JP2007061702A - Sludge weight reduction method using activated sludge - Google Patents

Sludge weight reduction method using activated sludge Download PDF

Info

Publication number
JP2007061702A
JP2007061702A JP2005249030A JP2005249030A JP2007061702A JP 2007061702 A JP2007061702 A JP 2007061702A JP 2005249030 A JP2005249030 A JP 2005249030A JP 2005249030 A JP2005249030 A JP 2005249030A JP 2007061702 A JP2007061702 A JP 2007061702A
Authority
JP
Japan
Prior art keywords
activated sludge
group
sludge
sludge group
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005249030A
Other languages
Japanese (ja)
Other versions
JP3844771B1 (en
Inventor
Takahiro Kurioka
隆浩 栗岡
Mayumi Ichikawa
真弓 市川
Minoru Okamoto
稔 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Engineering Co Ltd
Original Assignee
Diamond Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Engineering Co Ltd filed Critical Diamond Engineering Co Ltd
Priority to JP2005249030A priority Critical patent/JP3844771B1/en
Application granted granted Critical
Publication of JP3844771B1 publication Critical patent/JP3844771B1/en
Publication of JP2007061702A publication Critical patent/JP2007061702A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge weight reduction method which has a high effect of inhibiting generation of sludge, and can be introduced to an existing wastewater treatment facility at a low cost. <P>SOLUTION: To a system of an activated sludge group (B) generating surplus sludge, an activated sludge group (A) having an autolysis rate higher than the activated sludge group (B) is added. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種の排水処理施設などから発生する有機物を含む汚泥を減量化する方法、詳しくは、性質の異なる活性汚泥を添加することにより余剰汚泥の発生を抑制する汚泥減量方法に関するものである。   The present invention relates to a method for reducing sludge containing organic matter generated from various wastewater treatment facilities, and more particularly to a sludge reduction method for suppressing the generation of excess sludge by adding activated sludge having different properties. .

一般的に、有機性物質を含む廃水の処理には、生物(バクテリア)を利用する処理方式が採用されている。この生物を利用する処理方式では、多量の余剰汚泥が発生している。
現在我が国では、循環型社会の形成を目指して廃棄物の減量化やリサイクルを総合的に推進している。この廃棄物の中でも、有機性及び無機性汚泥の割合は高く、また汚泥の内の約70%が有機性汚泥である。この有機性汚泥のリサイクルや再資源化については、公共排水処理施設や大手事業所では、コンポスト化や堆肥化などが若干検討され始めているが、小規模な施設では殆ど何も行われていない。しかし、全国的に廃棄物の埋め立て地は受け入れ余力が少なくなり、新規の立地も難しいことから、汚泥処理費用も年ごとに増大してきており、汚泥の発生を簡便且つ安価に抑制できるシステムの開発が望まれている。
In general, a treatment system that uses living organisms (bacteria) is employed to treat wastewater containing organic substances. In the treatment method using this organism, a large amount of excess sludge is generated.
Currently, Japan is comprehensively promoting waste reduction and recycling with the aim of creating a recycling-oriented society. Among these wastes, the ratio of organic and inorganic sludge is high, and about 70% of the sludge is organic sludge. Regarding recycling and recycling of organic sludge, composting and composting have begun to be considered a little at public wastewater treatment facilities and major offices, but little is done at small-scale facilities. However, waste landfills nationwide have less capacity to accept and new locations are difficult, and sludge treatment costs are increasing year by year. Development of a system that can control sludge generation easily and inexpensively. Is desired.

このような背景から多量に有機性汚泥を発生している排水処理施設において、その汚泥の発生抑制技術及び減量化技術の開発が行われており、その主なものとしては、生物群を生物的処理槽へ投入する生物法と、発生した汚泥の一部を物理化学的方法により可溶化し、得られた溶液を再び生物的処理槽へ戻して生物的処理する方法が挙げられる。前者の方法としては、微生物の資化作用と分泌酵素を利用した枯草菌や光合成菌の利用が経験的に行われてきた。また、近年では、養豚場の屎尿処理から開発された微生物群による汚泥減量化方法(特許文献1参照)が提案され、また好熱性細菌による汚泥減量化システム(特許文献2参照)が提案されている。また、後者の方法としては、物理化学的方法により汚泥中の生物の細胞を破壊し、汚泥の減量化を図る方法として、ミル法(特許文献3〜5参照)、オゾン法(特許文献6〜9参照)、超音波法(特許文献10及び11参照)、ウオータージェット法(特許文献12〜14参照)などが提案されている。   In such wastewater treatment facilities that generate a large amount of organic sludge, development of sludge generation suppression technology and reduction technology has been carried out. Examples thereof include a biological method to be introduced into the treatment tank and a method in which a part of the generated sludge is solubilized by a physicochemical method, and the obtained solution is returned to the biological treatment tank and biologically treated. As the former method, utilization of microorganisms and utilization of Bacillus subtilis and photosynthetic bacteria using secretory enzymes have been empirically performed. Moreover, in recent years, a sludge reduction method using microorganisms developed from swine urine treatment (see Patent Document 1) has been proposed, and a sludge reduction system using thermophilic bacteria (see Patent Document 2) has been proposed. Yes. In addition, as the latter method, as a method of destroying biological cells in sludge by a physicochemical method and reducing sludge, mill method (see Patent Documents 3 to 5), ozone method (Patent Documents 6 to 6). 9), an ultrasonic method (see Patent Documents 10 and 11), a water jet method (see Patent Documents 12 to 14), and the like.

