を設置し、受信した電解の強度を測定し、試料の非存在時の強度との比から減衰率(dB)を求める。
【0020】
【実施例1】ポリエステル繊維のサーマルボンド不織布 (目付け30g/m、厚み約60μm)をウレタン系ホットルト接着剤をグラビアコーティング法により不織布に付与接着し2枚重ね(2層品)にした。次いで、得られた積層布帛を、塩化パラジウム0.3g/L、塩化第一錫30g/L、36%塩酸300ml/Lを含む水溶液に2分間浸漬後、水洗した。続いて、酸濃度0.1Nのホウ沸化水素酸に40℃で5分間浸漬後、水洗した。次に硫酸銅7.5g/L、37%ホルマリン30ml/L、ロッシェル塩85g/Lから成る無電解銅メッキ液に40℃で5分間浸漬後、水洗した。続いて、スルファミン酸ニッケル300g/L、ホウ酸30g/L、塩化ニッケル15g/L、pH3.7の電気ニッケルメッキ液に35℃、10分間、電流密度5A/dmで浸漬しニッケルを積層させた後水洗して、導電性繊維材料を得た。評価結果を表1に示す。
【0021】
【実施例2】ポリエステル繊維(経糸16dtex12f 緯糸21dtex21f、厚み50μm)の平織織布(密度 180×166本/インチ)を精練、乾燥して、余分な油分、不純物を取り除いた。次いで、織目を合わせて2枚重ねし、グラビアロールコーティング法にてウレタン系ホットメルト接着剤を付与し接着し2層品にした。実施例1と同様に処理し、銅及びニッケルを積層させ、導電性繊維材料を得た。評価結果を表1に示す。
【0022】
【実施例3】実施例2の平織物を織目を30°ずらせて積層しグラビアロールコーティング法にてウレタン系ホットメルト接着剤を付与し接着し2層の積層布帛を得た。その後実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0023】
【実施例4】実施例2の平織物を織目を45°ずらせて積層しグラビアロールコーティング法にてウレタン系ホットメルト接着剤を付与し接着し2層の積層布帛を得た。その後実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0024】
【比較例1】ポリエステル繊維 (目付け30g/m、厚み約60μm)のサーマルボンド不織布を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0025】
【比較例2】ポリエステル繊維(目付け60gm/、厚み約110μm)のサーマルボンド不織布を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0026】
【比較例3】実施例1の平織物を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0027】
【比較例4】ポリエステル繊維(経糸56dtex72fウーリー糸 緯糸33dtex12f生糸)の平織織布(密度155×131本/吋)を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0028】
【比較例5】ポリエステル繊維(経糸33dtex36fウーリー糸 緯糸67dtex200fウーリー糸)の平織織布(密度196×122本/吋)を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0029】
【比較例6】ポリエステル(経糸84dtex36fウーリー糸 緯糸84dtex36fウーリー糸)から成る朱子織織布(密度160×88本/吋)を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0030】
【比較例7】ポリエステル繊維(経糸56dtex72fウーリー糸 緯糸33dtex12f生糸)の平織織布(密度155×131本/吋)を積層せずに実施例1と同様に処理し導電性繊維材料を得た。評価結果を表1に示す。
【0031】
【表1】

