JP2004275960A - Treating method for organic waste water - Google Patents

Treating method for organic waste water Download PDF

Info

Publication number
JP2004275960A
JP2004275960A JP2003073870A JP2003073870A JP2004275960A JP 2004275960 A JP2004275960 A JP 2004275960A JP 2003073870 A JP2003073870 A JP 2003073870A JP 2003073870 A JP2003073870 A JP 2003073870A JP 2004275960 A JP2004275960 A JP 2004275960A
Authority
JP
Japan
Prior art keywords
biological treatment
treatment tank
sludge
bacillus
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003073870A
Other languages
Japanese (ja)
Other versions
JP4378981B2 (en
Inventor
Etsuji Tachiki
悦二 立木
Takuya Ando
卓也 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003073870A priority Critical patent/JP4378981B2/en
Publication of JP2004275960A publication Critical patent/JP2004275960A/en
Application granted granted Critical
Publication of JP4378981B2 publication Critical patent/JP4378981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for solving the problem that running cost is high, maintenance is difficult, or the like, in the treatment of organic waste water. <P>SOLUTION: In this treating method, bacilli belonging to the family Bacillaceae are made to be dominant in a biological treatment tank 2 and thereby there is no need to continue the purchase of nutrients for activating the bacilli. Further, microorganismic groups except for the Bacillaceae bacilli in sludge are selectively sterilized and by utilizing them as nutrients in the biological treatment tank 2, the Bacillaceae bacilli can be propagated/be made to be dominant without newly establishing a culture tank to culture the bacilli. Thus, the quality of treated water is improved, an amount of excess sludge 6 is decreased, malodors are suppressed and further maintenance can be facilitated and cost reduction can be attained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生物処理槽を用いた有機性排水の処理方法に関するものである。
【0002】
【従来の技術】
従来、微生物を利用する排水処理法が広く普及している。しかし、排水の処理に伴って発生する余剰汚泥の発生量が多いことや、また有機性排水の処理工程で悪臭が発生するなどの問題が生じていた。
しかしながら、近年、バチルス・ズブチルス(略称バチルス菌、以下バチルス菌と記載する)を用いて排水処理を行うことにより、処理水質の向上、余剰汚泥発生量の減少、悪臭の抑制が期待できるという報告が増えている(特許文献1〜3)。
【0003】
バチルス菌を用いた排水処理法には、バチルス菌を排水処理装置の生物処理槽へ添加または移送し、生物処理を行う方法が主であるが、大容量の生物処理槽へ添加すると菌濃度が低下することによって菌の活力も低下し、バチルス菌本来の性能を発揮することが難しい。
また、微生物は水温や溶存酸素などの適した環境、好む餌などが満たされないと増殖・優占化しない為、バチルス菌が優占化していない条件の生物処理槽に菌を添加しても、増殖・優占化させることは難しい。
【0004】
このことから、生物処理槽内にバチルス菌を継続的に添加し続けなければならない。しかし、高価(商品1kgの値が5000円以上するといわれている)であるバチルス菌を継続的に添加し続けることはランニングコストが嵩み、運転維持することが困難である。このことから、バチルス菌を培養する為の槽を新しく設置し、定期的に生物処理槽へ移送する方法が提案されている(特許文献4)。
【0005】
【特許文献1】
特開2001−995号公報(第2頁〜第6頁)
【特許文献2】
特開2001−224365号公報(第2頁〜第4頁)
【特許文献3】
特開2002−18469号公報(第2頁〜第4頁、第1図)
【特許文献4】
特開2002−126786号公報(第2頁〜第5頁、第2図)
【0006】
【発明が解決しようとする課題】
しかし、新設した槽内でバチルス菌を培養する為には、バチルス菌の増殖に適した環境を作り、好む餌を与え続けなければならず、槽内の運転管理に手間がかかり、バチルス菌用の餌を購入または運搬しなければならないという問題点がある。
【0007】
本発明は、上記問題点に鑑みなされたもので、その課題とするところは、生物処理槽内にバチルス菌又は外部から購入または運搬したバチルス菌を活性化させる餌(栄養源)を添加せず、また培養槽を新設し外部から購入または運搬したバチルス菌用の餌を用いて培養し生物処理槽へ移送しなくても生物処理槽内にバチルス菌を増殖・優占化させ、処理水質の向上、余剰汚泥の減少、悪臭の抑制を行うとともに、維持管理を容易にしコストの低減を行うことができる有機性排水の処理方法を提供するものである。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、汚泥中のバチルス菌以外の微生物群を選択的に死滅させた後に生物処理槽で生物処理を行うことにより、前記生物処理槽内に前記バチルス・ズブチルスを増殖・優占化させることを特徴とする。
上記発明によれば、前記汚泥中のバチルス菌以外の微生物群を選択的に死滅させたものを前記生物処理槽で生物処理することにより、微生物の死骸である細胞壁や細胞膜が前記生物処理槽内に蓄積し、バチルス菌がこれを餌とすることによって、前記生物処理槽内にバチルス菌を増殖・優占化させることができる。
【0009】
また、前記有機性排水処理装置内に有している汚泥中のバチルス菌以外の微生物群を選択的に死滅させることで汚泥中のバチルス菌の割合を増加させ、前記生物処理槽内にバチルス菌を優占化させることができる。その結果、処理水質の向上、余剰汚泥の減少、悪臭の抑制を行うとともに、維持管理を容易にしコストの低減を行うことができる。
【0010】
請求項2に記載の発明は、汚泥中のバチルス・ズブチルス以外の微生物群を選択的に死滅させた後に生物処理槽とは異なる第二の生物処理槽で生物処理を行うことにより、前記第二の生物処理槽内に前記バチルス・ズブチルスを増殖・優占化させることを特徴とする。
【0011】
上記発明によれば、前記汚泥中のバチルス菌以外の微生物群を選択的に死滅させたものを生物処理槽とは異なる第二の生物処理槽で生物処理することにより、微生物の死骸である細胞壁や細胞膜が前記第二の生物処理槽内に蓄積し、バチルス菌がこれを餌とすることによって、前記第二の生物処理槽内にバチルス菌を増殖・優占化させることができる。
また、バチルス菌以外の微生物群を選択的に死滅させることによって、汚泥中のバチルス菌の割合を増加させ、前記第二の生物処理槽内にバチルス菌を優占化させることができる。その結果、短期間で余剰汚泥の減少、悪臭の抑制を行うとともに、維持管理を容易にしコストの低減を行うことができる。
【0012】
汚泥中のバチルス・ズブチルス以外の微生物群を選択的に死滅させる手段として物理的手段および化学的手段の両方または少なくとも一方を用いれば良い。
物理的手段および化学的手段の両方または少なくとも一方を用いることにより、微生物の死骸である細胞壁、細胞膜などを細かく破壊しその残骸を残したまま死滅させることができ、バチルス菌の餌(栄養源:炭水化物、アミノ酸、リン、カリウム等)とすることができる。
【0013】
【発明の実施の形態】
以下に、本発明の実施の形態について説明する。
図1は、本発明の第一の実施の形態を示す工程図である。
【0014】
図1において、有機性排水1は生物処理槽2Aへ送られ生物処理される。
ここで、生物処理槽2Aの処理方式は、特に限定するものではなく、好気性処理または嫌気性処理のどちらでもよい。また、1槽式、多槽式でもよく、浮遊式活性汚泥、接触濾床、流動担体を用いた処理法など有機性排水1を生物処理する方式であれば特に限定するものではない。
【0015】
図1において、生物処理槽2Aで処理された有機性排水1は、固液分離装置3へ送られ重力沈降によって固液分離され、上澄水と沈降した汚泥とに分けられる。
図1では、固液分離装置3は、重力沈降を用いたものであるが、特に限定するものではなく、例えば、膜分離、加圧浮上、遠心分離などを用いてもよい。
図1において、固液分離された上澄水は、処理水4として系外へ排出される。また、固液分離され沈降した汚泥は、返送汚泥5と余剰汚泥6とに分岐され、返送汚泥5は生物処理槽2Aへ返送され、余剰汚泥6は系外へ排出される。
【0016】
余剰汚泥6は、系外へ排出された後、濃縮、脱水、乾燥などを行い、廃棄物として処理してもよいし、堆肥化処理などを行い土壌改良材などとして有効利用してもよい。
図1において、返送汚泥5は、さらに分岐し、その一部を死滅手段7へ移送する。ここでいう死滅手段7とは、汚泥中の微生物群を物理的手段及び化学的手段を用いて汚泥中のバチルス菌以外の微生物群を選択的に死滅させることにより、バチルス菌を増殖・優占化させるものである。これは、バチルス菌が芽胞を形成することによって他の微生物では死滅してしまうような温度変化、衝撃に耐えることができるという特徴を利用したものである。
【0017】
死滅手段7において、物理的手段は、特に限定するものではなく、例えば、超音波、ホモジナイザー、ミル破砕、回転ディスク、ジェット噴流などを用いてもよい。また、化学的手段も特に限定するものではなく、例えば、酸、アルカリ、オゾン、酸化剤、還元剤を用いることができる。本発明では、物理的手段および化学的手段の両方または少なくとも一方を用いればよいが、化学的手段である酸、アルカリを用いた場合は、処理後にpHが6〜8程度になるように中和処理を行わなければならず、また、オゾンを用いた場合についても、排オゾン処理を行い、排オゾン濃度を0.01mg/L以下にする必要がある。
【0018】
本発明では一実施の形態として物理的手段を用いた有機性排水の処理方法について説明する。
物理的手段としてホモジナイザー、ミル破砕、回転ディスクなどを用いた場合、有機性排水1が生活系の排水である時は特に、汚泥中に毛髪などの固形物が多く含まれており、装置内に閉塞を生じやすい。また、ジェット噴流を用いた場合、口径の小さな穴に汚泥を通すため固形物が穴に詰まり閉塞しやすく、頻繁な維持管理作業が必要となる。これに対し、超音波を用いた場合は、装置内に固形物が閉塞することが少なく、また、微生物を外部からのみ破壊するのではなく、内部からも死滅させるため殺傷効率がよく、死滅手段7に超音波を用いることが特に望ましい。
【0019】
死滅手段7に超音波を用いる場合には、超音波を照射する容器の大きさ・形状などは特に限定するものはでなく、例えば、円筒形、立方体、配管などどんな形でもよい。
また、超音波振動子の設置場所についても特に限定するものではなく、装置の上からでも下からでも横からでもよく、また、直接振動子を容器内に設置してもよい。その他、実施形態によって最も効率のよい方法を選択することができる。
【0020】
超音波の照射条件は、特に限定するものではないが、周波数は20kHz〜10MHzが望ましい。また、超音波強度は、汚泥量、接触時間、出力によって決定されるが、選択的にバチルス菌を死滅させないためは、出力を500〜5000Wの間で調節し、1日当たりの余剰汚泥6の発生量の2〜8倍量の汚泥を処理するのが望ましい。
また、超音波の振動エネルギーによって汚泥の温度が上昇する。この温度は、特に限定するものではないが、60〜80℃にするのが望ましい。これは、通常、40〜50℃以上で大半の微生物が死滅するが、バチルス菌は芽胞を形成することによって80℃でも生息することができるため、効率的にバチルス菌以外の微生物群を選択的に死滅させることができる。
【0021】
図1において、死滅手段7で処理された死滅処理汚泥8は、生物処理槽2Aへ返送され、生物処理される。ここで、死滅処理汚泥8とは、死滅手段7により汚泥中のバチルス菌以外の微生物群を死滅させたときの、死骸である細胞壁や細胞膜などを含む汚泥である。
【0022】
バチルス菌には、微生物には分解しにくいといわれる細胞壁や細胞膜を自身の持つ細胞壁分解酵素やタンパク質分解酵素によって分解し、餌とする性質がある。したがって、死滅処理汚泥8を生物処理槽2Aに返送することにより、バチルス菌が増殖するのに必要な餌が豊富な状態となり、生物処理槽2A内にバチルス菌が増殖し、優占化する。
【0023】
また、芽胞となったバチルス菌は、生息に適した環境(pH5〜8、水温5〜40℃、DO0.1〜8.0mg/L)になると発芽し活動を開始する。このことから、死滅手段7により芽胞化したバチルス菌を生物処理槽2Aで発芽させるために、生物処理槽2Aをバチルス菌の生息に適した環境にしておくのが望ましい。
【0024】
以上の様に、生物処理槽2A内にバチルス菌を増殖・優占化させることによって、バチルス菌が死滅処理汚泥8を分解・除去することから余剰汚泥6の発生量を低減することができる。
【0025】
また、バチルス菌は、臭気成分を分解する能力を有しており、排水処理工程時のDO(溶存酸素)が低い条件のときに発生するアンモニア、硫化水素などの悪臭の原因となる成分を分解するため、有機性排水処理工程時に発生する悪臭を抑制することができる。
【0026】
さらに、有機性排水1にでん粉および脂肪などが多く含まれている場合、通常の生物処理槽2A内にはこれらを分解・除去する微生物が少なく未処理のまま処理水4に含まれることが多いが、バチルス菌は、これらを分解・除去する性能を有しているため処理水4の水質を向上させることができる。
【0027】
図2は、本発明の第二の実施の形態を示す工程図である。図2において、有機性排水1は、生物処理槽2Aへ送られ生物処理された後、固液分離装置3へ送られ重力沈降によって固液分離され、上澄水と沈降した汚泥とに分けられる。その後、固液分離された上澄水は、処理水4として系外に排出され、また、固液分離され沈降した汚泥は、返送汚泥5と余剰汚泥6とに分岐し、返送汚泥5は全量を死滅手段7へ移送され、余剰汚泥6は系外に排出される。
【0028】
図1との相違点は、返送汚泥5の全量を死滅手段7へ移送するようにした点である。これによって、死滅手段7を設置するための配管の分岐による配管材量、工事の手間が軽減され、また、死滅手段7の設置スペースを少なくすることができる。
【0029】
図2において、死滅手段7に移送された返送汚泥5は、図1の場合と同様に、死滅処理され、死滅処理汚泥8として生物処理槽2Aへ返送され、生物処理される。返送汚泥5の全量を死滅手段7へ移送するため、死滅手段7によって、返送汚泥5内の微生物群を過剰に死滅させてしまうと、生物処理槽2内の微生物群の数が減少し、有機性排水1、死滅処理汚泥8の処理能力を低下させてしまう恐れがある。
【0030】
このため、死滅手段7の運転方法として、図示しないがタイマー制御などを用いて間欠運転を行い、生物処理槽2A内の微生物群の数が減少しすぎない様に操作することが望ましい。
また、生物処理槽2A内は、図1の場合と同様に、バチルス菌の生息に適した環境しておくことが望ましい。
【0031】
以上の様に、生物処理槽2A内にバチルス菌を増殖・優占化させることによって、図1の場合と同様に、余剰汚泥6の発生量を減少、悪臭を抑制、処理水4の水質を向上させる効果が得られる。
【0032】
図3は、本発明の第三の実施の形態を示す工程図である。図3において、図1および図2との相違点は、死滅手段7を生物処理槽2A内に設置した点である。生物処理槽2A内に死滅手段7を設置し、死滅処理を行うことによって、死滅手段7を設置するために配管を切断および分岐させる必要がなく、また、設置スペースを確保する必要がなくなる。
【0033】
しかし、死滅手段7として、超音波を用いる場合、超音波を照射する容器を用いず超音波振動子のみを生物処理槽2A内へ設置した時は、生物処理槽2A内の温度を5〜40℃に設定することが望ましい。これは、生物処理槽2A内の温度を40℃以上にした場合、バチルス菌以外の微生物群がほとんど死滅し、生物処理槽2A内の微生物の数が減少してしまうため、有機性排水1、および死滅処理汚泥8を十分処理できなくなり、処理水4が悪化し、余剰汚泥6が減少しないなどの影響がでる可能性があるためである。
【0034】
また、生物処理槽2A内は、図1の場合と同様に、バチルス菌の生息に適した環境にしておくことが望ましい。
【0035】
以上の様に、生物処理槽2A内にバチルス菌を増殖・優占化させることによって、図1の場合と同様に、余剰汚泥6の発生量を低減、悪臭を抑制、処理水4の水質を向上させる効果が得られる。
なお、図示していないが、死滅手段7を生物処理槽2A内に設置せずとも、生物処理槽2A内の汚泥を死滅手段7に送り、死滅処理後の死滅処理汚泥8を生物処理槽2へ返送してもよい。
【0036】
図4は、本発明の第四の実施の形態を示す工程図である。図4において、有機性排水1は生物処理槽2Bへ送られ生物処理される。
ここで、生物処理槽2Bの処理方式は、特に限定するものではなく、有機性排水1を生物処理する方式であればよい。
【0037】
図4において、生物処理槽2Bで処理された有機性排水1は、固液分離装置3へ送られ、重力沈降によって固液分離され、上澄水と沈降した汚泥とに分けられる。
図4では、固液分離装置3に重力沈降を用いたものであるが、特に限定するものではなく、例えば、膜分離、加圧浮上、遠心分離などを用いてもよい。
【0038】
図4において、固液分離された上澄水は処理水4として系外へ排出される。また、固液分離され沈降した汚泥は、返送汚泥5として生物処理槽2Bへ返送される。また、返送汚泥5はさらに分岐し、その一部を第二の生物処理槽9へ移送される。
【0039】
第二の生物処理槽9の、処理方式は、特に限定するものではなく、1槽式、多槽式でもよく、浮遊式活性汚泥、接触濾床、流動担体を用いた処理法など生物生物処理する方式であればよい。
【0040】
第二の生物処理槽9の容量は、特に限定するものではないが、生物処理槽2Bに対して1/20〜1/2にするのが望ましい。これは、第二の生物処理槽9を生物処理槽2Bより小さくすることによって、死滅手段7の死滅効率がよくなり、菌金濃度の低下を抑えることにより、生物処理槽2B内でのバチルス菌を増殖・優占化より短期間で行えるためである。
【0041】
図4において、第二の生物処理槽9内の汚泥は、死滅手段7へ移送される。
ここでいう死滅手段7とは、図1の場合と同様に、汚泥中の微生物群を物理的手段および化学的手段を用いてバチルス菌以外の微生物群を選択的に死滅ものであり、第二の生物処理槽9内に、バチルス菌を増殖・優占化させるものである。また、死滅手段7は、物理的手段および化学的手段の両方または少なくとも一方を用いればよいが、特に超音波を用いることが特に望ましい。
【0042】
本発明で死滅手段7に、超音波を用いる場合には、超音波を照射する容器の大きさ・形状などは特に限定するものはでなく、また、超音波振動子の設置場所においても特に限定するものではない。その他、実施形態によって最も効率のよい方法を選択することができる。
【0043】
超音波の照射条件は、特に限定するものではないが、周波数は20kHz〜10MHzが望ましく、超音波強度は、出力を500〜5000Wの間で調節し、1日当たりの第二の生物処理槽9への返送汚泥5の流入量の2〜8倍量の汚泥を処理するのが望ましい。また、温度も特に限定するものではないが、60〜80℃にするのが望ましい。
【0044】
図4において、死滅手段7で処理された汚泥は、死滅処理汚泥8として再び第二の生物処理槽9へ返送される。
ここで、死滅処理汚泥8とは、死滅処理7により汚泥中のバチルス菌以外の微生物群を死滅させたときの、死骸である細胞壁や細胞膜などを含む汚泥であり、これをバチルス菌の餌とすることによって、第二の生物処理槽内にバチルス菌を増殖・優占化させることができる。
【0045】
また、第二の生物処理槽9は、芽胞となったバチルス菌が生息に適した環境(pH5〜8、水温5〜40℃、DO0.1〜8.0mg/L)になり、発芽し活動を開始するように調整することが望ましい。
【0046】
図4において、第二の生物処理槽9内の汚泥は、一部余剰汚泥6として系外に排出され、図1の場合と同様に、処理される。また、第二の生物処理槽9内に膜分離装置10を設置し、膜透過水11として生物処理槽2へ移送される。
【0047】
膜透過水11を生物処理槽2へ移送することによって、第二の生物処理槽9内の水量を一定に保つことができ、また、第二の生物処理槽9内の汚泥濃度を高濃度に保持することができるため、死滅手段7による死滅効率がよくなり、生物処理槽2Bでバチルス菌の増殖・優占化させるよりも短期間で行うことができる。なお、図示していないが、膜透過水11の移送先は、特に限定するものではなく、例えば、有機性排水1と混合させてもよいし、処理水4と混合して系外に排出してもよい。
【0048】
以上の様に、生物処理槽2内にバチルス菌を増殖・優占化させることによって、バチルス菌が死滅処理汚泥8を分解・除去することから余剰汚泥6の発生量を減少させることができる。
【0049】
また、バチルス菌は臭気成分を分解する能力を有しており、排水処理工程時のDO(溶存酸素)が低い条件のときに発生するアンモニア、硫化水素などの悪臭の原因となる成分を分解するため、有機性排水処理工程時に発生する悪臭を抑制することができる。
【0050】
図5は、本発明の第五の実施の形態を示す工程図である。図5において、図4との相違点は、死滅手段7を第二の生物処理槽9内に設置した点である。
これによって、死滅手段7を設置するために新たに配管を引かなくてもよく、また、設置スペースを確保する必要がない。
【0051】
しかし、死滅手段7として、超音波を用いる場合、超音波を照射する容器を用いず超音波振動子のみを第二の生物処理槽9へ設置した時は、槽内の温度を5〜40℃に設定することが望ましい。これは、第二の生物処理槽9内の温度を40℃以上にすることによって、バチルス菌以外の微生物群を過剰に死滅させてしまうため、第二の生物処理槽9内の微生物群が減少し、第二の生物処理槽9内で死滅処理汚泥8を十分処理できなくなり、余剰汚泥6が減少しない可能性があるためである。
【0052】
また、第二の生物処理槽9内は、図4の場合と同様に、バチルス菌の生息に適した環境しておくことが望ましい。
以上のように、生物処理槽2内にバチルス菌を増殖・優占化させることによって、余剰汚泥6の発生量を減少することができ、悪臭を抑制する効果が得られる。
【0053】
(実施例1)
以下に、本発明の実施例1を具体的に説明する。
【0054】
(表1)は、死滅手段7に超音波を用いて、図1に示した工程を実施した時の生物処理槽2A内の優占菌を示したものである。超音波装置の運転を行わない場合をRun1、超音波装置の運転を行った場合をRun2とし、生物処理槽2Aにおけるバチルス菌の優占化の比較を行った。Run2においては、超音波周波数を26kHz、出力を1200W、接触時間を77分とし、1日の処理量を余剰汚泥6の発生量の3倍量として、約2ヶ月間の運転を行った。
【0055】
(表1)の結果より、Run1では優占種としてバチルス菌が存在していないが、Run2では優占種としてバチルス菌が確認された。このことより、本発明が生物処理槽2A内にバチルス菌を増殖・優占化させることが明らかとなった。
【0056】
【表1】

Figure 2004275960
(表2)は、実施例1の各Runの処理水4の水質の平均値を示したものである。(表2)の結果より、Run1運転時の処理水4よりもRun2運転時の処理水4の方がSS、BOD、CODにおいてすべて濃度が下回っていた。
【0057】
【表2】
Figure 2004275960
図6は、実施例1の各Runの余剰汚泥6の発生量を示したものである。図6の結果より、Run2の余剰汚泥6の発生量は、Run1の約30%となり、約70%の余剰汚泥6の発生量が減少していることが確認された。
【0058】
また、Run1運転時の生物処理槽2A内からは若干悪臭が感じられたが、Run2運転時に生物処理槽2Aから悪臭は全く感じられなかったことから、明らかにバチルス菌による臭気分解が行われていて、臭気が抑制させていた。
また、約2ヶ月間運転を行った時の各Run1運転時のランニングコストを算出し比較したところ、Run2の方が約40%低減されていた。
【0059】
(実施例2)
以下に、本発明の実施例2を具体的に説明する。
【0060】
(表3)は、死滅手段7に超音波を用いて、図4に示した工程を実施した時の第二の生物処理槽9内の優占菌を示したものである。
超音波装置の運転を行わない場合をRun1、超音波装置の運転を行った場合をRun2とし、第二の生物処理槽9におけるバチルス菌の優占化の比較を行った。Run2においては、超音波周波数26kHz、出力1200W、接触時間77分とし、1日の処理量を第二の生物処理槽9に移送する返送汚泥5の3倍量として、約2ヶ月間の運転を行った。
【0061】
(表3)の結果より、Run1では優占種としてバチルス菌が存在していないが、Run2では優占菌としてバチルス菌が確認された。このことより、本発明が第二の生物処理槽9内にバチルス菌を増殖・優占化させることが明らかとなった。
【0062】
【表3】
Figure 2004275960
図7は、実施例2の各Runにおける余剰汚泥6の発生量を示したものである。図7の結果より、Run2の余剰汚泥発生量は、Run1の約20%となり、約80%の余剰汚泥6の発生量が減少していることが確認された。
【0063】
また、Run1運転時の第二の生物処理槽9内からは若干悪臭が感じられたが、Run2運転時の第二の生物処理槽9内からは悪臭は全く感じられなかったことから、明らかにバチルス菌による臭気分解が行われていて、臭気が抑制させていた。
約2ヶ月間運転を行った時の各Run1運転時のランニングコストを算出し比較したところ、Run2運転時の方が約30%低減されていた。
【0064】
【発明の効果】
以上のように本発明は、死滅手段を用いた処理によって、有機性排水処理装置内に有している汚泥中のバチルス菌以外の微生物群を選択的に死滅させた後、生物処理槽または第二の生物処理槽へ送ることによって、生物処理槽または第二の生物処理槽内にバチルス菌が増殖するのに必要な餌を蓄積させることができる。その結果、生物処理槽内にバチルス菌または外部から購入または運搬したバチルス菌を活性化する餌(栄養源)を添加せず、また培養槽を新設し外部から購入または運搬したバチルス菌用の餌を用いて培養し生物処理槽へ移送しなくても生物処理槽内または第二の生物処理槽にバチルス菌を増殖・優占化させることができ、その結果として、処理水質の向上、余剰汚泥の減少、悪臭の抑制を行うとともに、維持管理を容易にしコストの低減を行うことができる。
【図面の簡単な説明】
【図1】本発明の第一の実施の形態を示す工程図
【図2】本発明の第二の実施の形態を示す工程図
【図3】本発明の第三の実施の形態を示す工程図
【図4】本発明の第四の実施の形態を示す工程図
【図5】本発明の第五の実施の形態を示す工程図
【図6】本発明の実施例1の余剰汚泥発生量を示すグラフ
【図7】本発明の実施例2の余剰汚泥発生量を示すグラフ
【符号の説明】
1 有機性排水
2A、2B 生物処理槽
3 固液分離装置
4 処理水
5 返送汚泥
6 余剰汚泥
7 死滅手段
8 死滅処理汚泥
9 第二の生物処理槽
10 膜分離装置
11 膜透過水[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating organic wastewater using a biological treatment tank.
[0002]
[Prior art]
Conventionally, wastewater treatment methods using microorganisms have been widely used. However, there have been problems such as a large amount of excess sludge generated during the treatment of the wastewater and a bad smell being generated in the process of treating the organic wastewater.
However, in recent years, it has been reported that by performing wastewater treatment using Bacillus subtilis (abbreviated as Bacillus bacterium, hereinafter referred to as Bacillus bacillus), it is possible to expect improvement of treated water quality, reduction of surplus sludge generation amount, and suppression of odor. (Patent Documents 1 to 3).
[0003]
In the wastewater treatment method using Bacillus bacteria, the main method is to add or transfer Bacillus bacteria to the biological treatment tank of the wastewater treatment apparatus and perform biological treatment. The decrease reduces the vitality of the bacterium, making it difficult to exhibit the original performance of the Bacillus bacterium.
In addition, microorganisms do not proliferate or dominate unless suitable environments such as water temperature or dissolved oxygen, and preferred food are not satisfied, so even if bacteria are added to a biological treatment tank under conditions where Bacillus bacteria are not dominant, It is difficult to multiply and dominate.
[0004]
For this reason, it is necessary to continuously add Bacillus bacteria into the biological treatment tank. However, continuous addition of Bacillus bacillus which is expensive (it is said that the value of 1 kg of the product is 5000 yen or more) continuously increases the running cost and makes it difficult to maintain the operation. For this reason, a method has been proposed in which a new tank for culturing Bacillus bacteria is newly installed and periodically transferred to a biological treatment tank (Patent Document 4).
[0005]
[Patent Document 1]
JP 2001-995 A (pages 2 to 6)
[Patent Document 2]
JP 2001-224365 A (pages 2 to 4)
[Patent Document 3]
JP-A-2002-18469 (pages 2 to 4, FIG. 1)
[Patent Document 4]
JP-A-2002-126786 (pages 2 to 5, FIG. 2)
[0006]
[Problems to be solved by the invention]
However, in order to cultivate Bacillus bacteria in the newly established tank, it is necessary to create an environment suitable for the growth of Bacillus bacteria and to continue to feed the desired food. Has to be purchased or transported.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a biological treatment tank without adding a bait for activating Bacillus or a Bacillus purchased or transported from the outside (nutrition source). In addition, a new cultivation tank was constructed and cultivated using Bacillus bait purchased or transported from the outside, and without transfer to the biological treatment tank, the Bacillus bacteria were proliferated and dominant in the biological treatment tank, and the treated water quality was improved. It is an object of the present invention to provide a method for treating organic wastewater capable of improving, reducing excess sludge, suppressing odor, and facilitating maintenance and reducing costs.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is characterized in that the microorganisms other than Bacillus in the sludge are selectively killed, and then the biological treatment is performed in a biological treatment tank, whereby the Bacillus subtilis is propagated in the biological treatment tank. It is characterized by dominance.
According to the above invention, by selectively treating microorganisms other than Bacillus bacteria in the sludge with the biological treatment in the biological treatment tank, cell walls and cell membranes, which are dead bodies of the microorganisms, are placed in the biological treatment tank. And the Bacillus bacteria feed on the Bacillus bacteria, so that the Bacillus bacteria can grow and predominate in the biological treatment tank.
[0009]
In addition, the ratio of Bacillus bacteria in the sludge is increased by selectively killing microorganisms other than Bacillus bacteria in the sludge having in the organic wastewater treatment apparatus, and the Bacillus bacteria are contained in the biological treatment tank. Can be dominant. As a result, the quality of treated water can be improved, excess sludge can be reduced, and odor can be suppressed, and maintenance can be facilitated and costs can be reduced.
[0010]
The invention according to claim 2 is characterized in that the microorganisms other than Bacillus subtilis in sludge are selectively killed, and then the biological treatment is performed in a second biological treatment tank different from the biological treatment tank. Wherein the Bacillus subtilis is proliferated and made dominant in the biological treatment tank.
[0011]
According to the above invention, a cell wall which is a dead body of a microorganism is obtained by subjecting a microorganism which has been selectively killed to microorganisms other than Bacillus in the sludge to biological treatment in a second biological treatment tank different from the biological treatment tank. By accumulating cell membranes in the second biological treatment tank and feeding the Bacillus bacteria to the bait, the Bacillus bacteria can be proliferated and made dominant in the second biological treatment tank.
In addition, by selectively killing microorganisms other than Bacillus, the ratio of Bacillus in sludge can be increased, and Bacillus can be made dominant in the second biological treatment tank. As a result, excess sludge can be reduced and odors can be suppressed in a short period of time, and maintenance can be facilitated to reduce costs.
[0012]
As means for selectively killing microorganisms other than Bacillus subtilis in sludge, both or at least one of physical means and chemical means may be used.
By using physical means and / or chemical means, it is possible to finely destroy cell walls, cell membranes and the like, which are dead bodies of microorganisms, and to kill the microorganisms while leaving the debris. Carbohydrates, amino acids, phosphorus, potassium, etc.).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a process chart showing a first embodiment of the present invention.
[0014]
In FIG. 1, an organic wastewater 1 is sent to a biological treatment tank 2A for biological treatment.
Here, the treatment method of the biological treatment tank 2A is not particularly limited, and may be either aerobic treatment or anaerobic treatment. In addition, a single-tank type or a multi-tank type may be used, and there is no particular limitation as long as the organic wastewater 1 is biologically treated, such as a floating activated sludge, a contact filter bed, and a treatment method using a fluid carrier.
[0015]
In FIG. 1, an organic wastewater 1 treated in a biological treatment tank 2A is sent to a solid-liquid separator 3 where it is separated into solid and liquid by gravity sedimentation, and is separated into supernatant water and settled sludge.
In FIG. 1, the solid-liquid separator 3 uses gravity sedimentation, but is not particularly limited. For example, membrane separation, pressure flotation, centrifugation, or the like may be used.
In FIG. 1, the supernatant water separated into solid and liquid is discharged out of the system as treated water 4. Further, the sludge separated by solid-liquid separation and settling is branched into returned sludge 5 and excess sludge 6, the returned sludge 5 is returned to the biological treatment tank 2A, and the excess sludge 6 is discharged out of the system.
[0016]
After being discharged out of the system, the excess sludge 6 may be subjected to concentration, dehydration, drying, and the like to be treated as waste, or may be subjected to composting and the like to be effectively used as a soil improvement material.
In FIG. 1, the returned sludge 5 is further branched, and a part thereof is transferred to the killing means 7. The term “killing means 7” as used herein means that the microorganisms in the sludge are selectively killed by using physical and chemical means to kill the microorganisms other than the Bacillus in the sludge, so that the Bacillus is proliferated and dominant. It is to make it. This utilizes the characteristic that Bacillus bacteria can withstand temperature changes and impacts that can be killed by other microorganisms by forming spores.
[0017]
In the killing means 7, the physical means is not particularly limited, and for example, an ultrasonic wave, a homogenizer, a mill crush, a rotating disk, a jet jet, or the like may be used. The chemical means is not particularly limited, and for example, an acid, an alkali, ozone, an oxidizing agent, and a reducing agent can be used. In the present invention, both or at least one of a physical means and a chemical means may be used, but when an acid or an alkali which is a chemical means is used, neutralization is performed so that the pH becomes about 6 to 8 after the treatment. The treatment must be performed, and also in the case where ozone is used, it is necessary to perform the waste ozone treatment to reduce the waste ozone concentration to 0.01 mg / L or less.
[0018]
In the present invention, a method for treating organic wastewater using physical means will be described as one embodiment.
When a homogenizer, a mill crusher, a rotating disk, or the like is used as a physical means, particularly when the organic wastewater 1 is a domestic wastewater, sludge contains a large amount of solids such as hair, and is contained in the apparatus. Blockage easily occurs. In addition, when a jet jet is used, sludge passes through a small-diameter hole, so that solids are likely to be clogged in the hole and clogged, requiring frequent maintenance work. On the other hand, when ultrasonic waves are used, solids are less likely to be clogged in the apparatus, and the microorganisms are not only destroyed from the outside but also from the inside, so that the killing efficiency is high and the killing means is high. It is particularly desirable to use ultrasonic waves for 7.
[0019]
When using ultrasonic waves for the killing means 7, the size and shape of the container for irradiating the ultrasonic waves are not particularly limited, and may be any shape such as a cylinder, a cube, and a pipe.
Further, the installation place of the ultrasonic vibrator is not particularly limited. The ultrasonic vibrator may be placed from above, from below, or from the side, or the vibrator may be directly installed in the container. In addition, the most efficient method can be selected depending on the embodiment.
[0020]
The irradiation conditions of the ultrasonic wave are not particularly limited, but the frequency is preferably 20 kHz to 10 MHz. The ultrasonic intensity is determined by the amount of sludge, the contact time, and the output. In order not to kill Bacillus bacteria selectively, the output is adjusted between 500 and 5000 W to generate excess sludge 6 per day. It is desirable to treat 2 to 8 times the amount of sludge.
Further, the temperature of the sludge rises due to the vibration energy of the ultrasonic wave. This temperature is not particularly limited, but is preferably set to 60 to 80 ° C. This is because most of the microorganisms are usually killed at 40 to 50 ° C. or higher, but Bacillus can inhabit even at 80 ° C. by forming spores, so that microorganisms other than Bacillus can be efficiently selected. Can be killed.
[0021]
In FIG. 1, the killed sludge 8 treated by the killing means 7 is returned to the biological treatment tank 2A to be biologically treated. Here, the killing treated sludge 8 is sludge including dead cell walls and cell membranes when the killing means 7 kills microorganisms other than Bacillus bacteria in the sludge.
[0022]
Bacillus bacteria have the property of being degraded by their own cell wall degrading enzymes or proteolytic enzymes, which are said to be hardly degraded by microorganisms, and used as bait. Therefore, by returning the killed sludge 8 to the biological treatment tank 2A, the bait required for the growth of Bacillus bacteria is abundant, and the Bacillus bacteria grow in the biological treatment tank 2A and become dominant.
[0023]
In addition, the spore-forming Bacillus germinates and starts its activity in an environment suitable for inhabitation (pH 5 to 8, water temperature 5 to 40 ° C., DO 0.1 to 8.0 mg / L). For this reason, in order to germinate the spores of the Bacillus bacillus by the killing means 7 in the biological treatment tank 2A, it is desirable to set the biological treatment tank 2A in an environment suitable for the inoculation of the Bacillus bacteria.
[0024]
As described above, by growing and dominating Bacillus bacteria in the biological treatment tank 2A, the Bacillus bacteria decompose and remove the killed sludge 8, so that the amount of excess sludge 6 generated can be reduced.
[0025]
In addition, Bacillus bacteria have the ability to decompose odor components, and decompose components that cause malodor such as ammonia and hydrogen sulfide generated when the DO (dissolved oxygen) is low during the wastewater treatment process. Therefore, an odor generated during the organic wastewater treatment step can be suppressed.
[0026]
Furthermore, when the organic wastewater 1 contains a large amount of starch, fat, and the like, there are few microorganisms that decompose and remove these in the ordinary biological treatment tank 2A, and the treated water 4 often contains the microorganisms untreated. However, since Bacillus bacteria have the ability to decompose and remove them, the quality of the treated water 4 can be improved.
[0027]
FIG. 2 is a process chart showing a second embodiment of the present invention. In FIG. 2, an organic wastewater 1 is sent to a biological treatment tank 2A, where it is subjected to biological treatment, and then sent to a solid-liquid separator 3, where it is separated into solid and liquid by gravity sedimentation, and is separated into supernatant water and settled sludge. Thereafter, the supernatant liquid separated into solid and liquid is discharged out of the system as treated water 4, and the sludge separated by solid-liquid separation and settling is returned to returned sludge 5 and excess sludge 6, and the returned sludge 5 is entirely discharged. The sludge is transferred to the killing means 7 and the excess sludge 6 is discharged outside the system.
[0028]
The difference from FIG. 1 is that the entire amount of the returned sludge 5 is transferred to the killing means 7. Thus, the amount of piping material due to branching of the pipe for installing the killing means 7 and the labor for construction can be reduced, and the installation space for the killing means 7 can be reduced.
[0029]
In FIG. 2, the returned sludge 5 transferred to the killing means 7 is killed, as in the case of FIG. 1, returned to the biological treatment tank 2A as the killed sludge 8, and biologically treated. Since the entire amount of the returned sludge 5 is transferred to the killing means 7, if the killing means 7 excessively kills the microorganisms in the returned sludge 5, the number of microorganisms in the biological treatment tank 2 decreases, and There is a possibility that the treatment capacity of the wastewater 1 and the dead sludge 8 may be reduced.
[0030]
For this reason, as an operation method of the killing means 7, it is desirable to perform an intermittent operation using a timer control or the like (not shown) so that the number of microorganisms in the biological treatment tank 2A does not decrease too much.
Also, it is desirable that the inside of the biological treatment tank 2A be provided with an environment suitable for the inoculation of Bacillus bacteria, as in the case of FIG.
[0031]
As described above, by increasing and dominating Bacillus bacteria in the biological treatment tank 2A, the amount of excess sludge 6 is reduced, the odor is suppressed, and the quality of the treated water 4 is reduced, as in the case of FIG. The effect of improving is obtained.
[0032]
FIG. 3 is a process chart showing a third embodiment of the present invention. 3 is different from FIGS. 1 and 2 in that the killing means 7 is installed in the biological treatment tank 2A. By installing the killing means 7 in the biological treatment tank 2A and performing the killing process, it is not necessary to cut and branch the pipes for installing the killing means 7, and it is not necessary to secure an installation space.
[0033]
However, when using ultrasonic waves as the killing means 7, when only the ultrasonic vibrator is installed in the biological treatment tank 2A without using a container for irradiating the ultrasonic waves, the temperature in the biological treatment tank 2A is 5 to 40. It is desirable to set to ° C. This is because when the temperature in the biological treatment tank 2A is set to 40 ° C. or higher, microorganisms other than Bacillus germs almost die, and the number of microorganisms in the biological treatment tank 2A decreases. In addition, it is not possible to sufficiently treat the dead sludge 8, the treated water 4 is deteriorated, and the surplus sludge 6 is not reduced.
[0034]
Further, it is desirable that the inside of the biological treatment tank 2A be set in an environment suitable for the inoculation of Bacillus bacteria, as in the case of FIG.
[0035]
As described above, by increasing and dominating Bacillus bacteria in the biological treatment tank 2A, the amount of excess sludge 6 generated is reduced, the odor is suppressed, and the quality of the treated water 4 is reduced, as in the case of FIG. The effect of improving is obtained.
Although not shown, the sludge in the biological treatment tank 2A is sent to the killing means 7 even if the killing means 7 is not installed in the biological treatment tank 2A, and the killed sludge 8 after the killing treatment is removed from the biological treatment tank 2A. You may return it to
[0036]
FIG. 4 is a process chart showing a fourth embodiment of the present invention. In FIG. 4, the organic wastewater 1 is sent to a biological treatment tank 2B for biological treatment.
Here, the treatment method of the biological treatment tank 2B is not particularly limited, and may be any method as long as the organic wastewater 1 is treated biologically.
[0037]
In FIG. 4, the organic wastewater 1 treated in the biological treatment tank 2B is sent to a solid-liquid separator 3, where it is separated into solid and liquid by gravity sedimentation, and is separated into supernatant water and settled sludge.
In FIG. 4, gravity sedimentation is used for the solid-liquid separation device 3, but there is no particular limitation, and for example, membrane separation, pressure flotation, centrifugation, or the like may be used.
[0038]
In FIG. 4, the supernatant water separated into solid and liquid is discharged out of the system as treated water 4. The sludge separated by solid-liquid separation and settling is returned to the biological treatment tank 2B as returned sludge 5. The returned sludge 5 further branches, and a part thereof is transferred to the second biological treatment tank 9.
[0039]
The treatment system of the second biological treatment tank 9 is not particularly limited, and may be a single-tank type or a multi-tank type, and may be a biological biological treatment such as a treatment method using a floating activated sludge, a contact filter, or a fluidized carrier. Any method may be used.
[0040]
The capacity of the second biological treatment tank 9 is not particularly limited, but is preferably 1/20 to 1/2 of the biological treatment tank 2B. This is because by making the second biological treatment tank 9 smaller than the biological treatment tank 2B, the killing efficiency of the killing means 7 is improved, and by suppressing the decrease in the concentration of bacterial gold, the Bacillus bacteria in the biological treatment tank 2B are reduced. This can be done in a shorter period of time than multiplication and dominance.
[0041]
In FIG. 4, the sludge in the second biological treatment tank 9 is transferred to the killing means 7.
The killing means 7 referred to here is a means for selectively killing microorganisms other than Bacillus using physical and chemical means, similarly to the case of FIG. Bacteria are grown and dominant in the biological treatment tank 9. The killing means 7 may use physical means and / or chemical means, but it is particularly preferable to use ultrasonic waves.
[0042]
When an ultrasonic wave is used for the killing means 7 in the present invention, the size and shape of the container for irradiating the ultrasonic wave are not particularly limited, and the installation place of the ultrasonic vibrator is not particularly limited. It does not do. In addition, the most efficient method can be selected depending on the embodiment.
[0043]
The irradiation condition of the ultrasonic wave is not particularly limited, but the frequency is preferably 20 kHz to 10 MHz, and the ultrasonic intensity is adjusted between 500 to 5000 W, and the second biological treatment tank 9 per day. It is desirable to treat 2 to 8 times the amount of sludge inflow of the returned sludge 5. Also, the temperature is not particularly limited, but is desirably 60 to 80 ° C.
[0044]
In FIG. 4, the sludge treated by the killing means 7 is returned to the second biological treatment tank 9 again as a killed sludge 8.
Here, the killed sludge 8 is sludge containing cell walls, cell membranes, and the like, which are dead bodies, when killing microorganisms other than Bacillus bacteria in the sludge by the killing treatment 7. By doing so, Bacillus bacteria can be proliferated and made dominant in the second biological treatment tank.
[0045]
In addition, the second biological treatment tank 9 becomes an environment (pH 5 to 8, water temperature 5 to 40 ° C., DO 0.1 to 8.0 mg / L) suitable for inhabiting spores of Bacillus, and germinates and activates. It is desirable to adjust to start.
[0046]
In FIG. 4, the sludge in the second biological treatment tank 9 is discharged out of the system as a part of excess sludge 6, and is treated as in the case of FIG. In addition, the membrane separation device 10 is installed in the second biological treatment tank 9, and is transferred to the biological treatment tank 2 as the membrane permeated water 11.
[0047]
By transferring the membrane permeated water 11 to the biological treatment tank 2, the amount of water in the second biological treatment tank 9 can be kept constant, and the sludge concentration in the second biological treatment tank 9 can be increased. Since it can be retained, the killing efficiency by the killing means 7 is improved, and the killing can be performed in a shorter time than the growth and dominance of Bacillus bacteria in the biological treatment tank 2B. Although not shown, the transfer destination of the membrane permeated water 11 is not particularly limited, and may be, for example, mixed with the organic wastewater 1 or mixed with the treated water 4 and discharged out of the system. You may.
[0048]
As described above, by growing and dominating the Bacillus bacteria in the biological treatment tank 2, the Bacillus bacteria decompose and remove the killed sludge 8, so that the amount of excess sludge 6 generated can be reduced.
[0049]
In addition, Bacillus bacteria have the ability to decompose odor components, and decompose components that cause malodor such as ammonia and hydrogen sulfide generated when DO (dissolved oxygen) is low during the wastewater treatment process. Therefore, an odor generated during the organic wastewater treatment step can be suppressed.
[0050]
FIG. 5 is a process chart showing a fifth embodiment of the present invention. 5, the difference from FIG. 4 is that the killing means 7 is provided in the second biological treatment tank 9.
Thereby, it is not necessary to draw a new pipe for installing the killing means 7, and it is not necessary to secure an installation space.
[0051]
However, when using ultrasonic waves as the killing means 7, when only the ultrasonic vibrator is installed in the second biological treatment tank 9 without using a container for irradiating ultrasonic waves, the temperature in the tank is 5 to 40 ° C. It is desirable to set to. This is because by setting the temperature in the second biological treatment tank 9 to 40 ° C. or more, microorganisms other than Bacillus bacteria are excessively killed, and the number of microorganisms in the second biological treatment tank 9 decreases. However, it is because the killed sludge 8 cannot be sufficiently treated in the second biological treatment tank 9 and the excess sludge 6 may not be reduced.
[0052]
Further, it is desirable that the inside of the second biological treatment tank 9 is provided with an environment suitable for the inoculation of Bacillus bacteria, as in the case of FIG.
As described above, by growing and dominating Bacillus bacteria in the biological treatment tank 2, the amount of excess sludge 6 can be reduced, and an effect of suppressing malodor is obtained.
[0053]
(Example 1)
Hereinafter, Example 1 of the present invention will be specifically described.
[0054]
(Table 1) shows the dominant bacteria in the biological treatment tank 2A when the process shown in FIG. 1 was performed using ultrasonic waves for the killing means 7. Run 1 was used when the ultrasonic device was not operated, and Run 2 was used when the ultrasonic device was operated. The comparison of dominance of Bacillus bacteria in the biological treatment tank 2A was performed. In Run2, the operation was performed for about two months, with the ultrasonic frequency being 26 kHz, the output being 1200 W, the contact time being 77 minutes, and the daily throughput being three times the amount of excess sludge 6 generated.
[0055]
From the results in (Table 1), Bacillus was not present as the dominant species in Run1, but Bacillus was confirmed as the dominant species in Run2. From this, it became clear that the present invention allows Bacillus bacteria to grow and predominate in the biological treatment tank 2A.
[0056]
[Table 1]
Figure 2004275960
(Table 2) shows the average value of the water quality of the treated water 4 of each Run of Example 1. From the results of (Table 2), the concentration of the treated water 4 in the Run 2 operation was lower than that of the treated water 4 in the Run 1 operation in all of SS, BOD, and COD.
[0057]
[Table 2]
Figure 2004275960
FIG. 6 shows the amount of surplus sludge 6 generated in each Run of the first embodiment. From the results of FIG. 6, it was confirmed that the amount of excess sludge 6 generated in Run 2 was about 30% of that in Run 1, and the amount of generated excess sludge 6 was reduced by about 70%.
[0058]
Further, although a slight odor was sensed from inside the biological treatment tank 2A during the Run 1 operation, no odor was sensed from the biological treatment tank 2A during the Run 2 operation, so that the odor decomposition by Bacillus bacteria was clearly performed. And the odor was suppressed.
In addition, when running costs for each Run1 operation when the operation was performed for about 2 months were calculated and compared, Run2 was reduced by about 40%.
[0059]
(Example 2)
Hereinafter, a second embodiment of the present invention will be specifically described.
[0060]
(Table 3) shows the dominant bacteria in the second biological treatment tank 9 when the process shown in FIG. 4 was performed using ultrasonic waves for the killing means 7.
Run 1 was used when the ultrasonic device was not operated, and Run 2 was used when the ultrasonic device was operated. The comparison of the dominance of Bacillus bacteria in the second biological treatment tank 9 was performed. In Run2, the ultrasonic frequency is 26 kHz, the output is 1200 W, the contact time is 77 minutes, and the amount of processing per day is set to three times the amount of the returned sludge 5 to be transferred to the second biological treatment tank 9, and the operation is performed for about two months. went.
[0061]
From the results of (Table 3), Bacillus was not present as the dominant species in Run1, but Bacillus was confirmed as the dominant bacterium in Run2. From this, it became clear that the present invention allows Bacillus bacteria to proliferate and predominate in the second biological treatment tank 9.
[0062]
[Table 3]
Figure 2004275960
FIG. 7 shows the amount of excess sludge 6 generated in each Run of the second embodiment. From the results of FIG. 7, it was confirmed that the amount of excess sludge generated in Run 2 was about 20% of Run 1 and the amount of generated excess sludge 6 was reduced by about 80%.
[0063]
In addition, although a slight odor was sensed from inside the second biological treatment tank 9 during Run 1 operation, no odor was sensed from the inside of the second biological treatment tank 9 during Run 2 operation. The odor was decomposed by Bacillus bacteria and the odor was suppressed.
When the running costs for each Run1 operation when the operation was performed for about 2 months were calculated and compared, the running cost for the Run2 operation was reduced by about 30%.
[0064]
【The invention's effect】
As described above, the present invention selectively kills microorganisms other than Bacillus bacteria in sludge having in an organic wastewater treatment apparatus by treatment using a killing means, and then performs a biological treatment tank or a second treatment. By feeding to the second biological treatment tank, bait necessary for the growth of Bacillus bacteria can be accumulated in the biological treatment tank or the second biological treatment tank. As a result, no food (nutrient source) for activating Bacillus or a Bacillus bacillus purchased or transported from outside is added to the biological treatment tank, and a cultivation tank is newly provided and a bait for Bacillus bacillus purchased or transported from outside is added Bacteria can be propagated and dominant in the biological treatment tank or in the second biological treatment tank without culturing and transferring to the biological treatment tank, thereby improving the quality of treated water and excess sludge. In addition to reducing the number of odors and suppressing odors, maintenance can be facilitated and costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a first embodiment of the present invention. FIG. 2 is a process diagram showing a second embodiment of the present invention. FIG. 3 is a process showing a third embodiment of the present invention. FIG. 4 is a process diagram showing a fourth embodiment of the present invention. FIG. 5 is a process diagram showing a fifth embodiment of the present invention. FIG. 6 is the amount of excess sludge generated in Example 1 of the present invention. FIG. 7 is a graph showing the amount of excess sludge generated in Example 2 of the present invention.
REFERENCE SIGNS LIST 1 Organic wastewater 2A, 2B Biological treatment tank 3 Solid-liquid separator 4 Treated water 5 Returned sludge 6 Excess sludge 7 Killing means 8 Killed treated sludge 9 Second biological treatment tank 10 Membrane separation device 11 Membrane permeated water

Claims (3)

生物処理槽を用いた有機性排水を処理する方法であって、汚泥中のバチルス・ズブチルス以外の微生物群を選択的に死滅させた後に前記生物処理槽で生物処理を行うことにより、前記生物処理槽内に前記バチルス・ズブチルスを増殖・優占化させることを特徴とする有機性排水の処理方法。A method of treating organic wastewater using a biological treatment tank, wherein the biological treatment is performed in the biological treatment tank after selectively killing microorganisms other than Bacillus subtilis in sludge. A method for treating organic wastewater, wherein the Bacillus subtilis is multiplied and made dominant in a tank. 生物処理槽を用いた有機性排水を処理する方法であって、汚泥中のバチルス・ズブチルス以外の微生物群を選択的に死滅させた後に前記生物処理槽とは異なる第二の生物処理槽で生物処理を行うことにより、前記第二の生物処理槽内に前記バチルス・ズブチルスを増殖・優占化させることを特徴とする有機性排水の処理方法。A method for treating organic wastewater using a biological treatment tank, wherein the microorganisms other than Bacillus subtilis in the sludge are selectively killed, and then the microorganisms are treated in a second biological treatment tank different from the biological treatment tank. A method for treating organic wastewater, wherein the Bacillus subtilis is multiplied and made dominant in the second biological treatment tank by performing treatment. 汚泥中のバチルス・ズブチルス以外の微生物群を選択的に死滅させる手段として物理的手段および化学的手段の両方または少なくとも一方を用いることを特徴とする請求項1または2記載の有機性排水の処理方法。3. The method for treating organic wastewater according to claim 1, wherein a means for selectively killing microorganisms other than Bacillus subtilis in the sludge is a physical means and / or a chemical means. .
JP2003073870A 2003-03-18 2003-03-18 Organic wastewater treatment method Expired - Fee Related JP4378981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073870A JP4378981B2 (en) 2003-03-18 2003-03-18 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073870A JP4378981B2 (en) 2003-03-18 2003-03-18 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004275960A true JP2004275960A (en) 2004-10-07
JP4378981B2 JP4378981B2 (en) 2009-12-09

Family

ID=33289662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073870A Expired - Fee Related JP4378981B2 (en) 2003-03-18 2003-03-18 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4378981B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296852A (en) * 2004-04-13 2005-10-27 Sumiju Kankyo Engineering Kk Facilities and method for biological treatment
JP2006263642A (en) * 2005-03-25 2006-10-05 Sumitomo Chemical Co Ltd Acclimatization method of micro-organism and treatment method of organic waste by means of acclimatized micro-organism
JP2007021313A (en) * 2005-07-13 2007-02-01 Kyowa Exeo Corp Volume reduction method of sludge, method for causing bacteria group mainly comprising bacillus to dominate, and organic wastewater treatment method using the dominating method
JP2007130535A (en) * 2005-11-09 2007-05-31 Shigeo Tokusa Apparatus for treating excreta
JP2007319837A (en) * 2006-06-05 2007-12-13 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and method
JP2008018357A (en) * 2006-07-13 2008-01-31 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and waste water treatment method
WO2009028481A1 (en) * 2007-08-28 2009-03-05 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor
JP2009072762A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Activated sludge material, and reduction method of excess sludge amount in bioreactor
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater
JP5557967B1 (en) * 2013-03-13 2014-07-23 株式会社シティック Method for producing seeding agent
WO2015137300A1 (en) * 2014-03-14 2015-09-17 富士電機株式会社 Effluent treatment method
WO2016031804A1 (en) * 2014-08-25 2016-03-03 株式会社日本環境科学研究所 Composition, support, wastewater treatment system, wastewater treating method, deodorization method, and batch wastewater treating method
JP2017154082A (en) * 2016-03-02 2017-09-07 住友重機械工業株式会社 Anaerobic wastewater treatment device
JP2020075234A (en) * 2018-11-07 2020-05-21 株式会社京玉エンジニアリング Sewage treatment system
JP2020097024A (en) * 2018-12-17 2020-06-25 株式会社京玉エンジニアリング Sewage treatment system
JP2020104116A (en) * 2020-04-08 2020-07-09 住友重機械工業株式会社 Anaerobic wastewater treatment device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296852A (en) * 2004-04-13 2005-10-27 Sumiju Kankyo Engineering Kk Facilities and method for biological treatment
JP2006263642A (en) * 2005-03-25 2006-10-05 Sumitomo Chemical Co Ltd Acclimatization method of micro-organism and treatment method of organic waste by means of acclimatized micro-organism
JP2007021313A (en) * 2005-07-13 2007-02-01 Kyowa Exeo Corp Volume reduction method of sludge, method for causing bacteria group mainly comprising bacillus to dominate, and organic wastewater treatment method using the dominating method
JP2007130535A (en) * 2005-11-09 2007-05-31 Shigeo Tokusa Apparatus for treating excreta
JP4579866B2 (en) * 2006-06-05 2010-11-10 住重環境エンジニアリング株式会社 Waste water treatment apparatus and waste water treatment method
JP2007319837A (en) * 2006-06-05 2007-12-13 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and method
JP4579878B2 (en) * 2006-07-13 2010-11-10 住重環境エンジニアリング株式会社 Waste water treatment apparatus and waste water treatment method
JP2008018357A (en) * 2006-07-13 2008-01-31 Sumiju Kankyo Engineering Kk Waste water treatment apparatus and waste water treatment method
JP2009072762A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Activated sludge material, and reduction method of excess sludge amount in bioreactor
WO2009028481A1 (en) * 2007-08-28 2009-03-05 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor
US8603339B2 (en) 2007-08-28 2013-12-10 Diamond Engineering Co., Ltd. Activated sludge material, method for reducing excess sludge production in bioreactor, and method of controlling bioreactor
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater
JP5557967B1 (en) * 2013-03-13 2014-07-23 株式会社シティック Method for producing seeding agent
JPWO2015137300A1 (en) * 2014-03-14 2017-04-06 富士電機株式会社 Wastewater treatment method
WO2015137300A1 (en) * 2014-03-14 2015-09-17 富士電機株式会社 Effluent treatment method
JP6091039B2 (en) * 2014-03-14 2017-03-08 富士電機株式会社 Wastewater treatment method
WO2016031804A1 (en) * 2014-08-25 2016-03-03 株式会社日本環境科学研究所 Composition, support, wastewater treatment system, wastewater treating method, deodorization method, and batch wastewater treating method
US10052399B2 (en) 2014-08-25 2018-08-21 Japan Environmental Science Company Composition, support, wastewater treatment system, wastewater treating method, deodorization method, and batch wastewater treating method
JP2017154082A (en) * 2016-03-02 2017-09-07 住友重機械工業株式会社 Anaerobic wastewater treatment device
JP2020075234A (en) * 2018-11-07 2020-05-21 株式会社京玉エンジニアリング Sewage treatment system
JP2020104114A (en) * 2018-11-07 2020-07-09 株式会社京玉エンジニアリング Sewage treatment system
JP2020104113A (en) * 2018-11-07 2020-07-09 株式会社京玉エンジニアリング Sewage treatment system
JP2020097024A (en) * 2018-12-17 2020-06-25 株式会社京玉エンジニアリング Sewage treatment system
JP2020142241A (en) * 2018-12-17 2020-09-10 株式会社京玉エンジニアリング Sewage treatment system
JP2021003699A (en) * 2018-12-17 2021-01-14 株式会社京玉エンジニアリング Sewage treatment system
JP2021058885A (en) * 2018-12-17 2021-04-15 株式会社京玉エンジニアリング Sewage treatment system
JP7339671B2 (en) 2018-12-17 2023-09-06 株式会社京玉エンジニアリング sewage treatment system
JP2020104116A (en) * 2020-04-08 2020-07-09 住友重機械工業株式会社 Anaerobic wastewater treatment device

Also Published As

Publication number Publication date
JP4378981B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4378981B2 (en) Organic wastewater treatment method
KR101780626B1 (en) Wastewater treatment mothod using a complex microbial agent
JP6192848B2 (en) Composition, carrier, wastewater treatment system, wastewater treatment method, deodorization method, and batch-type wastewater treatment method
US20060186042A1 (en) Waste treatment method
JP2004248618A (en) Bacterial group symbiotically living with fungus used for treating organic material and its application
JP3732089B2 (en) Method for preparing microbial cultures for wastewater treatment
WO1999043623A1 (en) Waste treatment system
JP3641156B2 (en) New microorganisms and biological treatment methods for marine organisms
JP2006051493A (en) System and method for treating sludge of sewage or organic waste water
CN113200613A (en) Microbial nutrient solution for sewage treatment and preparation method and application thereof
KR100778543B1 (en) Recycling method of organic livestock excretion and apparatus thereof
JP3643287B2 (en) Food waste disposal method
KR101050165B1 (en) Deodorizer using indigenous microorganisms to remove odor from sludge in sewage treatment plant
JP2006212612A (en) Method for decomposing and extinguishing excrement and urine of hog raising using composite fermentation method in composite microorganism dynamic system analysis of composite microorganism system
JPH11147801A (en) Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water
KR100850677B1 (en) Method for treating sludge of sewage or organicwastewater
JP5184765B2 (en) Low odor composting method
Bhat et al. Challenges and opportunities associated with wastewater treatment systems
JP2002316184A (en) Method for activating microorganism and method for treating organic wastewater
JP2007061702A (en) Sludge weight reduction method using activated sludge
JP4452219B2 (en) A method for reducing sludge, a method for predominating bacteria belonging to the genus Bacillus, and a method for treating organic wastewater using the method for predominance
JP2572334B2 (en) Method and apparatus for microbiological reduction of excess sludge
JP2004504942A (en) Waste treatment process
JP2005262055A (en) Method and apparatus for treating animal organic matter-containing waste water
AU2018201775B1 (en) Treatment of trade effluent from food waste disposal systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees