JP2004275962A - Method and equipment for treating waste - Google Patents

Method and equipment for treating waste Download PDF

Info

Publication number
JP2004275962A
JP2004275962A JP2003073940A JP2003073940A JP2004275962A JP 2004275962 A JP2004275962 A JP 2004275962A JP 2003073940 A JP2003073940 A JP 2003073940A JP 2003073940 A JP2003073940 A JP 2003073940A JP 2004275962 A JP2004275962 A JP 2004275962A
Authority
JP
Japan
Prior art keywords
pyrolysis
gas
furnace
pressure
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003073940A
Other languages
Japanese (ja)
Inventor
Hideo Nishimura
秀生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003073940A priority Critical patent/JP2004275962A/en
Publication of JP2004275962A publication Critical patent/JP2004275962A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and equipment for treating waste, which do not result in scaling up of the entire facility even when waste is subjected to gas conversion using a plurality of rotary kiln pyrolysis furnaces. <P>SOLUTION: Upon charging of a set of the plurality of rotary kiln pyrolysis furnaces with flammable waste to perform pyrolysis and to generate pyrolysis gas and pyrolysis residues, the method involves: detecting the furnace pressure of each pyrolysis furnace; carrying out pyrolysis while conducting adjustment to reduce pressure differences among the pyrolysis furnaces by introducing water vapor into the pyrolysis furnaces each with a low furnace pressure; and converting a tar-content and a gas oil-content contained in the pyrolysis gas into reformed gas by causing the pyrolysis gas to react with oxygen-containing gas and water vapor within one reforming furnace. Furthermore, through the control of the suction pressure of an induction air blower sucking reformed gas according to the furnace pressure of the first pyrolysis furnace, furnace pressure fluctuation of the first pyrolysis furnace is adjusted preferably within ± 10 mmAq and more preferably within ± 5 mmAq. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は都市ごみやシュレッダーダスト、廃電線、廃プラ等の可燃性廃棄物をガスに変換するための廃棄物処理方法および装置に関するものである。
【0002】
【従来の技術】
我が国の従来の可燃性廃棄物の処理方法は、都市ごみについてはストーカー式焼却炉や流動床式焼却炉により焼却した後、燃焼排ガスの廃熱をボイラで蒸気回収し、回収した蒸気を蒸気タービン発電する方式が用いられている。しかしながら通常10〜15%程度の低い効率の発電しか行うことができず、廃棄物をエネルギー資源として有効利用できていないのが現状である。発電効率が低い原因は回収蒸気温度が300℃程度と低いためであり、発電効率向上のためには回収蒸気温度を一般の火力発電所並みの500〜600℃まで上昇させる必要があるが、燃焼排ガス中にはアルカリ金属等の腐食性ダストや塩酸ガスが含まれていることから、回収蒸気温度を高くするとボイラ過熱部の伝熱管温度が高くなって腐食性ダストや塩酸ガスによる高温腐食を受けてしまい、回収蒸気温度は300℃以下に抑える必要がある。ボイラの高温腐食を抑制するために高価な耐食鋼管を使用した場合でも回収蒸気温度は400℃程度で発電効率20%程度が限界である。また、シュレッダーダストや廃電線等の難処理プラスチック系廃棄物の処理方法については、ダイオキシン等の有毒ガス発生や炉体損傷が懸念されるために焼却炉による焼却処理が難しく、例えば非特許文献1に記載されているように大半が埋立て処分されておりエネルギー資源として利用できていないのが現状である。
【0003】
これらの問題の解決を目的とした新たな廃棄物処理方法として、例えば非特許文献2に記載されているように、廃棄物を熱分解炉で熱分解処理して廃棄物中の揮発分を熱分解ガスとした後、熱分解ガスを空気と共に改質炉内に導入し、改質炉内で1000〜1200℃程度の反応温度下で熱分解ガス中に含まれる高分子量の有機化合物であるタール分や軽油分を部分燃焼反応および水蒸気改質反応させてCO、H2、C数1〜4程度の炭化水素等からなる低分子量の改質ガスに変換し、改質ガスを冷却、精製した後、精製後の改質ガスをガスエンジン発電する廃棄物ガス変換法が開発されている。熱分解炉から副生する熱分解残渣については金属類を分離して炭化物を燃料に利用したり、溶融処理して得たスラグを路盤材等に利用する。
【0004】
廃棄物ガス変換法は廃棄物の持つ発熱量の大半が改質ガスの発熱量として回収されるため、冷却を伴うガス精製を行うことでき、クリーンガスを用いたガスエンジン発電により30%以上の高効率発電が可能である。
【0005】
廃棄物ガス変換法の熱分解炉の方式としては外熱式のロータリーキルン式熱分解炉や部分燃焼式の流動層熱分解炉あるいは移動層熱分解炉等があるが、高カロリーの熱分解ガスを回収したい場合には、熱分解ガスの燃焼および空気中窒素による希釈がないロータリーキルン式熱分解炉が特に優れた熱分解方式である。
【0006】
しかしながら、既存のロータリーキルン式熱分解炉を用いた廃棄物ガス変換法の抱える課題として、ロータリーキルン式熱分解炉は高温加熱した金属製ドラムの回転体構造であるため機械強度上の問題から大型化には限界があり、廃棄物処理規模が大きい場合には複数基の熱分解炉に分ける必要があるが、その際の全体プロセスは、図1のブロック図に示すように、熱分解炉後段の改質炉やガス冷却装置、ガス精製装置、誘引通風機についても各々熱分解炉の基数分設けなければならず設備が大型化してしまうという点が挙げられる。ロータリーキルンは、回転ドラムと架台部との接合面の気密性が低くてシール性能は通常キルン内圧で±10mmAq前後であり、一方、廃棄物は、性状が一様でないために各熱分解炉から発生する熱分解ガス量に差が生じるため、各熱分解炉から発生した熱分解ガスを一本の配管に集合して改質炉以降を一系列に集約させることは各熱分解炉内に圧力差が生じて回転ドラムと架台部との接合面からの熱分解ガス漏洩や空気進入が発生するために実施困難である。
【0007】
【非特許文献1】
「クリーンジャパン」vol.135,P22−25,2000、22頁11行目
【非特許文献2】
「自動車研究」Vol.23,No.12,P668−673、670頁図1
【0008】
【発明が解決しようとする課題】
本発明は、複数基のロータリーキルン式熱分解炉を用いて廃棄物のガス変換を行う場合でも、設備を大型化させない廃棄物の処理方法および装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
係る課題を解決するため、本発明の要旨とするところは、以下(1)〜(4)に示す通りである。
(1)複数基から構成されたロータリーキルン式の熱分解炉に可燃性廃棄物を装入して熱分解処理し、熱分解ガスと熱分解残渣を発生させる際に、前記各熱分解炉の炉内圧力を検出し、炉内圧力が低い熱分解炉へ水蒸気を導入して熱分解炉間の圧力差が低減するように調整しながら熱分解処理し、前記熱分解ガスを一基の改質炉内で酸素含有ガスおよび水蒸気と反応させて熱分解ガス中に含まれるタール分及び軽油分を改質ガスに変換することを特徴とする廃棄物の処理方法。
(2)第一基目の熱分解炉の炉内圧力に応じて改質ガスを吸引する誘引送風機の吸引圧力を制御して、第一基目の熱分解炉の炉内圧力の変動を±10mmAq以内に調整することを特徴とする(1)記載の廃棄物の処理方法。
(3)可燃性廃棄物を熱分解ガスと熱分解残渣とに熱分解する複数基から構成されたロータリーキルン式の熱分解炉と、前記熱分解ガスを酸素含有ガスおよび水蒸気と反応させて前記熱分解ガス中に含まれるタール分及び軽油分を改質ガスに変換する一基から構成される改質炉と、改ガスを冷却するガス冷却装置と、冷却後の前記改質ガスを精製するガス精製装置と、ガス精製後の前記改質ガスを吸引する誘引送風機を備え、各熱分解炉に炉内圧力検出器、水蒸気吹込装置および熱分解炉圧力制御装置を設けたことを特徴とする廃棄物の処理装置。
(4)誘引送風機が第一基目の熱分解炉の炉内圧力検出器からの圧力信号を受けて第一基目の熱分解炉の炉内圧力を調整する吸引圧力制御装置を有し、熱分解炉圧力制御装置は炉内圧力が低い熱分解炉内に水蒸気を導入して熱分解炉間の圧力差を低減させるように制御する機能を有することを特徴とする(3)記載の廃棄物の処理装置である。
【0010】
【発明の実施の形態】
図2は本発明の廃棄物の処理方法および装置を実施するための設備例を示すブロック図である。
【0011】
廃棄物は、廃棄物装入装置20、21を用いて外熱方式のロータリーキルン式熱分解炉22、23内にそれぞれ装入される。ロータリーキルン式熱分解炉22、23は廃棄物の熱分解温度以上に加熱され、廃棄物中の揮発分を熱分解ガスに変化させる。熱分解温度は、廃棄物の種類により異なるが、例えば、プラスチック系廃棄物や都市ごみでは400〜700℃程度である。ロータリーキルン式熱分解炉22、23から発生した熱分解ガスは、熱分解ガス集合配管29により一本の配管に集合させた後、改質炉30に導入し、改質炉30内で反応温度900℃程度以上で酸素含有ガス及び水蒸気と部分燃焼反応および改質反応をさせて熱分解ガス中に含まれる高分子量のタール分、軽油分をCO、H2、CO2、C数1〜4程度の炭化水素等から成る低分子量の改質ガスに変換する。酸素含有ガスは、空気や酸素富化空気、純酸素等が適用可能であるが、純酸素等の高酸素濃度ガスを用いることによってより発熱量の高い改質ガスを回収することができる。得られた改質ガスは、ガス冷却装置31により冷却し、ガス精製装置32によりダスト分離および塩酸ガスやH2S等の有毒ガス除去を行った後、誘引通風機33により吸引し送風する。ガス冷却装置31はボイラ等の一般的な方法が適用できる。ガス精製装置32の設備構成は、特に限定するところはなく改質ガス中の有害ガス組成やガスの用途に応じて構成するのが望ましい。精製後の改質ガス38は、ガスエンジン発電への利用の他、燃料ガス等として広く利用することが可能である。一方熱分解炉から発生した熱分解残渣36、37は金属類と炭化物を分離して炭化物を燃料に利用したり、溶融処理して得たスラグを路盤材に利用するなど既存の再資源化方法が適用可能である。
【0012】
ロータリーキルン式の熱分解炉22、23には、それぞれ炉内圧力検出器24、25および水蒸気吹込装置27、28を設け、炉内圧力検出器24、25の圧力信号は熱分解炉圧力制御装置26に送信される。熱分解炉圧力制御装置26は熱分解ガス発生量変動によって各熱分解炉間に生じた圧力差を検知し、炉内圧力が低い熱分解炉内へ水蒸気を導入して圧力差が低減するように調整する。
【0013】
また、改質炉内または改質炉出口配管内に改質ガス圧力検出器39を設けて改質ガス圧力信号Eを誘引通風機33に送信し、誘引通風機33の吸引圧力を制御して系内の圧力を調整する。
【0014】
熱分解炉には作業安全上の理由から、CO等の有毒ガスを含む熱分解ガスを微量でも漏洩させないことが求められ、熱分解ガス漏洩を長期にわたって確実に防止するためには熱分解炉内を若干負圧で管理することが好適である。一方、通常のロータリーキルンのシール性能は±10mmAq前後である。従って各熱分解炉の炉内圧力は0mmAq〜−10mmAqとすることが好ましく、さらに、キルン内への空気進入も抑制してより高カロリーの熱分解ガスを回収するためには0mmAq〜−5mmAqとすることがより好ましい。
【0015】
各熱分解炉の圧力差は、各炉の炉内圧力を0mmAq〜−10mmAqの範囲内に調整するために±10mmAq以下とすることが好ましく、0mmAq〜−5mmAqの範囲内に調整するために±5mmAq以下とすることがより好ましい。
【0016】
水蒸気導入量制御により熱分解炉間の圧力差を調整することによって複数の熱分解炉から発生した熱分解ガスを一本の配管に集合して一基の改質炉に導入することができ、改質炉以降の各工程を一系列に集約して全体設備を小型化することが可能となる。尚、図2の例では、熱分解炉の基数を2基としたが、廃棄物の処理規模に応じて熱分解炉を3基以上の構成とすることも可能である。
【0017】
また図3は、本発明の廃棄物の処理方法および装置を実施するための別の設備例を示すブロック図である。熱分解炉22の圧力信号Aを直接誘引通風機33に送信して誘引通風機33の吸引圧力を制御し、熱分解炉22の炉内圧力を調整する。炉内圧力を0〜−10mmAqにすることが好ましく、0〜−5mmAqにすることがより好ましいのは、図2の場合と同様である。
【0018】
さらに、炉内圧力検出器24、25の圧力信号A,Bを熱分解炉圧力制御装置26に送信し、熱分解炉22を基準として熱分解炉間の圧力差を調整する。即ち、熱分解炉23の炉内圧力が熱分解炉22に比べて低い場合は熱分解炉23に水蒸気を導入するように熱分解炉圧力制御装置26から水蒸気吹込装置28に制御信号を送り、一方熱分解炉23の炉内圧力が熱分解炉22に比べて高い場合には熱分解炉22に水蒸気を導入するように熱分解炉圧力制御装置26から水蒸気吹込装置27に制御信号を送って熱分解炉間の圧力差を調整する。圧力差は±10mmAq以下とすることが好ましく、±5mmAq以下とすることがより好ましいのは図2の場合と同様である。熱分解炉内の圧力を直接誘引通風機に送信して吸引圧力を制御することにより、熱分解炉内圧力変化に対する応答性が高くなり、より安定した操業が可能となる。
【0019】
【実施例】
(実施例1)
実施例1として図3に示した本発明例に係る装置を用いて低位発熱量約4500±500kcal/kgのシュレッダーダストを処理量200T/Dで処理した例を示す。熱分解炉として外熱式ロータリーキルンを2基設け、各熱分解炉からの熱分解ガスを熱分解ガス集合配管で一本の配管に集合させて一基の改質炉に導入し、改質炉以降の各工程は一系列に集約した。改質炉の酸素含有ガスには純酸素を用い、ガス冷却装置にボイラを用い、ガス精製装置にはダスト分離のためのバグフィルタと塩酸ガス除去のためのアルカリスクラバーを用いた。シュレッダーダストを各熱分解炉にそれぞれ装入して500〜600℃に加熱し、各熱分解炉から発生した熱分解ガスを集合させて改質炉にて酸素濃度99vol%以上からなる酸素含有ガス300kg/t、水蒸気500kg/tと反応させて1000〜1200℃で改質し、得られた改質ガスをガス冷却装置で200℃まで冷却したのち、バグフィルタでダストを分離し、アルカリスクラバーで塩酸ガスを10ppm以下まで除去した後、塩酸ガス除去後の低位発熱量2300±100kcal/Nm3、ガス流量1万Nm3/hrの改質ガスを燃料ガスやガスエンジン発電に利用した。また、熱分解炉22の圧力信号を誘引通風機33に送信して誘引通風機の吸引圧力を制御して熱分解炉22の炉内圧力を調整すると共に、各熱分解炉の圧力信号を熱分解炉圧力制御装置26に送信し、熱分解炉23の炉内圧力が熱分解炉22に比べて低い場合は熱分解炉23に水蒸気を導入し、熱分解炉23の炉内圧力が熱分解炉22に比べて高い場合には熱分解炉22に水蒸気を導入して熱分解炉間の圧力差を調整した。その結果各熱分解炉からの熱分解ガス発生量が変動しても各熱分解炉の炉内圧力を0mmAq〜−5mmAqの範囲内に制御でき、複数のロータリーキルン式熱分解炉を用いて改質炉以降を一系統に集約して廃棄物を処理しても熱分解炉内への熱分解ガス漏洩や空気混入のない安定した操業を行うことができた。
【0020】
【発明の効果】
本発明により複数基のロータリーキルン式熱分解炉を用いて廃棄物のガス変換を行う場合でも、全体設備を大型化させない廃棄物の処理が可能となる。
【図面の簡単な説明】
【図1】従来技術を用いて複数基のロータリーキルン式熱分解炉にて廃棄物ガス変換を行う場合の装置例の設備例を示すブロック図である。
【図2】本発明に係る装置の設備例を示すブロック図である。
【図3】本発明に係る装置の別の設備例を示すブロック図である。
【符号の説明】
1、2…廃棄物装入装置
3、4…ロータリーキルン式熱分解炉
5、6…改質炉
7、8…ガス冷却装置
9、10…ガス精製装置
11、12…誘引通風機
13、14…酸素含有ガス吹込装置
15、16…水蒸気吹込装置
17、18…熱分解残渣
19…精製後改質ガス
20、21…廃棄物装入装置
22、23…ロータリーキルン式熱分解炉
24、25…炉内圧力検出器
26…熱分解炉圧力制御装置
27、28…水蒸気吹込装置
29…熱分解ガス集合配管
30…改質炉
31…ガス冷却装置
32…ガス精製装置
33…誘引通風機
34…酸素含有ガス吹込装置
35…水蒸気吹込装置
36、37…熱分解残渣
38…精製後改質ガス
39…改質ガス圧力検出器
A…ロータリーキルン熱分解炉22の炉内圧力信号
B…ロータリーキルン熱分解炉23の炉内圧力信号
C…ロータリーキルン熱分解炉22への水蒸気吹込量制御信号
D…ロータリーキルン熱分解炉23への水蒸気吹込量制御信号
E…改質ガス圧力信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waste disposal method and apparatus for converting flammable waste such as municipal solid waste, shredder dust, waste electric wire, waste plastic, etc. into gas.
[0002]
[Prior art]
The conventional method for treating combustible waste in Japan is that municipal solid waste is incinerated with a stoker-type incinerator or fluidized-bed incinerator, the waste heat of the combustion exhaust gas is recovered by steam in a boiler, and the collected steam is collected by a steam turbine. A method of generating power is used. However, at present, only low-efficiency power generation of about 10 to 15% can be performed, and waste cannot be effectively used as an energy resource at present. The reason why the power generation efficiency is low is that the recovered steam temperature is as low as about 300 ° C. In order to improve the power generation efficiency, it is necessary to raise the recovered steam temperature to 500 to 600 ° C., which is the same level as a general thermal power plant. Since corrosive dust such as alkali metals and hydrochloric acid gas are contained in the exhaust gas, if the recovered steam temperature is raised, the temperature of the heat transfer tubes in the boiler heating section rises, causing high-temperature corrosion due to corrosive dust and hydrochloric acid gas. Therefore, the temperature of the recovered steam needs to be suppressed to 300 ° C. or less. Even when expensive corrosion-resistant steel pipes are used to suppress high-temperature corrosion of the boiler, the recovery steam temperature is about 400 ° C. and the power generation efficiency is about 20%. In addition, regarding a method for treating difficult-to-treat plastic waste such as shredder dust and waste electric wires, it is difficult to perform incineration treatment using an incinerator because there is a concern about generation of toxic gas such as dioxin and damage to the furnace body. Currently, most of them are landfilled and cannot be used as energy resources as described in.
[0003]
As a new waste disposal method aimed at solving these problems, for example, as described in Non-Patent Document 2, waste is thermally decomposed in a pyrolysis furnace to remove volatiles in the waste by heat. After the cracking gas, the pyrolysis gas is introduced into the reforming furnace together with air, and tar is a high molecular weight organic compound contained in the pyrolysis gas at a reaction temperature of about 1000 to 1200 ° C. in the reforming furnace. And gas oil are subjected to partial combustion reaction and steam reforming reaction to convert it into low molecular weight reformed gas composed of CO, H2, hydrocarbons having about 1 to 4 carbon atoms, and then to cool and refine the reformed gas. In addition, a waste gas conversion method for generating gas engine power from purified gas after purification has been developed. Regarding the pyrolysis residue produced as a by-product from the pyrolysis furnace, the metals are separated and the carbide is used as fuel, or the slag obtained by the melting treatment is used as the roadbed material or the like.
[0004]
In the waste gas conversion method, most of the calorific value of the waste is recovered as the calorific value of the reformed gas, so that gas purification with cooling can be performed, and 30% or more can be achieved by gas engine power generation using clean gas. High efficiency power generation is possible.
[0005]
Examples of the pyrolysis furnace for the waste gas conversion method include an external heating type rotary kiln pyrolysis furnace, a partial combustion type fluidized bed pyrolysis furnace and a moving bed pyrolysis furnace. For recovery, a rotary kiln-type pyrolysis furnace that does not burn pyrolysis gas and is not diluted by nitrogen in the air is a particularly excellent pyrolysis method.
[0006]
However, the problem with the waste gas conversion method using the existing rotary kiln-type pyrolysis furnace is that the rotary kiln-type pyrolysis furnace has a rotating structure of a metal drum heated at high temperature, so it has to be enlarged due to mechanical strength problems. However, when the scale of waste treatment is large, it is necessary to divide the furnace into multiple pyrolysis furnaces. In this case, the overall process is as shown in the block diagram of FIG. The quality furnace, the gas cooling device, the gas purification device, and the induction ventilator also need to be provided for each of the number of the pyrolysis furnaces, and the equipment becomes large. Rotary kilns have low airtightness at the joint surface between the rotating drum and the gantry, and the sealing performance is usually about ± 10 mmAq at the internal pressure of the kiln. On the other hand, waste is generated from each pyrolysis furnace due to uneven properties. Since the amount of pyrolysis gas generated varies, the pyrolysis gas generated from each pyrolysis furnace is gathered in one pipe and the reformer and subsequent sections are concentrated in one line. This is difficult to implement because of the occurrence of thermal decomposition gas leakage and air entry from the joint surface between the rotating drum and the gantry.
[0007]
[Non-patent document 1]
"Clean Japan" vol. 135, P22-25, 2000, page 22, line 11 [Non-Patent Document 2]
"Automotive Research," Vol. 23, no. 12, p. 668-673, p. 670, FIG.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method and an apparatus for treating waste without increasing the size of the equipment even when the waste is converted into gas using a plurality of rotary kiln-type pyrolysis furnaces.
[0009]
[Means for Solving the Problems]
In order to solve such problems, the gist of the present invention is as follows (1) to (4).
(1) When the combustible waste is charged into a rotary kiln-type pyrolysis furnace composed of a plurality of units and subjected to pyrolysis to generate pyrolysis gas and pyrolysis residues, the furnaces of the pyrolysis furnaces are used. The internal pressure is detected, the steam is introduced into a pyrolysis furnace having a low furnace pressure, and pyrolysis is performed while adjusting the pressure difference between the pyrolysis furnaces to be reduced. A method for treating waste, comprising reacting an oxygen-containing gas and water vapor in a furnace to convert tar and gas oil contained in a pyrolysis gas into a reformed gas.
(2) The suction pressure of the induction blower for sucking the reformed gas is controlled in accordance with the pressure in the furnace of the first pyrolysis furnace, and the fluctuation of the pressure in the furnace of the first pyrolysis furnace is ± The method for treating waste according to (1), wherein the adjustment is performed within 10 mmAq.
(3) a rotary kiln-type pyrolysis furnace composed of a plurality of units for pyrolyzing combustible waste into a pyrolysis gas and a pyrolysis residue; and reacting the pyrolysis gas with an oxygen-containing gas and steam to form the heat. A reforming furnace configured to convert the tar content and light oil content contained in the cracked gas into a reformed gas, a gas cooling device for cooling the reformed gas, and a gas for purifying the cooled reformed gas Disposal, comprising: a refining device, an induction blower for sucking the reformed gas after gas purification, and a pyrolysis furnace provided with an in-furnace pressure detector, a steam blowing device, and a pyrolysis furnace pressure control device. Equipment for processing objects.
(4) the induction blower has a suction pressure control device that receives the pressure signal from the pressure detector in the furnace of the first pyrolysis furnace and adjusts the pressure in the furnace of the first pyrolysis furnace; (3) The disposal according to (3), wherein the pressure control device for the pyrolysis furnace has a function to control the pressure difference between the pyrolysis furnaces by introducing steam into the pyrolysis furnace having a low furnace pressure. It is an object processing device.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 is a block diagram showing an example of equipment for implementing the waste disposal method and apparatus of the present invention.
[0011]
The waste is charged into the external heating type rotary kiln-type pyrolysis furnaces 22 and 23 using the waste charging devices 20 and 21, respectively. The rotary kiln type pyrolysis furnaces 22 and 23 are heated to a temperature equal to or higher than the pyrolysis temperature of the waste, and convert volatile components in the waste into a pyrolysis gas. The pyrolysis temperature varies depending on the type of waste, but is, for example, about 400 to 700 ° C. for plastic waste and municipal waste. The pyrolysis gas generated from the rotary kiln-type pyrolysis furnaces 22 and 23 is collected into one pipe by a pyrolysis gas collecting pipe 29, and then introduced into the reforming furnace 30, where a reaction temperature of 900 is obtained. A partial combustion reaction and a reforming reaction with an oxygen-containing gas and water vapor at about not less than about ° C to convert high molecular weight tar and light oil components contained in the pyrolysis gas into CO, H2, CO2, and carbonization of about 1 to 4 carbon atoms. It is converted into low molecular weight reformed gas composed of hydrogen and the like. As the oxygen-containing gas, air, oxygen-enriched air, pure oxygen, or the like can be used, but by using a high oxygen concentration gas such as pure oxygen, a reformed gas having a higher calorific value can be recovered. The obtained reformed gas is cooled by a gas cooling device 31, and is subjected to dust separation and removal of toxic gas such as hydrochloric acid gas and H2S by a gas purification device 32, and then is sucked and blown by an induction ventilator 33. A general method such as a boiler can be applied to the gas cooling device 31. The equipment configuration of the gas purification device 32 is not particularly limited, and is desirably configured according to the composition of the harmful gas in the reformed gas and the use of the gas. The purified reformed gas 38 can be widely used as fuel gas and the like in addition to being used for gas engine power generation. On the other hand, the pyrolysis residues 36 and 37 generated from the pyrolysis furnace are separated from metals and carbides by using the carbides as fuel, or by using the slag obtained by melting for the roadbed material. Is applicable.
[0012]
The rotary kiln type pyrolysis furnaces 22 and 23 are provided with in-furnace pressure detectors 24 and 25 and steam blowing devices 27 and 28, respectively, and the pressure signals of the in-furnace pressure detectors 24 and 25 are supplied to a pyrolysis furnace pressure control device 26. Sent to. The pyrolysis furnace pressure control device 26 detects a pressure difference generated between the pyrolysis furnaces due to a variation in the amount of generated pyrolysis gas, and introduces steam into the pyrolysis furnace having a low furnace pressure to reduce the pressure difference. Adjust to
[0013]
Also, a reformed gas pressure detector 39 is provided in the reforming furnace or in the reforming furnace outlet pipe to transmit a reformed gas pressure signal E to the induction ventilator 33 and control the suction pressure of the induction ventilator 33. Adjust the pressure in the system.
[0014]
For reasons of work safety, it is required that the pyrolysis furnace not leak even a small amount of pyrolysis gas containing toxic gas such as CO, etc. It is preferable to control the pressure with a slight negative pressure. On the other hand, the sealing performance of a normal rotary kiln is around ± 10 mmAq. Therefore, the furnace pressure of each pyrolysis furnace is preferably set to 0 mmAq to -10 mmAq. Further, in order to suppress the intrusion of air into the kiln and recover higher-calorie pyrolysis gas, the pressure is set to 0 mmAq to -5 mmAq. Is more preferable.
[0015]
The pressure difference between the pyrolysis furnaces is preferably ± 10 mmAq or less in order to adjust the furnace pressure of each furnace within the range of 0 mmAq to −10 mmAq, and ± 10 mmAq to adjust the pressure within the range of 0 mmAq to −5 mmAq. More preferably, it is set to 5 mmAq or less.
[0016]
By adjusting the pressure difference between the pyrolysis furnaces by controlling the amount of steam introduced, pyrolysis gases generated from a plurality of pyrolysis furnaces can be collected into one pipe and introduced into one reforming furnace, It is possible to reduce the size of the entire facility by integrating the processes after the reforming furnace into one series. In the example of FIG. 2, the number of the thermal decomposition furnaces is two, but the number of the thermal decomposition furnaces may be three or more according to the scale of the waste treatment.
[0017]
FIG. 3 is a block diagram showing another example of equipment for implementing the waste disposal method and apparatus of the present invention. The pressure signal A of the pyrolysis furnace 22 is transmitted directly to the induction ventilator 33 to control the suction pressure of the induction ventilator 33 and adjust the pressure inside the pyrolysis furnace 22. The furnace pressure is preferably 0 to -10 mmAq, more preferably 0 to -5 mmAq, as in the case of FIG.
[0018]
Further, the pressure signals A and B of the furnace pressure detectors 24 and 25 are transmitted to the pyrolysis furnace pressure control device 26, and the pressure difference between the pyrolysis furnaces is adjusted based on the pyrolysis furnace 22. That is, when the pressure inside the pyrolysis furnace 23 is lower than that of the pyrolysis furnace 22, a control signal is sent from the pyrolysis furnace pressure control device 26 to the steam blowing device 28 so as to introduce steam into the pyrolysis furnace 23, On the other hand, when the furnace pressure of the pyrolysis furnace 23 is higher than that of the pyrolysis furnace 22, a control signal is sent from the pyrolysis furnace pressure control device 26 to the steam blowing device 27 so as to introduce steam into the pyrolysis furnace 22. Adjust the pressure difference between the pyrolysis furnaces. The pressure difference is preferably ± 10 mmAq or less, and more preferably ± 5 mmAq or less, as in the case of FIG. By controlling the suction pressure by directly transmitting the pressure in the pyrolysis furnace to the induction ventilator, the responsiveness to the pressure change in the pyrolysis furnace is increased, and more stable operation is possible.
[0019]
【Example】
(Example 1)
Example 1 As Example 1, an example in which shredder dust having a lower heating value of about 4500 ± 500 kcal / kg was processed at a processing amount of 200 T / D using the apparatus according to the example of the present invention shown in FIG. Two externally heated rotary kilns are provided as pyrolysis furnaces, and pyrolysis gases from each pyrolysis furnace are collected into one pipe by pyrolysis gas collecting pipe and introduced into one reforming furnace. Subsequent steps were consolidated into one series. Pure oxygen was used for the oxygen-containing gas in the reforming furnace, a boiler was used for the gas cooling device, and a bag filter for dust separation and an alkaline scrubber for removing hydrochloric acid gas were used for the gas purification device. The shredder dust is charged into each of the pyrolysis furnaces and heated to 500 to 600 ° C., and the pyrolysis gas generated from each of the pyrolysis furnaces is aggregated, and the oxygen-containing gas having an oxygen concentration of 99 vol% or more is obtained in the reforming furnace. React with 300 kg / t and 500 kg / t of steam to reform at 1000-1200 ° C., cool the obtained reformed gas to 200 ° C. with a gas cooling device, separate dust with a bag filter, and use an alkaline scrubber. After removing the hydrochloric acid gas to 10 ppm or less, the reformed gas having a lower calorific value of 2300 ± 100 kcal / Nm3 and a gas flow rate of 10,000 Nm3 / hr after removing the hydrochloric acid gas was used for fuel gas and gas engine power generation. Further, the pressure signal of the pyrolysis furnace 22 is transmitted to the induction ventilator 33 to control the suction pressure of the induction ventilator to adjust the pressure inside the pyrolysis furnace 22 and to convert the pressure signal of each pyrolysis furnace into a heat signal. The steam is transmitted to the cracking furnace pressure control device 26, and when the furnace pressure of the cracking furnace 23 is lower than that of the cracking furnace 22, steam is introduced into the cracking furnace 23, and the furnace pressure of the cracking furnace 23 is pyrolyzed. When it was higher than the furnace 22, steam was introduced into the pyrolysis furnace 22 to adjust the pressure difference between the pyrolysis furnaces. As a result, even if the amount of generated pyrolysis gas from each pyrolysis furnace fluctuates, the pressure inside each pyrolysis furnace can be controlled within a range of 0 mmAq to -5 mmAq, and reforming is performed using a plurality of rotary kiln-type pyrolysis furnaces. Even if the waste after the furnace was integrated into one system and the waste was treated, stable operation could be performed without pyrolysis gas leaking into the pyrolysis furnace or air mixing.
[0020]
【The invention's effect】
According to the present invention, even when gas is converted into waste using a plurality of rotary kiln-type pyrolysis furnaces, it is possible to treat waste without increasing the size of the entire facility.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of equipment of an example of an apparatus in a case where waste gas conversion is performed in a plurality of rotary kiln type pyrolysis furnaces using a conventional technique.
FIG. 2 is a block diagram showing an example of equipment of an apparatus according to the present invention.
FIG. 3 is a block diagram showing another example of equipment of the apparatus according to the present invention.
[Explanation of symbols]
1, 2 ... waste charging device 3, 4 ... rotary kiln type pyrolysis furnace 5, 6 ... reforming furnace 7, 8 ... gas cooling device 9, 10 ... gas purification device 11, 12 ... induction ventilator 13, 14 ... Oxygen-containing gas injecting devices 15, 16 Steam injecting devices 17, 18 Thermal decomposition residue 19 Refined reformed gas 20, 21, Waste charging device 22, 23 Rotary kiln type pyrolysis furnaces 24, 25 Inside the furnace Pressure detector 26: Pyrolysis furnace pressure control devices 27, 28 ... Steam blowing device 29 ... Pyrolysis gas collecting pipe 30 ... Reforming furnace 31 ... Gas cooling device 32 ... Gas purification device 33 ... Induction ventilator 34 ... Oxygen-containing gas Blower 35 Steam blower 36, 37 Pyrolysis residue 38 Purified reformed gas 39 Reformed gas pressure detector A Pressure signal in the rotary kiln pyrolysis furnace 22 B Furnace of the rotary kiln pyrolysis furnace 23 Internal pressure signal C ... steam blowing amount control signal E ... reformed gas pressure signal to the steam blowing amount control signal D ... rotary kiln pyrolysis furnace 23 to the rotary kiln pyrolysis furnace 22

Claims (4)

複数基から構成されたロータリーキルン式の熱分解炉に可燃性廃棄物を装入して熱分解処理し、熱分解ガスと熱分解残渣を発生させる際に、前記各熱分解炉の炉内圧力を検出し、炉内圧力が低い熱分解炉内へ水蒸気を導入して熱分解炉間の圧力差が低減するように調整しながら熱分解処理し、前記熱分解ガスを一基の改質炉内で酸素含有ガスおよび水蒸気と反応させて熱分解ガス中に含まれるタール分及び軽油分を改質ガスに変換することを特徴とする廃棄物の処理方法。When the combustible waste is charged and pyrolyzed into a rotary kiln-type pyrolysis furnace composed of a plurality of units, a pyrolysis gas and a pyrolysis residue are generated. Detected and pyrolyzed while introducing so as to reduce the pressure difference between the pyrolysis furnaces by introducing steam into the pyrolysis furnace having a low furnace pressure, and converting the pyrolysis gas into one reforming furnace. Wherein the tar and gas oil components contained in the pyrolysis gas are converted into reformed gas by reacting with oxygen-containing gas and water vapor. 第一基目の熱分解炉の炉内圧力に応じて改質ガスを吸引する誘引送風機の吸引圧力を制御して、第一基目の熱分解炉の炉内圧力の変動を±10mmAq以内に調整することを特徴とする請求項1記載の廃棄物の処理方法。By controlling the suction pressure of the induction blower for sucking the reformed gas in accordance with the pressure inside the furnace of the first pyrolysis furnace, the fluctuation of the pressure inside the furnace of the first pyrolysis furnace is within ± 10 mmAq. The method for treating waste according to claim 1, wherein the adjustment is performed. 可燃性廃棄物を熱分解ガスと熱分解残渣とに熱分解する複数基から構成されたロータリーキルン式の熱分解炉と、前記熱分解ガスを酸素含有ガスおよび水蒸気と反応させて前記熱分解ガス中に含まれるタール分及び軽油分を改質ガスに変換する一基から構成される改質炉と、改質ガスを冷却するガス冷却装置と、冷却後の前記改質ガスを精製するガス精製装置と、ガス精製後の前記改質ガスを吸引する誘引送風機を備え、各熱分解炉に炉内圧力検出器、水蒸気吹込装置および熱分解炉圧力制御装置を設けたことを特徴とする廃棄物の処理装置。A rotary kiln-type pyrolysis furnace composed of a plurality of units that pyrolyze combustible waste into a pyrolysis gas and a pyrolysis residue; and reacting the pyrolysis gas with an oxygen-containing gas and water vapor to produce a pyrolysis gas. Furnace for converting a tar component and a gas oil component contained in a gas into a reformed gas, a gas cooling device for cooling the reformed gas, and a gas purifying device for purifying the cooled reformed gas And an induction blower for aspirating the reformed gas after gas purification, wherein each pyrolysis furnace is provided with an in-furnace pressure detector, a steam blowing device, and a pyrolysis furnace pressure control device. Processing equipment. 誘引送風機が第一基目の熱分解炉の炉内圧力検出器からの圧力信号を受けて第一基目の熱分解炉の炉内圧力を調整する吸引圧力制御装置を有し、熱分解炉圧力制御装置は炉内圧力が低い熱分解炉内に水蒸気を導入して熱分解炉間の圧力差を低減させるように制御する機能を有することを特徴とする請求項3記載の廃棄物の処理装置。An induction blower having a suction pressure control device for adjusting a furnace pressure of the first pyrolysis furnace by receiving a pressure signal from a furnace pressure detector of the first pyrolysis furnace; 4. The waste treatment according to claim 3, wherein the pressure controller has a function of controlling the pressure difference between the pyrolysis furnaces by introducing steam into the pyrolysis furnace having a low furnace pressure. apparatus.
JP2003073940A 2003-03-18 2003-03-18 Method and equipment for treating waste Withdrawn JP2004275962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073940A JP2004275962A (en) 2003-03-18 2003-03-18 Method and equipment for treating waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073940A JP2004275962A (en) 2003-03-18 2003-03-18 Method and equipment for treating waste

Publications (1)

Publication Number Publication Date
JP2004275962A true JP2004275962A (en) 2004-10-07

Family

ID=33289714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073940A Withdrawn JP2004275962A (en) 2003-03-18 2003-03-18 Method and equipment for treating waste

Country Status (1)

Country Link
JP (1) JP2004275962A (en)

Similar Documents

Publication Publication Date Title
US9410095B2 (en) Method of gasification of biomass using gasification island
JP4764095B2 (en) Purification method of gasification gas
ITFI20000034A1 (en) INTEGRATED CONTROL AND DESTRUCTIVE DISTILLATION OF CARBON WASTE
JP2007039613A (en) Method and apparatus for purifying gasified gas
JP2007112879A (en) System and method for thermal decomposition treatment of waste product
JP4220811B2 (en) Waste gasification method and apparatus
CN111960418A (en) Integrated system for biomass gasification and activation
RU2570331C1 (en) Method for processing solid household and industrial wastes and device for thereof realisation
JP4601576B2 (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from combustible waste
JP2004275962A (en) Method and equipment for treating waste
JP4211118B2 (en) Method and apparatus for producing activated carbon from waste
JP2009240888A (en) System for gasifying waste
JP2011241339A (en) Desalter and desalting method for chlorine-containing waste material
WO2001090645A1 (en) Wastes treating method and device
JP2004238535A (en) Method and apparatus for utilizing combustible waste as resource
JPH10103640A (en) Waste thermal decomposition disposal facility
JP2004217834A (en) Method for recovering gas in treatment of biomass in cdq
JP2006336955A (en) Method for treating medical waste and facility thereof
JP2004307682A (en) Method and apparatus for gasifying flammable waste
JPH0849820A (en) Device and method for treating waste
JP2002326076A (en) Method for treating waste and equipment therefor
JPH0849828A (en) Device and method for treating waste
RU2711422C1 (en) Unit for recycling solid medical wastes
CN209944341U (en) Waste high-temperature air/steam gasification combustion melting system
JPH0849821A (en) Device and method for treating waste

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606