Figure 2004276443
【0032】
【発明の効果】本発明により、従来の一層品に比べ、金属被膜形成後の布帛厚みの増加が少なく、金属被膜の密着性、およびメッキ加工性を向上させ、優れたシールド性を有する導電性繊維材料を提供することができる。更に、織物同士を積層する場合には、積層する織物同士の織目に所定の角度をつけてバイアスに積層することでシールド性を向上できる。
【図面の簡単な説明】
【図1】金属被膜を形成した布帛に接着剤をドット状に付与して積層したことを示す概略図である。
【図2】本発明の積層布帛の積層角度の違いによるシールド性を測定した例のグラフである。
【図3】織物同士を角度をつけて積層したことを示す概念図である。
【符号の説明】
1 上面金属被覆布帛
2 下面金属被覆布帛
3 接着層
4 織物
5 経糸
6 緯糸[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding material used for shielding unnecessary radiated electromagnetic waves from the outside and shielding electromagnetic waves leaking from the inside.
[0002]
2. Description of the Related Art In recent years, electronic devices such as personal computers and mobile phones have been rapidly developed, and have been reduced in size, weight, integration, and speed. Malfunctions, communication disturbances, and the like have become major problems. Further, it has been pointed out that these electromagnetic waves may adversely affect the human body. For this reason, there has been a movement to regulate by such a law as to prevent such harmful electromagnetic wave interference, and in fact, the importance of such response technology is rapidly increasing.
[0003] As an electromagnetic wave shielding material for preventing such electromagnetic wave interference, a cloth made of a thin metal wire such as copper or stainless steel, a material obtained by weaving the thin wire into a fiber cloth, or a laminate of a fiber cloth and a metal foil However, conductive materials such as conductive rubber and plastic mixed with conductive materials such as carbon black and metal powder, and those containing a coating material containing the conductive material applied to a casing or the like have also been used. These materials were unsatisfactory due to problems such as insufficient flexibility and difficulty in obtaining sufficient shielding properties.
In order to solve the above-mentioned problems, an electromagnetic wave shielding material in which a metal coating is laminated on a synthetic resin film by sputtering or vapor deposition, or a metal-plated fabric in which a fiber cloth is subjected to metal plating has been widely used. However, when a metal film is laminated on a film, there is a problem that it is difficult to form a metal film having a uniform thickness, and furthermore, the metal film is easily peeled off due to low adhesion strength of the metal film. On the other hand, those in which metal plating is applied to woven or non-woven fabrics have solved these problems, but further shielding properties, especially improvement in shielding properties in a high frequency range, are required. . Furthermore, recently, thinner and higher performance electronic devices have been required and high shielding properties have been required.
[0005] In order to satisfy such demands, a method of improving the shielding properties of a metal film formed on a woven or nonwoven fabric by metal plating or the like includes: (1) increasing the thickness of the metal film; and (2) density of the cloth. (3) There are methods such as increasing the thickness of the fabric to increase the amount of the metal coating.
However, in the method (1), increasing the thickness of the metal coating increases the plating time and reduces the production efficiency. Further, when the metal coating is thickened, the metal coating is easily peeled off, and the flexibility of the fabric on which the metal coating is formed may be impaired. The method (2) for increasing the density of the fabric can be achieved by increasing the basis weight of the nonwoven fabric or increasing the weaving density of the fabric. However, such a method not only increases the weight of the fabric, but also may impair the flexibility of the fabric, and furthermore, may not be able to form a uniform metal coating even inside the fabric. Further, in the method of (3), in which the amount of the metal coating is increased by increasing the thickness of the cloth, it is difficult to form a uniform metal coating even inside the cloth, so that the plating processing speed is reduced. As a result, the productivity may be deteriorated, and the flexibility of the fabric may be impaired or the weight of the fabric may be increased.
[0006]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has high conductivity and electromagnetic shielding properties without impairing metal adhesion and plating workability. , And a method of manufacturing the same.
[0007]
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention firstly provides a conductive material comprising a metal laminate layer formed on a laminate of a plurality of substrates composed of fibers. It is a fiber material.
A second aspect is the conductive fiber material according to the first aspect, wherein the base material is a woven fabric.
A third aspect is the conductive fiber material according to the second aspect, wherein the textures of the woven fabrics to be laminated are laminated so as to have an angle difference so as not to be aligned in the same direction.
A fourth aspect is the conductive fiber material according to the third aspect, wherein the angle difference between the textures of the woven fabrics to be laminated is 20 to 90 degrees.
Fifth, the conductive fiber material according to any one of the first to fourth aspects, wherein the thickness of the laminated fabric including the metal coating layer is 150 μm or less.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. The fibers used in the present invention are polyester fibers, polyamide fibers, synthetic fibers such as acrylic fibers, semi-synthetic fibers such as acetate, recycled fibers such as rayon, inorganic fibers such as glass fibers and carbon fibers, cotton, Natural fibers such as wool and silk can be used, but polyester synthetic fibers such as polyethylene terephthalate are preferred from the viewpoint of chemical resistance, heat resistance and elastic recovery. The fibers used in the present invention are used for woven or non-woven fabrics used as a base material for plating, and discrimination between long fibers and short fibers, the thickness of yarn, the number of twists, etc. are appropriately determined according to use conditions and processing conditions. You can decide.
The laminated fabric of the present invention is obtained by laminating woven fabrics, nonwoven fabrics, or woven fabric and nonwoven fabric. The lamination may be not only a two-layer structure but also a three or more-layer structure. The number of fabrics and the type of fabric to be laminated can be appropriately determined in consideration of required shielding properties, fabric thickness, and the like. As a method of laminating, a method of laminating by applying an adhesive is preferably used. For the type of adhesive used for bonding, a hot melt resin such as an ethylene-vinyl acetate copolymer system, a polyester system, a polyamide system, or a polyurethane system can be used, but a polyurethane hot melt resin is preferably used in terms of adhesiveness. Can be The method of applying the adhesive to the fabric may be a spray method, a coating method, a dipping method, or the like. However, in consideration of the flexibility and plating processability of the laminated fabric, the adhesive is applied in a dot shape. A coating method using a possible gravure roll is preferably used. After the metal coating layer is formed on each of the fabrics, when the adhesive is applied in a dot shape and the fabrics are laminated, the metal layers formed on the two fabrics are separated into two layers as shown in FIG. , The shielding properties are improved. In addition, by forming the metal coating after laminating the cloths, it is possible to conduct electricity to the entire laminated cloth. Whether the metal film is formed on the cloth and then laminated, or the metal film is formed after the cloth is laminated can be appropriately selected depending on the application and the required shielding property.
In the present invention, as the metal used for the metal coating layer, known metals such as silver, copper and nickel can be used. The metal coating layer can use at least one of these metals. Known methods such as a sputtering method and a vacuum deposition plating method can be used as the metal film layer forming method, but in consideration of the uniformity and continuity of the formed metal film layer, the metal film layer is formed by an electroless plating method. Is preferred. Further, electroplating may be performed after electroless plating. The metal coating layer formed by these methods may be formed by laminating different kinds of metals, or may be formed in the form of eutectoid or alloy.
[0015] When the base material to be laminated is a woven fabric, the dispersion of the thickness of the fabric is smaller than that of a nonwoven fabric or a knitted fabric, and when the metal coating is formed, the dispersion of the shielding property is small and the tensile strength is excellent. preferable. When laminating woven fabrics, it is preferable that the woven fabrics are laminated with an angle difference so that the woven fabrics are not arranged in the same direction. By providing the angle difference, the opening portions of the fabrics to be laminated are blocked by the yarns constituting the other fabric, so that the shielding property is improved. For example, as shown in FIG. 2 and FIG. 3, it is preferable to set the angle difference between 20 and 90 degrees because a shielding property of approximately 110 dB or more can be obtained.
When laminating the base material, the lamination with such an angle difference of the weave can improve the shielding property and improve the breaking strength of the laminated fabric.
The thickness of the fabric after lamination including the metal coating layer is preferably 150 μm or less. If the thickness is larger than 150 μm, the thickness of the formed metal coating may vary, the adhesion of the metal coating may be deteriorated, and the flexibility of the fabric after the formation of the metal coating may be impaired.
It is needless to say that the conductive fiber material having such a structure can be used not only as a gasket for electromagnetic wave shielding but also as a tape material (grounding material).
By adopting such a structure, the conductive fiber material of the present invention can obtain a better shielding property than conventional products without increasing the thickness of the formed metal film, and the metal film forming process can be performed in a conventional manner. It is possible to carry out under the condition of. Therefore, it is possible to obtain a conductive fiber material having improved shielding properties without lowering the metal peel strength.
[0019]
The following examples illustrate the present invention. The measuring method used in the examples is as follows.
1. It was measured according to JIS L-1098 using a cloth thickness constant pressure thickness measuring instrument (TYPE PF-11 manufactured by Rough Rock Co.) after forming the metal film.
2. An adhesive tape (No. 3305 manufactured by Nitto Kogyo Co., Ltd.) is cut into a predetermined length and adhered on the metal film adhesion sample. A roller having a weight of 2 kg and a roll width of 25.4 mm is rolled over the pressure-sensitive adhesive tape, and pressure is applied for 10 reciprocations. Thereafter, the adhesive tape is peeled off, and the peeling state of the metal film is visually determined.
○ No peeling of metal coating. Little peeling of metal coating. × Many peeling of metal coating. The state of formation of the plating workable metal film was visually judged.
○ The metal film is formed evenly. The metal film is formed almost uniformly. × There is unevenness in the formation of the metal film. Bending resistance was measured according to JIS L-1096 A method (45 ° cantilever method).
5. Shielding properties Using a sample having a size of 120 mm × 120 mm, the shielding properties were measured by the KEC method. That is, a sample is placed between the transmitting and receiving antennas in the shield box, the intensity of the received electrolysis is measured, and the attenuation rate (dB) is obtained from the ratio with the intensity when the sample is not present.
[0020]
Example 1 A thermally bonded non-woven fabric of polyester fiber (30 g / m 2 in weight, about 60 μm in thickness) was applied to a non-woven fabric by a gravure coating method with a urethane hot-glue adhesive to form a two-ply (two-layer product). Next, the obtained laminated fabric was immersed in an aqueous solution containing 0.3 g / L of palladium chloride, 30 g / L of stannous chloride, and 300 ml / L of 36% hydrochloric acid for 2 minutes, and then washed with water. Subsequently, the substrate was immersed in borofluoric acid having an acid concentration of 0.1 N at 40 ° C. for 5 minutes, and then washed with water. Next, it was immersed in an electroless copper plating solution consisting of 7.5 g / L of copper sulfate, 30 ml / L of 37% formalin, and 85 g / L of Rochelle salt at 40 ° C. for 5 minutes, and then washed with water. Subsequently, nickel was laminated by immersing in an electric nickel plating solution of 300 g / L of nickel sulfamate, 30 g / L of boric acid, 15 g / L of nickel chloride, and pH 3.7 at 35 ° C. for 10 minutes at a current density of 5 A / dm 2. After washing with water, a conductive fiber material was obtained. Table 1 shows the evaluation results.
[0021]
Example 2 A plain woven fabric (density: 180 × 166 / inch) made of polyester fiber (warp: 16 dtex12f, weft: 21 dtex21f, thickness: 50 μm) was scoured and dried to remove excess oil and impurities. Next, the two layers were overlapped together with the texture, and a urethane-based hot melt adhesive was applied and bonded by a gravure roll coating method to form a two-layer product. The same treatment as in Example 1 was performed, and copper and nickel were laminated to obtain a conductive fiber material. Table 1 shows the evaluation results.
[0022]
Example 3 The plain woven fabric of Example 2 was laminated with the texture shifted by 30 °, and a urethane-based hot melt adhesive was applied and bonded by a gravure roll coating method to obtain a two-layer laminated fabric. Thereafter, the same treatment as in Example 1 was performed to obtain a conductive fiber material. Table 1 shows the evaluation results.
[0023]
Example 4 The plain woven fabric of Example 2 was laminated with the weave shifted by 45 °, and a urethane hot melt adhesive was applied and bonded by a gravure roll coating method to obtain a two-layer laminated fabric. Thereafter, the same treatment as in Example 1 was performed to obtain a conductive fiber material. Table 1 shows the evaluation results.
[0024]
Comparative Example 1 A conductive fiber material was obtained by treating in the same manner as in Example 1 without laminating a thermally bonded nonwoven fabric of polyester fiber (basis weight: 30 g / m 2 , thickness: about 60 μm). Table 1 shows the evaluation results.
[0025]
Comparative Example 2 A conductive fiber material was obtained by treating in the same manner as in Example 1 without laminating a thermally bonded nonwoven fabric of polyester fiber (basis weight: 60 gm 2 / thickness: about 110 μm). Table 1 shows the evaluation results.
[0026]
Comparative Example 3 The plain textile of Example 1 was treated in the same manner as in Example 1 without laminating to obtain a conductive fiber material. Table 1 shows the evaluation results.
[0027]
Comparative Example 4 A plain woven fabric (density: 155 × 131 / inch) of polyester fiber (warp yarn: 56 dtex, 72 f wooly yarn, weft yarn: 33 dtex, 12 f raw yarn) was treated in the same manner as in Example 1 without laminating to obtain a conductive fiber material. Table 1 shows the evaluation results.
[0028]
Comparative Example 5 A plain woven fabric (density: 196 × 122 / inch) made of polyester fiber (warp: 33 dtex, 36 f Woolly yarn, weft: 67 dtex, 200 f Woolly yarn) was treated in the same manner as in Example 1 without laminating to obtain a conductive fiber material. . Table 1 shows the evaluation results.
[0029]
Comparative Example 6 A conductive fiber material was obtained by treating in the same manner as in Example 1 without laminating a satin woven fabric (density: 160 × 88 / inch) made of polyester (warp: 84 dtex 36f wooly yarn). Was. Table 1 shows the evaluation results.
[0030]
Comparative Example 7 A plain woven fabric (density: 155 × 131 / inch) made of polyester fiber (warp yarn: 56 dtex, 72 f wooly yarn, weft yarn: 33 dtex, 12 f raw yarn) was treated in the same manner as in Example 1 without laminating to obtain a conductive fiber material. Table 1 shows the evaluation results.
[0031]
[Table 1]
Figure 2004276443
[0032]
According to the present invention, compared to the conventional one-layer product, the increase in the thickness of the fabric after forming the metal film is small, the adhesion of the metal film and the plating processability are improved, and the conductive material having excellent shielding properties is obtained. A fibrous material can be provided. Further, in the case of laminating the fabrics, the shielding property can be improved by laminating the bias with a predetermined angle in the weave of the fabrics to be laminated.
[Brief description of the drawings]
FIG. 1 is a schematic view showing that an adhesive is applied in a dot shape and laminated on a fabric on which a metal film is formed.
FIG. 2 is a graph showing an example in which the shielding properties of the laminated fabric of the present invention depending on the lamination angle are measured.
FIG. 3 is a conceptual diagram showing that woven fabrics are laminated at an angle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper surface metal-coated fabric 2 Lower surface metal-coated fabric 3 Adhesive layer 4 Fabric 5 Warp 6 Weft

Claims (5)

繊維で構成された基材を複数枚積層したものに金属被膜層が形成されて成る導電性繊維材料。A conductive fiber material in which a metal coating layer is formed on a laminate of a plurality of base materials made of fibers. 基材が織物である請求項1の導電性繊維材料。The conductive fiber material according to claim 1, wherein the substrate is a woven fabric. 積層される織物の織目同士が同一方向に並ばないように角度差を持つように積層して成る請求項2記載の導電性繊維材料。3. The conductive fiber material according to claim 2, wherein the layers of the woven fabrics are laminated so as to have an angle difference so that the textures do not line up in the same direction. 積層される織物の織目同士の角度差が20〜90度である請求項3記載の導電性繊維材料。The conductive fiber material according to claim 3, wherein an angle difference between the textures of the woven fabrics to be laminated is 20 to 90 degrees. 金属被膜層を含む積層された布帛厚みが150μm以下である請求項1〜4記載の導電性繊維材料。5. The conductive fiber material according to claim 1, wherein the thickness of the laminated fabric including the metal coating layer is 150 [mu] m or less.
JP2003071764A 2003-03-17 2003-03-17 Conductive fibrous material Pending JP2004276443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071764A JP2004276443A (en) 2003-03-17 2003-03-17 Conductive fibrous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071764A JP2004276443A (en) 2003-03-17 2003-03-17 Conductive fibrous material

Publications (1)

Publication Number Publication Date
JP2004276443A true JP2004276443A (en) 2004-10-07

Family

ID=33288121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071764A Pending JP2004276443A (en) 2003-03-17 2003-03-17 Conductive fibrous material

Country Status (1)

Country Link
JP (1) JP2004276443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524007A (en) * 2007-03-30 2010-07-15 ダイキン工業株式会社 Volume hologram optical information recording medium
WO2011010697A1 (en) 2009-07-24 2011-01-27 旭化成せんい株式会社 Electromagnetic shielding sheet
WO2017082270A1 (en) * 2015-11-13 2017-05-18 富士フイルム株式会社 Conductive film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524007A (en) * 2007-03-30 2010-07-15 ダイキン工業株式会社 Volume hologram optical information recording medium
WO2011010697A1 (en) 2009-07-24 2011-01-27 旭化成せんい株式会社 Electromagnetic shielding sheet
US9233517B2 (en) 2009-07-24 2016-01-12 Asahi Kasei Fibers Corporation Electromagnetic shielding sheet
WO2017082270A1 (en) * 2015-11-13 2017-05-18 富士フイルム株式会社 Conductive film
JP2017088785A (en) * 2015-11-13 2017-05-25 富士フイルム株式会社 Conductive film
US10434748B2 (en) 2015-11-13 2019-10-08 Fujifilm Corporation Conductive film

Similar Documents

Publication Publication Date Title
JP3306665B2 (en) Conductive material and method of manufacturing the same
KR101254908B1 (en) Electromagnetic shielding sheet
JPWO2007083822A1 (en) Conductive gasket material
CN112703281B (en) Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
JP2006297714A (en) Metal thin film sheet for transfer
KR101004282B1 (en) Plating method of conductive fabric for Using Electromagnetic interference shield
JP2014045047A (en) Magnetic field-shielding electromagnetic wave shielding material
KR100741945B1 (en) Metal coated fiber materials
EP1900869A2 (en) Method of manufacturing ultra-thin soft conductive cloth
JP2004276443A (en) Conductive fibrous material
US20080057191A1 (en) Method of manufacturing ultra-thin soft conductive cloth
KR100903434B1 (en) Method for manufacturing ultra-thin conductive single-coated tape using nonwoven fabric and the conductive single-coated tape by the same
JP2918497B2 (en) Manufacturing method of high electromagnetic wave shielding composite sheet
JP2000208984A (en) Electromagnetic wave shielding material and manufacture thereof
TWI337937B (en) Method of manufacturing elastic conductive clothes
JP2004211247A (en) Flame-retardant conductive fabric
JP4065045B2 (en) Manufacturing method of electromagnetic shielding gasket material
JP2003152389A (en) Electromagnetic wave shielding material
EP1235473A1 (en) Gasket material for shielding electromagnetic waves and method for producing same
JPH11330778A (en) Laminate for electromagnetic wave shield and its manufacturing method
JP3854102B2 (en) Method for manufacturing electromagnetic shielding material
JPH11214886A (en) Conductive material and its manufacture
JP2002020944A (en) Base fabric for plating metal and metal-plated woven fabric
JP4575583B2 (en) Metal coated fiber material
JP2002020941A (en) Base fabric for plating metal and metal-plated wove fabric