しかし、何れの技術も、汚泥発生率を従来の10〜20%にまで減量化可能としているが、殆ど実用化には至っていない。これは、生物法の場合、排水処理施設内の生物的処理槽に減量化菌を添加しても、槽内の菌相はあまり変動しない、あるいは継続的に添加しても優先化しない問題があり、実際の効果が明確でないためである。さらに紙などのセルロース成分に代表される固形成分は、生物的処理槽での分解が難しく減量化が困難である。   However, although any technique can reduce the sludge generation rate to 10 to 20% of the conventional technology, it has hardly been put into practical use. In the case of biological methods, there is a problem that even if reduced bacteria are added to the biological treatment tank in the wastewater treatment facility, the microflora in the tank does not fluctuate very much, or it is not prioritized even if continuously added. This is because the actual effect is not clear. Furthermore, solid components typified by cellulose components such as paper are difficult to decompose in biological treatment tanks and difficult to reduce in weight.

一方、ミル法、オゾン法、超音波法などの物理化学的処理方法の場合は、全般に装置が高価で、費用の面から実施が難しいという問題がある。加えてビーズと汚泥との摩擦により汚泥を可溶化するミル法は、汚泥スラリーの微細化効率は良いものの、可溶化率が低い上に装置の大型化が難しいとの問題がある。また、促進酸化法の一種であるオゾン法は、簡便で汚泥のみならず、難分解性物質の分解も同時に行えることから有益性は高いが、オゾン発生器が高価で、しかも排オゾンの処理装置も別途必要になる問題がある。また、超音波法は、汚泥の微細化率及び可溶化率ともに高いが、設備が極めて高価で、さらに超音波による熱や音の対策も必要になる。また、ウオータージェット法は、汚泥スラリーを高圧状態にした後、ノズルを介して水中に吹き出し、その際の圧力差により生じるキャビテーションで破壊する方法で、汚泥スラリーを微細化する能力は高いものの、汚泥の可溶化率はキャビテーションの発生量に依存するため、効果的な汚泥の破砕には高出力のポンプを必要とする。
このように、各汚泥発生抑制技術及び減量化技術には、一長一短があり、より画期的な技術の開発が期待されている。
On the other hand, in the case of physicochemical treatment methods such as the mill method, the ozone method, and the ultrasonic method, there is a problem that the apparatus is generally expensive and it is difficult to implement from the viewpoint of cost. In addition, the mill method for solubilizing sludge by friction between beads and sludge has a problem that the sludge slurry has a finer efficiency, but the solubilization rate is low and it is difficult to increase the size of the apparatus. In addition, the ozone method, which is a kind of accelerated oxidation method, is highly useful because it can easily decompose not only sludge but also difficult-to-decompose substances, but the ozone generator is expensive and the waste ozone treatment device. There is another problem that is necessary. In addition, the ultrasonic method is high in both the sludge refinement rate and the solubilization rate, but the equipment is extremely expensive, and measures against heat and sound due to ultrasonic waves are also required. The water jet method is a method in which the sludge slurry is brought into a high pressure state and then blown into the water through a nozzle and broken by cavitation caused by the pressure difference at that time. Since the solubilization rate depends on the amount of cavitation, a high-power pump is required for effective sludge crushing.
Thus, each sludge generation suppression technology and weight reduction technology have advantages and disadvantages, and development of more innovative technologies is expected.

特開平9−245号公報JP-A-9-245 特開平9−234060号公報JP-A-9-234060 特開平11−300393号公報JP-A-11-300393 特開2000−167597号公報JP 2000-167597 A 特開2000−325983号公報JP 2000-325983 A 特開平9−234497号公報JP-A-9-234497 特開平11−90496号公報JP-A-11-90496 特開2001−259678号公報JP 2001-259678 A 特開2001−327998号公報JP 2001-327998 A 特開2002−361281号公報JP 2002-361281 A 特開2003−200198号公報JP 2003-200198 A 特開2001−212599号公報JP 2001-212599 A 特開2001−314887号公報JP 2001-314877 A 特開2003−10890号公報JP 2003-10890 A

本発明は、このような実情を基に開発されたもので、汚泥の発生の抑制効果が高く、且つ既存の排水処理施設に低コストで導入可能な汚泥減量方法を提供することを目的とするものである。   The present invention was developed on the basis of such a situation, and an object thereof is to provide a sludge reduction method that is highly effective in suppressing the generation of sludge and can be introduced into existing wastewater treatment facilities at low cost. Is.

本発明者等は、上記目的を達成すべく種々検討した結果、余剰汚泥が発生している排水処理施設の生物的処理槽(曝気槽)に、性質の異なる活性汚泥を添加することにより、余剰汚泥の発生を抑制できることを知見した。   As a result of various studies to achieve the above object, the present inventors have added surplus sludge by adding activated sludge having different properties to a biological treatment tank (aeration tank) of a wastewater treatment facility where surplus sludge is generated. It was found that the generation of sludge can be suppressed.

本発明は、上記知見に基づいてなされたもので、余剰汚泥を発生している活性汚泥群(B)の系に、該活性汚泥群(B)より自己消化速度が速い活性汚泥群(A)を添加することを特徴とする汚泥減量方法を提供するものである。   This invention was made | formed based on the said knowledge, and the activated sludge group (A) whose self-digestion rate is faster than the activated sludge group (B) to the system of the activated sludge group (B) which has generated excess sludge. The present invention provides a method for reducing sludge, characterized by adding

本発明の汚泥減量方法は、余剰汚泥が発生している排水処理施設の生物的処理槽(曝気槽)に、自己消化速度が速い他の活性汚泥群(A)を添加するという非常に簡単な操作で余剰汚泥の発生を抑制することができ、従来の化学的・物理的処理を行う方法に比べて安価なシステムであり経済的である。排水処理における負担の軽減にもなり、経済的な効果も期待できる。また、生物を利用する処理方式の排水処理施設であれば如何なる既存の排水処理施設にも簡単に適用可能である。
また、上記活性汚泥群(A)は、自然界に存在している全く安全な物質であり、従来の化学的処理を行う方法に比べて安全である。さらに、自然界における一般的な温度条件(20℃〜35℃)で実施可能であり、加温などの操作は不要である。
The sludge reduction method of the present invention is a very simple method of adding another activated sludge group (A) having a high self-digestion rate to a biological treatment tank (aeration tank) of a wastewater treatment facility where excess sludge is generated. The operation can suppress the generation of surplus sludge, and is an inexpensive system and economical compared to conventional chemical and physical methods. The burden on wastewater treatment can be reduced, and economic effects can be expected. In addition, it can be easily applied to any existing wastewater treatment facility as long as it is a wastewater treatment facility using a living organism.
The activated sludge group (A) is a completely safe substance existing in nature, and is safer than the conventional chemical treatment method. Furthermore, it can be carried out under general temperature conditions (20 ° C. to 35 ° C.) in the natural world, and operations such as heating are unnecessary.

以下、本発明の汚泥減量方法を、その好ましい実施形態について詳述する。
本発明の汚泥減量方法は、生物を利用する処理方式の排水処理施設であれば如何なる排水処理施設にも適用可能であり、例えば、事業所系合併浄化槽、水産加工事業所の排水処理施設、食品工場の排水処理施設、食肉加工場の排水処理設備、畜産育成場の排水処理設備、農業集落排水処理施設、生活系排水処理施設などに好適に適用することができる。
本発明における活性汚泥群(B)は、上記排水処理施設で余剰汚泥を発生している活性汚泥群である。
Hereinafter, the sludge reduction method of this invention is explained in full detail about the preferable embodiment.
The sludge reduction method of the present invention can be applied to any wastewater treatment facility as long as it is a wastewater treatment facility using a living organism. For example, the wastewater treatment facility of a business establishment merger septic tank, a wastewater treatment facility of a fishery processing establishment, a food It can be suitably applied to factory wastewater treatment facilities, meat processing plant wastewater treatment facilities, livestock breeding plant wastewater treatment facilities, agricultural settlement wastewater treatment facilities, domestic wastewater treatment facilities, and the like.
The activated sludge group (B) in the present invention is an activated sludge group that generates excess sludge in the wastewater treatment facility.

また、上記活性汚泥群(B)に添加される活性汚泥群(A)は、上記活性汚泥群(B)とは異なる排水処理施設の活性汚泥群であり、その自己消化速度が、上記活性汚泥群(B)の自己消化速度より速いものである。
上記活性汚泥群(A)は、その自己消化速度が、上記活性汚泥群(B)の自己消化速度より150mg/l・日以上速いものが好ましく、より好ましくは200〜300mg/l・日速いものである。
また、上記活性汚泥群(A)の自己消化速度は、300mg/l・日以上であることが好ましく、より好ましくは400mg/l・日以上、さらに好ましくは500mg/l・日以上である。
The activated sludge group (A) added to the activated sludge group (B) is an activated sludge group of a wastewater treatment facility different from the activated sludge group (B), and the self-digestion rate is the activated sludge. It is faster than the autolysis rate of group (B).
The activated sludge group (A) preferably has a self-digestion rate of 150 mg / l · day or more, more preferably 200 to 300 mg / l · day faster than the self-digestion rate of the activated sludge group (B). It is.
The self-digestion rate of the activated sludge group (A) is preferably 300 mg / l · day or more, more preferably 400 mg / l · day or more, and further preferably 500 mg / l · day or more.

上記自己消化速度は、次のようにして求めた値である。
試料(活性汚泥)を仕込み、養分となる有機物質を加えない状態で、0.2μmのフィルターを介して得られる空気を送り込んで曝気し、自己消化(内生呼吸・自己酸化)を促進させて、試料中の懸濁物質濃度を5日間測定し、その濃度変化の勾配を傾き係数として数値化した値が自己消化速度である。
即ち、自己消化速度(mg/l・日)=−(初期試料中の懸濁物質濃度−5日後の試料中の懸濁物質濃度)÷5で定義される。
上記活性汚泥群(A)の例を図1に、上記活性汚泥群(B)の例を図2に、それぞれ示す。図1及び図2に示すように、自己消化5日後までの懸濁物質濃度変化が大きい活性汚泥が活性汚泥群(A)であり、該変化が小さい活性汚泥が活性汚泥群(B)である。
The self-digestion rate is a value determined as follows.
A sample (activated sludge) is charged, and the air obtained through a 0.2 μm filter is fed and aerated in the state without adding organic substances as nutrients, promoting self-digestion (endogenous respiration and auto-oxidation). The suspended substance concentration in the sample is measured for 5 days, and the value obtained by quantifying the gradient of the concentration change as the slope coefficient is the self-digestion rate.
That is, the self-digestion rate (mg / l · day) = − (suspended substance concentration in initial sample−suspended substance concentration in sample after 5 days) ÷ 5.
An example of the activated sludge group (A) is shown in FIG. 1, and an example of the activated sludge group (B) is shown in FIG. As shown in FIGS. 1 and 2, activated sludge having a large suspended substance concentration change up to 5 days after self-digestion is the activated sludge group (A), and activated sludge having a small change is the activated sludge group (B). .

尚、ある種の排水処理施設から採取された活性汚泥を自己消化させ濃縮汚泥として既に調整されている活性汚泥の自己消化速度を測定する場合は、そのままでは自己消化が進んでいて正しい値を得ることができないので、有機物質を含む餌を与えて増殖操作を実施し活動状態とし、その後、安定した状態を確認した後に、有機物質を除去し、曝気して、自己消化速度を測定する必要がある。餌は、濃縮汚泥1質量部に対して有機物質1質量部及び水8質量部の割合で加え、温度条件を25〜35℃の範囲で増殖を行わせる。   In addition, when measuring the self-digestion rate of activated sludge that has already been adjusted as concentrated sludge by self-digesting activated sludge collected from certain types of wastewater treatment facilities, self-digestion proceeds and the correct value is obtained. Therefore, it is necessary to feed the food containing organic substance and perform the breeding operation to make it active, and after confirming the stable state, it is necessary to remove the organic substance, aerate, and measure the self-digestion rate. is there. The bait is added at a ratio of 1 part by mass of an organic substance and 8 parts by mass of water with respect to 1 part by mass of concentrated sludge, and is allowed to grow in a temperature range of 25 to 35 ° C.

上記活性汚泥群(A)の添加量は、上記活性汚泥群(B)に対して好ましくは4〜100質量%、より好ましくは6〜40質量%である。上記活性汚泥群(A)の添加量により、汚泥減量効果を制御することが可能である。   The addition amount of the activated sludge group (A) is preferably 4 to 100% by mass, more preferably 6 to 40% by mass with respect to the activated sludge group (B). The sludge reduction effect can be controlled by the addition amount of the activated sludge group (A).

上記活性汚泥群(A)の添加方法としては、制限されるものではなく、例えば、活性汚泥群(B)が占める生物的処理槽に、所定量の活性汚泥群(A)を直接投入することも可能であり、また、別に設けた貯槽に活性汚泥群(A)を貯留し、活性汚泥群(A)を徐々に、活性汚泥群(B)が占める生物的処理槽に添加することもできる。
また、別に設けた貯槽に活性汚泥群(A)を投入し、さらに活性汚泥群(B)の一部を取り出して投入して混合し、この混合された混合活性汚泥群(A+B)を徐々に、活性汚泥群(B)が占める生物的処理槽に添加する方法も、混合系の活性汚泥群の汚泥減量能力を発揮させる条件として効率的で望ましい方法である。
The method for adding the activated sludge group (A) is not limited. For example, a predetermined amount of the activated sludge group (A) is directly charged into the biological treatment tank occupied by the activated sludge group (B). The activated sludge group (A) can be stored in a separate storage tank, and the activated sludge group (A) can be gradually added to the biological treatment tank occupied by the activated sludge group (B). .
Also, the activated sludge group (A) is put into a separate storage tank, and a part of the activated sludge group (B) is taken out and mixed, and the mixed activated sludge group (A + B) is gradually added. The method of adding to the biological treatment tank occupied by the activated sludge group (B) is also an efficient and desirable method as a condition for exerting the sludge reducing ability of the mixed sludge group.

本発明は、上記活性汚泥群(B)の系に上記活性汚泥群(A)を添加するだけでよく、活性汚泥群(A)及び活性汚泥群(B)は何れも自然界に存在する活性汚泥であるので、温度は常温で且つpHは通常の生物処理が実施されている条件であれば対応が可能であり、本発明を実施するに当たり、温度・pHなどで特別の環境を準備することは不要である。   In the present invention, it is only necessary to add the activated sludge group (A) to the system of the activated sludge group (B), and both the activated sludge group (A) and the activated sludge group (B) exist in nature. Therefore, if the temperature is normal temperature and the pH is a condition under which normal biological treatment is performed, it is possible to cope with it, and in carrying out the present invention, preparing a special environment with temperature, pH, etc. It is unnecessary.

次に本発明をさらに具体的に説明するために実施例を挙げるが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, examples are given to describe the present invention more specifically, but the present invention is not limited to the following examples.

実施例1
活性汚泥群(A)及び(B)として、図3に示す自己消化速度412mg/l・日の活性汚泥群及び自己消化速度164mg/l・日の活性汚泥群を用いた。これらの活性汚泥群を同量づつ混合し、空気により散気を行い、懸濁物質濃度初期条件を4,000mg/lに調整して、活性汚泥群(A+B)混合系の懸濁物質濃度の変化を測定した。その結果を図4に示す。図4中、1が活性汚泥群(A+B)混合系の懸濁物質濃度の変化を示すグラフであり、2は活性汚泥群(A)単独系の場合、3は活性汚泥群(B)単独系の場合のそれぞれの懸濁物質濃度の変化を示すグラフである。4は活性汚泥群(A)と活性汚泥群(B)とを混合した場合に予想される懸濁物質濃度の変化として、活性汚泥群(A)単独系の場合と活性汚泥群(B)単独系の場合との平均値を示すグラフである。
また、図4に示す各活性汚泥群の懸濁物質濃度の変化を、下記に定義する懸濁物質減量率で示すグラフを図5に示す。図5中、1が活性汚泥群(A+B)混合系の場合、2が活性汚泥群(A)単独系の場合、3が活性汚泥群(B)単独系の場合のそれぞれのグラフであり、4が活性汚泥群(A)単独系の場合と活性汚泥群(B)単独系の場合との平均値を示すグラフである。
N日後の懸濁物質減量率(%)=〔(SS1−SSN)/SS1〕×100
但し、SS1は1日経過後の懸濁物質濃度(mg/l)であり、SSNは、N日経過後の懸濁物質濃度(mg/l)である。
Example 1
As the activated sludge groups (A) and (B), the activated sludge group of 412 mg / l · day and the activated sludge group of 164 mg / l · day shown in FIG. 3 were used. These activated sludge groups are mixed in the same amount, aerated with air, the initial suspended solids concentration condition is adjusted to 4,000 mg / l, and the suspended sludge concentration of the activated sludge group (A + B) mixed system is adjusted. Changes were measured. The result is shown in FIG. In FIG. 4, 1 is a graph showing the change in suspended solids concentration of the activated sludge group (A + B) mixed system, 2 is the activated sludge group (A) alone system, and 3 is the activated sludge group (B) alone system. It is a graph which shows the change of each suspended matter density | concentration in the case of. 4 shows the change in suspended solids concentration expected when the activated sludge group (A) and the activated sludge group (B) are mixed. The activated sludge group (A) alone system and the activated sludge group (B) alone It is a graph which shows an average value with the case of a system.
Moreover, the graph which shows the change of the suspended-substance density | concentration of each activated sludge group shown in FIG. 4 by the suspended-substance weight loss rate defined below is shown in FIG. In FIG. 5, 1 is an activated sludge group (A + B) mixed system, 2 is an activated sludge group (A) alone system, 3 is an activated sludge group (B) alone system, It is a graph which shows the average value in the case of activated sludge group (A) independent system, and the case of activated sludge group (B) independent system.
Suspended material weight loss after N days (%) = [(SS1-SSN) / SS1] × 100
However, SS1 is the suspended matter concentration (mg / l) after 1 day, and SSN is the suspended matter concentration (mg / l) after N days.

実施例2
活性汚泥群(B)として、図2に示す自己消化速度227mg/l・日の活性汚泥群を用いた以外は、実施例1と同様にして、懸濁物質濃度の変化を測定し、懸濁物質減量率を求めた。その結果を図6に示す。図6中、5が活性汚泥群(A+B)混合系の場合、6が活性汚泥群(A)単独系の場合、7が活性汚泥群(B)単独系の場合のそれぞれのグラフであり、8が活性汚泥群(A)単独系の場合と活性汚泥群(B)単独系の場合との平均値を示すグラフである。
Example 2
As the activated sludge group (B), the change in suspended solids concentration was measured in the same manner as in Example 1 except that the activated sludge group shown in FIG. The weight loss rate was determined. The result is shown in FIG. In FIG. 6, 5 is an activated sludge group (A + B) mixed system, 6 is an activated sludge group (A) single system, and 7 is an activated sludge group (B) single system. It is a graph which shows the average value in the case of activated sludge group (A) independent system, and the case of activated sludge group (B) independent system.

実施例3
活性汚泥群(A)として、図1に示す自己消化速度572mg/l・日の活性汚泥群を用いた以外は、実施例1と同様にして、懸濁物質濃度の変化を測定し、懸濁物質減量率を求めた。その結果を図7に示す。図7中、9が活性汚泥群(A+B)混合系の場合、10が活性汚泥群(A)単独系の場合、11が活性汚泥群(B)単独系の場合のそれぞれのグラフであり、12が活性汚泥群(A)単独系の場合と活性汚泥群(B)単独系の場合との平均値を示すグラフである。
Example 3
As the activated sludge group (A), the change in the suspended solids concentration was measured in the same manner as in Example 1 except that the activated sludge group shown in FIG. The weight loss rate was determined. The result is shown in FIG. In FIG. 7, 9 is an activated sludge group (A + B) mixed system, 10 is an activated sludge group (A) single system, 11 is an activated sludge group (B) single system, respectively. It is a graph which shows the average value in the case of activated sludge group (A) independent system, and the case of activated sludge group (B) independent system.

実施例4
活性汚泥群(A)として、図1に示す自己消化速度367mg/l・日の活性汚泥群を用い、活性汚泥群(B)として、図2に示す自己消化速度127mg/l・日の活性汚泥群を用いた以外は、実施例1と同様にして、懸濁物質濃度の変化を測定し、懸濁物質減量率を求めた。その結果を図8に示す。図8中、13が活性汚泥群(A+B)混合系の場合、14が活性汚泥群(A)単独系の場合、15が活性汚泥群(B)単独系の場合のそれぞれのグラフであり、16が活性汚泥群(A)単独系の場合と活性汚泥群(B)単独系の場合との平均値を示すグラフである。
Example 4
As the activated sludge group (A), the self-digestion rate 367 mg / l · day activated sludge group shown in FIG. 1 is used, and as the activated sludge group (B), the self-digestion rate 127 mg / l · day activated sludge shown in FIG. Except for using the group, the change in suspended solid concentration was measured in the same manner as in Example 1 to determine the suspended solid weight loss rate. The result is shown in FIG. In FIG. 8, 13 is an activated sludge group (A + B) mixed system, 14 is an activated sludge group (A) single system, and 15 is an activated sludge group (B) single system. It is a graph which shows the average value in the case of activated sludge group (A) independent system, and the case of activated sludge group (B) independent system.

上記の実施例1〜4から分かるように、本発明の活性汚泥群(A+B)混合系の場合は、活性汚泥群(A)と活性汚泥群(B)とを混合した場合に予想される効果を上回る効果を奏する。   As can be seen from Examples 1 to 4 above, in the case of the activated sludge group (A + B) mixed system of the present invention, the effect expected when the activated sludge group (A) and the activated sludge group (B) are mixed. Has an effect that exceeds.

実施例5
本実施例は、食品加工における既設排水処理施設に本発明を適用した場合を示すものである。
上記既設排水処理施設は、流入原水BOD値が500〜800mg/lと高く、余剰汚泥の発生率はBOD負荷の35〜40%である。また、この処理施設の活性汚泥群〔活性汚泥群(B)〕の自己消化速度は106mg/l・日である。この処理施設に、活性汚泥群(A)として、図1に示す自己消化速度412mg/l・日の活性汚泥群を、上記活性汚泥群(B)に対して5質量%添加し、曝気槽中の懸濁物質濃度を継続的に測定した。その結果を図9に示す。
図9から分かるように、当初は懸濁物質濃度が2,500〜3,000mg/lに低下したが、その後、約2ヶ月で4,000mg/lで安定し、4ヶ月間安定した状態を維持している。懸濁物質濃度が安定しているため、余剰汚泥の引抜は実施しなかった。
この結果、自己消化速度が高い活性汚泥群(A)を、自己消化速度が低い活性汚泥群(B)に添加することにより、余剰汚泥の発生を抑制できることが確認された。
Example 5
The present embodiment shows a case where the present invention is applied to an existing wastewater treatment facility in food processing.
The existing wastewater treatment facility has a high inflow raw water BOD value of 500 to 800 mg / l, and the surplus sludge generation rate is 35 to 40% of the BOD load. Moreover, the self-digestion rate of the activated sludge group [activated sludge group (B)] of this treatment facility is 106 mg / l · day. 1% of the activated sludge group shown in FIG. 1 as the activated sludge group (A) is added to this treatment facility with respect to the activated sludge group (B). The suspended matter concentration of was continuously measured. The result is shown in FIG.
As can be seen from FIG. 9, the suspended solid concentration initially decreased to 2,500 to 3,000 mg / l, but after that, it stabilized at 4,000 mg / l in about 2 months and remained stable for 4 months. Is maintained. Since the suspended solids concentration is stable, excess sludge was not extracted.
As a result, it was confirmed that the generation of excess sludge can be suppressed by adding the activated sludge group (A) having a high self-digestion rate to the activated sludge group (B) having a low self-digestion rate.

実施例6
活性汚泥群(A)として、図1に示す自己消化速度572mg/l・日の活性汚泥群を用い、活性汚泥群(B)として、図2に示す自己消化速度164mg/l・日の活性汚泥群を用い、有機物として、15%メタノール水溶液及び栄養剤を上記の活性汚泥群の単独系及び混合系に添加し、BOD濃度の変化を測定した。その結果を図10に示す。図10中、17が活性汚泥群(A+B)混合系の場合、18が活性汚泥群(A)単独系の場合、19が活性汚泥群(B)単独系の場合のそれぞれのグラフである。また、図10中、20は添加した有機物のBOD累積濃度を示すグラフである。
図10から分かるように、活性汚泥群(A+B)混合系のBOD処理能力は、自己消化速度が高い活性汚泥群(A)単独系と、自己消化速度が低い活性汚泥群(B)単独系との常識的な加成性を示しているにもかかわらず、活性汚泥群(A+B)混合系では、余剰汚泥の発生を抑制できることは驚くべきことである。
Example 6
As the activated sludge group (A), the activated sludge group having a self-digestion rate of 572 mg / l · day shown in FIG. 1 is used. As the activated sludge group (B), the activated sludge having a self-digestion rate of 164 mg / l · day shown in FIG. Using the group, 15% methanol aqueous solution and nutrients were added as organic substances to the single system and mixed system of the above activated sludge group, and the change in BOD concentration was measured. The result is shown in FIG. In FIG. 10, 17 is an activated sludge group (A + B) mixed system, 18 is an activated sludge group (A) single system, and 19 is an activated sludge group (B) single system. Moreover, in FIG. 10, 20 is a graph which shows the BOD accumulation density | concentration of the added organic substance.
As can be seen from FIG. 10, the BOD treatment capacity of the activated sludge group (A + B) mixed system is as follows: the activated sludge group (A) alone system having a high self-digestion rate, and the activated sludge group (B) alone system having a low self-digestion rate. It is surprising that the activated sludge group (A + B) mixed system can suppress the generation of surplus sludge, despite the fact that it shows a common sense additivity.

本発明で活性汚泥群(A)として用いられる活性汚泥群の自己消化速度の基本的状態を示すグラフである。It is a graph which shows the basic state of the self-digestion rate of the activated sludge group used as activated sludge group (A) by this invention. 本発明で活性汚泥群(B)として用いられる活性汚泥群の自己消化速度の基本的状態を示すグラフである。It is a graph which shows the basic state of the self-digestion rate of the activated sludge group used as activated sludge group (B) by this invention. 実施例1で用いた活性汚泥群の自己消化速度の基本的状態を示すグラフである。It is a graph which shows the basic state of the self-digestion rate of the activated sludge group used in Example 1. 実施例1で測定した活性汚泥群の懸濁物質濃度の変化を示すグラフである。2 is a graph showing changes in suspended solid concentration of activated sludge groups measured in Example 1. FIG. 実施例1で測定した活性汚泥群の懸濁物質減量率の変化を示すグラフである。2 is a graph showing changes in the suspended solid weight loss rate of the activated sludge group measured in Example 1. FIG. 実施例2で測定した活性汚泥群の懸濁物質減量率の変化を示すグラフである。6 is a graph showing changes in the suspended solid weight loss rate of the activated sludge group measured in Example 2. FIG. 実施例3で測定した活性汚泥群の懸濁物質減量率の変化を示すグラフである。6 is a graph showing changes in the suspended solid weight loss rate of the activated sludge group measured in Example 3. FIG. 実施例4で測定した活性汚泥群の懸濁物質減量率の変化を示すグラフである。It is a graph which shows the change of the suspended solid weight loss rate of the activated sludge group measured in Example 4. 実施例5における曝気槽中の懸濁物質濃度の変化を示すグラフである。It is a graph which shows the change of the suspended solid concentration in the aeration tank in Example 5. 実施例6で測定した活性汚泥群それぞれのBOD濃度の変化を示すグラフである。6 is a graph showing changes in the BOD concentration of each activated sludge group measured in Example 6.

Claims (5)

余剰汚泥を発生している活性汚泥群(B)の系に、該活性汚泥群(B)より自己消化速度が速い活性汚泥群(A)を添加することを特徴とする汚泥減量方法。   An activated sludge group (A) having a higher self-digestion rate than the activated sludge group (B) is added to the system of the activated sludge group (B) generating surplus sludge. 上記活性汚泥群(A)の自己消化速度が、300mg/l・日以上である、請求項1記載の汚泥減量方法。   The sludge reduction method according to claim 1, wherein the self-digestion rate of the activated sludge group (A) is 300 mg / l · day or more. 上記活性汚泥群(A)の自己消化速度が、上記活性汚泥群(B)の自己消化速度より150mg/l・日以上速い、請求項1又は2記載の汚泥減量方法。   The sludge reduction method according to claim 1 or 2, wherein the self-digestion rate of the activated sludge group (A) is 150 mg / l · day or more faster than the self-digestion rate of the activated sludge group (B). 上記活性汚泥群(A)の添加量が、上記活性汚泥群(B)に対して4〜100質量%である、請求項1〜3の何れかに記載の汚泥減量方法。   The sludge reduction method according to any one of claims 1 to 3, wherein the amount of the activated sludge group (A) added is 4 to 100 mass% with respect to the activated sludge group (B). 上記活性汚泥群(B)が、事業所系合併浄化槽、水産加工事業所の排水処理施設、食品工場の排水処理施設、食肉加工場の排水処理設備、畜産育成場の排水処理設備、農業集落排水処理施設又は生活系排水処理施設における活性汚泥群である、請求項1〜4の何れかに記載の汚泥減量方法。
The above-mentioned activated sludge group (B) consists of a combined septic tank at a business establishment, a wastewater treatment facility at a fishery processing plant, a wastewater treatment facility at a food factory, a wastewater treatment facility at a meat processing plant, a wastewater treatment facility at a livestock breeding plant, and an agricultural settlement drainage The sludge reduction method according to any one of claims 1 to 4, which is an activated sludge group in a treatment facility or a domestic wastewater treatment facility.
JP2005249030A 2005-08-30 2005-08-30 Sludge reduction method using activated sludge Expired - Fee Related JP3844771B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249030A JP3844771B1 (en) 2005-08-30 2005-08-30 Sludge reduction method using activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249030A JP3844771B1 (en) 2005-08-30 2005-08-30 Sludge reduction method using activated sludge

Publications (2)

Publication Number Publication Date
JP3844771B1 JP3844771B1 (en) 2006-11-15
JP2007061702A true JP2007061702A (en) 2007-03-15

Family

ID=37478005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249030A Expired - Fee Related JP3844771B1 (en) 2005-08-30 2005-08-30 Sludge reduction method using activated sludge

Country Status (1)

Country Link
JP (1) JP3844771B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072762A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Activated sludge material, and reduction method of excess sludge amount in bioreactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390125B2 (en) * 2007-08-28 2014-01-15 ダイヤモンドエンジニアリング株式会社 Maintenance method of biological reaction tank
WO2009028481A1 (en) 2007-08-28 2009-03-05 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072762A (en) * 2007-08-28 2009-04-09 Diamond Engineering Kk Activated sludge material, and reduction method of excess sludge amount in bioreactor

Also Published As

Publication number Publication date
JP3844771B1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
Ahmed et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review
KR102171932B1 (en) Process for treating organic material
AU2005209522A1 (en) Process for biological treatment of organic waste water and apparatus therefor
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
Rai et al. Influence of sludge disintegration by high pressure homogenizer on microbial growth in sewage sludge: an approach for excess sludge reduction
JP4378981B2 (en) Organic wastewater treatment method
de Souza et al. Optimization of ozone application in post-treatment of cattle wastewater from organic farms
JP3844771B1 (en) Sludge reduction method using activated sludge
JPH11147801A (en) Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water
JP2005161233A (en) Sludge weight reduction method by using humus and system therefor
JP5390125B2 (en) Maintenance method of biological reaction tank
JP6852214B2 (en) Sewage treatment system
JP3966417B2 (en) Method for producing high spore seed sludge and waste water treatment method using high spore seed sludge
JP2006142132A (en) Treatment method and apparatus of oil and fat-containing wastewater
JP2005095811A (en) Method and apparatus for treating organic waste
JP2001259675A (en) Sludge amount reducing method and its device
JP2000279979A (en) Wastewater treatment
KR960003922B1 (en) Waste water treatment by volcanic ashes
JP4490659B2 (en) Sewage treatment system
JP2007000747A (en) Method for removing nitrogen compound in water
JP2008221179A (en) Drainage treatment method
Joy et al. New technologies for on-site domestic and agricultural wastewater treatment
JP2007283249A (en) Organic wastewater treatment system
JP5390124B2 (en) Reduction method of excess sludge in biological reaction tank
JP2002119992A (en) Sewage treatment method by covering surface of water of anaerobic tank with sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Ref document number: 3844771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees