JP2004274884A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2004274884A
JP2004274884A JP2003062233A JP2003062233A JP2004274884A JP 2004274884 A JP2004274884 A JP 2004274884A JP 2003062233 A JP2003062233 A JP 2003062233A JP 2003062233 A JP2003062233 A JP 2003062233A JP 2004274884 A JP2004274884 A JP 2004274884A
Authority
JP
Japan
Prior art keywords
bracket
insulating cap
winding
elastic body
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003062233A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003062233A priority Critical patent/JP2004274884A/en
Publication of JP2004274884A publication Critical patent/JP2004274884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor which combines measures for insulation and measures to heat and is easy to be made compact in size. <P>SOLUTION: The section between an insulating cap 19 and the coil end of a winding 11b is impregnated with vanish 18 for sticking, and a high-heat-conductive elastic body 20 is arranged between the insulating cap 19 and a bracket 15 on the side of an output shaft, and the bracket 15 is fixed to a frame 17, whereupon the high-heat-conductive elastic body 20 is pressed and transformed. However, it sticks fast to the insulating cap 19, the bracket 15 and the frame 17 by the reaction of the elastic body, and it can transmit the heat generated by the winding to the bracket 15 and the frame 17, thereby radiating it. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は産業用機器に使用される高出力モータの冷却構造に関するものである。
【0002】
【従来の技術】
近年、産業用途のモータには小型、高性能化、低コスト化が要求され、回転子に高性能希土類磁石を使用し、固定子は分割コアによる巻線の高密度化によって小型化が図られ、絶縁対策と熱対策が必要となっている。
【0003】
そして、モータ巻線から発生する熱は、センサーやモータ性能に悪影響を及ぼすため、さまざまな対策がなされている。
【0004】
例えば、コイルを巻装した固定子を樹脂成形したモールドモータにおいて、ブラケット外周部とステータコアの外周部とを軸方向端面で当接させて、巻線で発生した熱をステータコアの外周からブラケットに効率よく伝達し、この熱を外気に放出させる(例えば、特許文献1参照)。
【0005】
また、固定子コアに巻かれた巻線の端面部とベアリングを介して回転子を支持するブラケットもしくはフレームとの間に高熱伝導性樹脂を充填して放熱している(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開平7−163082号公報
【特許文献2】
特開平5−328686号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記のように樹脂成形を行うと、金型、設備等のコストがかかるばかりでなく、コアと巻線の一体成形時に、外周部の巻線は成形樹脂の流れと圧力により動き耐圧不良等が起こり品質的に安定しないという課題があった。
【0008】
一方、熱伝導性樹脂を用いる場合、充填量が多いと内周側にはみ出し、少ないと十分に熱伝達が発揮されないという課題を有していた。
【0009】
本発明は上記従来の問題点を解決するもので、絶縁対策と熱対策を兼ね備え、小型化が容易なモータを安価に提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の課題を解決するために本発明は、固定子コアに巻線を備えた固定子と、前記固定子コアの外周部を覆う金属製のフレームと、前記フレームの両端部に配置され軸受を介して回転子を回転自在に支持する金属製のブラケットと、出力軸側巻線のコイルエンドと出力軸側ブラケット間に配設する絶縁キャップと、前記コイルエンドと絶縁キャップ間に充填したワニスと、前記絶縁キャップとブラケット間に配設する高熱伝導性弾性体とを備えたものである。
【0011】
また、固定子コアに巻線を備えた固定子と、前記固定子の両端部に配置され軸受を介して回転子を回転自在に支持する金属製のブラケットと、出力軸側巻線のコイルエンドと出力軸側ブラケット間に配設する絶縁キャップと、前記コイルエンドと絶縁キャップ間に充填したワニスと、前記絶縁キャップとブラケット間に配設する高熱伝導性弾性体とを備えたものである。
【0012】
この構成により、高熱伝導性弾性体を絶縁キャップとブラケットとで押圧挟持して密着させ、絶縁と放熱の対策が可能となる。
【0013】
【発明の実施の形態】
上記課題を解決するために請求項1あるいは請求項2に記載のモータは、絶縁キャップによりコイルエンドの絶縁を確保するとともに、巻線からの熱をワニス、絶縁キャップ、高熱伝導性弾性体、ブラケット(あるいはフレームを介して)から駆動機器と外気に伝え放熱してモータの温度上昇を抑制することができる。
【0014】
また、請求項3に記載のモータは、上記に加えて、積層面に接着剤を塗布して固着形成したもので、固定子コアの密着性が向上し、さらに軸方向の熱の流れを促進させることができる。
【0015】
さらに、請求項4に記載のモータは、上記に加えて反出力軸側に熱を嫌うエンコーダなどのセンサーを設けたもので、積極的に熱を出力軸側に導き、センサー側への熱伝導を抑制することができる。
【0016】
【実施例】
以下、本発明の一実施例について図面を参照しながら説明する。
【0017】
図1において、11は固定子で、固定子コア11aの歯部に巻線11bを集中巻している。12は回転子、13、14はベアリング、15、16はアルミ製のブラケット、17はフレームで、固定子11の外周部に焼きバメしている。18はワニス、19は絶縁キャップ、20は高熱伝導性弾性体である。
【0018】
絶縁キャップ19は、巻線11bのコイルエンドと出力軸側ブラケット15を確実に絶縁するために設けたもので、樹脂製でドーナツ形状のものが適する。ドーナツ形状の内および外は巻線側に折り返しておき、巻線11bの端部にはめ込めるような形状にすれば装着が容易となる。
【0019】
この絶縁キャップ19を設けることにより、巻線11bのコイルエンドとブラケット15の間の絶縁距離を必要以上に確保する必要がなくなり、軸方向にモータの小型化が可能となる。
【0020】
大電流を流すと巻線が振動して耐圧不良が発生するのを防止するため、および巻線間空隙を充填し熱伝導を良くする2つの目的から、巻線を備えた固定子に熱硬化性のワニスを含浸させて巻線を固める。
【0021】
本願発明は、このワニス含浸工程の前に絶縁キャップを装着し、絶縁キャップ19を下向きにしてワニス18を含浸させ硬化させることで、固定子11とワニス18と絶縁キャップ19とが一体になったユニットをつくることができる。
【0022】
これは、あたかも巻線を樹脂成形したかのようなものであるが、絶縁キャップ19以外は通常の工程、材料を変える必要もない。しかも、ワニス含浸なので樹脂モールドのように成形機や金型が不要、かつ耐圧不良が発生する心配がないため低コストで実現できる。なお、反出力軸側のコイルエンドにも絶縁キャップを設けてもよい。
【0023】
一方、高熱伝導性弾性体20の材質としては、シリコンゴムが適しており、あらかじめ絶縁キャップ19に沿うような形に形成しておく。このとき、高熱伝導性弾性体20の厚みは、絶縁キャップ19とブラケット15の空隙寸法(設計値)より少し大きく設定、外径はフレーム17の内径より少し小さく設定する。
【0024】
フレーム17にブラケット15を固定すると高熱伝導性弾性体20は押圧され変形するが、弾性体の反力により高熱伝導性弾性体20は、絶縁キャップ19、ブラケット15およびフレーム17に密着する。
【0025】
これにより、巻線11bが発生する熱は、ワニス18、絶縁キャップ19、高熱伝導性弾性体20を経てブラケット15およびフレーム17に伝わり、ブラケット15およびフレーム17の外表面から大気中あるいは取付けられた機器に発散される。
【0026】
ところで、コアの積層面を接着剤で固着形成した固定子コア11aを用いれば軸方向に熱伝達がよくなり、さらに放熱効果が期待できる。
【0027】
また、絶縁キャップ19と出力軸側巻線11bのコイルエンド間に必ず高熱伝導性弾性体20を配設するが、反出力軸側にエンコーダなどのセンサー21を設けている場合に、反出力軸側ブラケット16と反出力軸側のコイルエンド間に高熱伝導性弾性体20を設けると、センサー21側へ熱を伝達することとなるため、実施しない方が良い。
【0028】
本実施例によれば、100Wのモータで巻線部の温度を約4度下げることができた。
【0029】
なお、図示はしないが本実施例のフレームを用いず、固定子コアに直接ブラケットを固定する構成、あるいはフレームとブラケットを一体で構成しても同様に実施できる。
【0030】
また、絶縁キャップによりコイルエンドとブラケット間の絶縁を確保できるため、高熱伝導性弾性体は、絶縁物に限定する必要はなく、金属粉を混合させてもよい。
【0031】
【発明の効果】
上記の実施例から明らかなように本発明によれば、絶縁キャップを用いたワニス含浸と高熱伝導性弾性体の効果的な配置によって、軸方向の絶縁対策および放熱対策が可能となり、さらに巻線のコイルエンドとブラケットの間の絶縁距離を必要以上確保する必要がなくなるため小型化が可能となる。
【0032】
また、反出力軸側にセンサーを備えたモータでは、積極的に出力軸側に熱を伝達するので、反出力軸側のセンサーへの熱伝導を抑制できる。
【0033】
したがって、絶縁対策と熱対策を兼ね備えたモータを小型で安価に提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるモータの断面図
【符号の説明】
11 固定子
11a 固定子コア
11b 巻線
15 ブラケット(出力軸側)
17 フレーム
18 ワニス
19 絶縁キャップ
20 高熱伝導性弾性体
21 センサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling structure for a high-output motor used for industrial equipment.
[0002]
[Prior art]
In recent years, motors for industrial applications have been required to be small, high-performance, and low-cost. High-performance rare-earth magnets have been used for rotors, and stators have been downsized by increasing the density of windings using split cores. Therefore, insulation measures and heat measures are needed.
[0003]
Since heat generated from the motor winding has a bad influence on the performance of the sensor and the motor, various measures have been taken.
[0004]
For example, in a molded motor in which a stator around which a coil is wound is resin-molded, an outer peripheral portion of a bracket and an outer peripheral portion of a stator core are brought into contact with each other at an axial end face, so that heat generated by winding is efficiently transmitted from the outer periphery of the stator core to the bracket. The heat is transmitted well, and this heat is released to the outside air (for example, see Patent Document 1).
[0005]
Further, a high heat conductive resin is filled between the end face of the winding wound on the stator core and a bracket or a frame supporting the rotor via a bearing to radiate heat (for example, see Patent Document 2). ).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-163082 [Patent Document 2]
JP-A-5-328686
[Problems to be solved by the invention]
However, when the resin molding is performed as described above, not only is the cost of the mold and equipment required, but also at the time of integral molding of the core and the winding, the winding at the outer peripheral portion moves due to the flow and pressure of the molding resin and has a poor withstand pressure. There is a problem that quality is not stable due to the occurrence of such problems.
[0008]
On the other hand, when a heat conductive resin is used, there is a problem that if the filling amount is large, it protrudes to the inner peripheral side, and if the filling amount is small, heat transfer is not sufficiently exhibited.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide an inexpensive motor that has both insulation measures and heat measures and that can be easily miniaturized.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a stator having a winding on a stator core, a metal frame covering an outer peripheral portion of the stator core, and bearings disposed at both ends of the frame. A metal bracket that rotatably supports the rotor via the coil, an insulating cap disposed between the coil end of the output shaft side winding and the output shaft side bracket, and a varnish filled between the coil end and the insulating cap. And a high thermal conductive elastic body disposed between the insulating cap and the bracket.
[0011]
A stator provided with a winding on a stator core; a metal bracket disposed at both ends of the stator for rotatably supporting a rotor via bearings; and a coil end of an output shaft side winding. And an insulating cap disposed between the bracket and the output shaft side, a varnish filled between the coil end and the insulating cap, and a high thermal conductive elastic body disposed between the insulating cap and the bracket.
[0012]
According to this configuration, the high thermal conductive elastic body is pressed and sandwiched between the insulating cap and the bracket, and is brought into close contact with each other, thereby making it possible to take measures against insulation and heat radiation.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the above-mentioned problem, the motor according to claim 1 or 2 ensures insulation of a coil end by an insulating cap, and radiates heat from a winding to a varnish, an insulating cap, a high thermal conductive elastic body, and a bracket. (Or via a frame) to drive equipment and outside air to dissipate heat and suppress the motor temperature rise.
[0014]
Further, in addition to the above, the motor according to the third aspect is formed by applying an adhesive to the laminating surface and firmly forming the same, thereby improving the adhesion of the stator core and further promoting the flow of heat in the axial direction. Can be done.
[0015]
Further, the motor according to claim 4 is provided with a sensor such as an encoder which dislikes heat on the side opposite to the output shaft in addition to the above, so that heat is positively guided to the output shaft side and heat conduction to the sensor side is performed. Can be suppressed.
[0016]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0017]
In FIG. 1, reference numeral 11 denotes a stator, and windings 11b are concentratedly wound around teeth of a stator core 11a. 12 is a rotor, 13 and 14 are bearings, 15 and 16 are aluminum brackets, and 17 is a frame, which is shrunk on the outer periphery of the stator 11. Reference numeral 18 denotes a varnish, 19 denotes an insulating cap, and 20 denotes a high thermal conductive elastic body.
[0018]
The insulating cap 19 is provided to reliably insulate the coil end of the winding 11b from the output shaft side bracket 15, and is preferably made of resin and has a donut shape. The inside and the outside of the donut shape are folded back to the winding side so that the donut shape can be fitted to the end of the winding 11b to facilitate mounting.
[0019]
By providing the insulating cap 19, it is not necessary to secure an unnecessarily long insulation distance between the coil end of the winding 11b and the bracket 15, and the motor can be downsized in the axial direction.
[0020]
Heat-curing is applied to the stator with windings for two purposes to prevent the windings from vibrating when a large current is applied and failing to withstand pressure, and to fill the gap between the windings and improve heat conduction. The winding is hardened by impregnating with a conductive varnish.
[0021]
In the present invention, the stator 11, the varnish 18, and the insulating cap 19 are integrated by mounting the insulating cap before the varnish impregnating step, impregnating and curing the varnish 18 with the insulating cap 19 facing downward. You can make a unit.
[0022]
This is as if the windings were formed by resin molding, but there is no need to change ordinary processes and materials other than the insulating cap 19. Moreover, since it is impregnated with varnish, there is no need for a molding machine or a mold unlike a resin mold, and there is no need to worry about poor pressure resistance, so that it can be realized at low cost. Note that an insulating cap may also be provided on the coil end on the side opposite to the output shaft.
[0023]
On the other hand, as a material of the high thermal conductive elastic body 20, silicon rubber is suitable and is formed in advance so as to conform to the insulating cap 19. At this time, the thickness of the high thermal conductive elastic body 20 is set slightly larger than the gap size (design value) between the insulating cap 19 and the bracket 15, and the outer diameter is set slightly smaller than the inner diameter of the frame 17.
[0024]
When the bracket 15 is fixed to the frame 17, the high thermal conductive elastic body 20 is pressed and deformed, but the high thermal conductive elastic body 20 comes into close contact with the insulating cap 19, the bracket 15 and the frame 17 due to the reaction force of the elastic body.
[0025]
Thus, the heat generated by the winding 11b is transmitted to the bracket 15 and the frame 17 via the varnish 18, the insulating cap 19, and the high thermal conductive elastic body 20, and is attached to the atmosphere or from the outer surfaces of the bracket 15 and the frame 17. Dissipated to equipment.
[0026]
By the way, if the stator core 11a in which the lamination surface of the core is fixedly formed with an adhesive is used, the heat transfer in the axial direction is improved, and a further heat radiation effect can be expected.
[0027]
The high thermal conductive elastic body 20 is always disposed between the insulating cap 19 and the coil end of the output shaft side winding 11b. However, when the sensor 21 such as an encoder is provided on the non-output shaft side, the If the high thermal conductive elastic body 20 is provided between the side bracket 16 and the coil end on the side opposite to the output shaft, heat will be transmitted to the sensor 21 side, so it is better not to implement this.
[0028]
According to the present example, the temperature of the windings could be reduced by about 4 degrees with a 100 W motor.
[0029]
Although not shown, the present embodiment can be similarly implemented by directly fixing the bracket to the stator core without using the frame of the present embodiment, or by integrally forming the frame and the bracket.
[0030]
Further, since insulation between the coil end and the bracket can be ensured by the insulating cap, the high thermal conductive elastic body does not need to be limited to an insulator, and may be mixed with metal powder.
[0031]
【The invention's effect】
As is apparent from the above embodiment, according to the present invention, the varnish impregnation using the insulating cap and the effective arrangement of the high thermal conductive elastic body enable measures against insulation in the axial direction and measures against heat radiation. Therefore, it is not necessary to secure an insulation distance between the coil end and the bracket more than necessary, so that the size can be reduced.
[0032]
Further, in a motor having a sensor on the side opposite to the output shaft, heat is positively transmitted to the side of the output shaft, so that heat conduction to the sensor on the side opposite to the output shaft can be suppressed.
[0033]
Therefore, it is possible to provide a small and inexpensive motor having both insulation measures and heat measures.
[Brief description of the drawings]
FIG. 1 is a sectional view of a motor according to an embodiment of the present invention.
11 Stator 11a Stator core 11b Winding 15 Bracket (output shaft side)
17 Frame 18 Varnish 19 Insulating cap 20 High thermal conductive elastic body 21 Sensor

Claims (4)

固定子コアに巻線を備えた固定子と、前記固定子コアの外周部を覆う金属製のフレームと、前記フレームの両端部に配置され軸受を介して回転子を回転自在に支持する金属製のブラケットと、出力軸側巻線のコイルエンドと出力軸側ブラケット間に配設する絶縁キャップと、前記コイルエンドと絶縁キャップ間に充填したワニスと、前記絶縁キャップとブラケット間に配設する高熱伝導性弾性体とを備え、前記高熱伝導性弾性体を前記絶縁キャップとブラケットとで押圧挟持して密着させたモータ。A stator having a winding on a stator core, a metal frame covering an outer peripheral portion of the stator core, and a metal frame disposed at both ends of the frame and rotatably supporting a rotor via bearings. Bracket, an insulating cap disposed between the coil end of the output shaft side winding and the output shaft side bracket, a varnish filled between the coil end and the insulating cap, and a high heat disposed between the insulating cap and the bracket. A motor comprising a conductive elastic body, wherein the high thermal conductive elastic body is pressed and sandwiched between the insulating cap and the bracket so as to be in close contact with each other. 固定子コアに巻線を備えた固定子と、前記固定子の両端部に配置され軸受を介して回転子を回転自在に支持する金属製のブラケットと、出力軸側巻線のコイルエンドと出力軸側ブラケット間に配設する絶縁キャップと、前記コイルエンドと絶縁キャップ間に充填したワニスと、前記絶縁キャップとブラケット間に配設する高熱伝導性弾性体とを備え、前記高熱伝導性弾性体を前記絶縁キャップとブラケットとで押圧挟持して密着させたモータ。A stator having a winding on a stator core; a metal bracket disposed at both ends of the stator to rotatably support a rotor via bearings; and a coil end and an output of an output shaft side winding. An insulating cap provided between the shaft-side brackets, a varnish filled between the coil end and the insulating cap, and a high heat conductive elastic body provided between the insulating cap and the bracket; Is pressed and held tightly between the insulating cap and the bracket. 固定子コアは、積層面に接着剤を塗布して固着形成した請求項1または請求項2記載のモータ。The motor according to claim 1 or 2, wherein the stator core is formed by applying an adhesive to a lamination surface and fixing the stator core. エンコーダなどのセンサーを反出力軸側に備えた請求項1から請求項3のいずれか1項に記載のモータ。The motor according to any one of claims 1 to 3, wherein a sensor such as an encoder is provided on a side opposite to the output shaft.
JP2003062233A 2003-03-07 2003-03-07 Motor Pending JP2004274884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062233A JP2004274884A (en) 2003-03-07 2003-03-07 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062233A JP2004274884A (en) 2003-03-07 2003-03-07 Motor

Publications (1)

Publication Number Publication Date
JP2004274884A true JP2004274884A (en) 2004-09-30

Family

ID=33124217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062233A Pending JP2004274884A (en) 2003-03-07 2003-03-07 Motor

Country Status (1)

Country Link
JP (1) JP2004274884A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036505A1 (en) * 2005-09-28 2007-04-05 Siemens Aktiengesellschaft Rotary electric motor
JP2011109808A (en) * 2009-11-17 2011-06-02 Toyota Motor Corp Cooling structure of motor
JP2016048975A (en) * 2014-08-27 2016-04-07 株式会社デンソー Double stator type rotary electric machine
JP2016135005A (en) * 2015-01-20 2016-07-25 多摩川精機株式会社 Resolver
KR20200022805A (en) * 2018-08-24 2020-03-04 주식회사 아모그린텍 Electric motor having improved heat-radiation ability and method of manufacturing the same
JP2020120543A (en) * 2019-01-25 2020-08-06 ファナック株式会社 Electric motor with improved heat dissipation and productivity and method of manufacturing the same
CN112054619A (en) * 2019-06-06 2020-12-08 松下知识产权经营株式会社 Stator structure and motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036505A1 (en) * 2005-09-28 2007-04-05 Siemens Aktiengesellschaft Rotary electric motor
JP2011109808A (en) * 2009-11-17 2011-06-02 Toyota Motor Corp Cooling structure of motor
JP2016048975A (en) * 2014-08-27 2016-04-07 株式会社デンソー Double stator type rotary electric machine
US10020697B2 (en) 2014-08-27 2018-07-10 Denso Corporation Double-stator electric rotating machine
JP2016135005A (en) * 2015-01-20 2016-07-25 多摩川精機株式会社 Resolver
KR20200022805A (en) * 2018-08-24 2020-03-04 주식회사 아모그린텍 Electric motor having improved heat-radiation ability and method of manufacturing the same
KR102564400B1 (en) * 2018-08-24 2023-08-08 주식회사 아모그린텍 Electric motor having improved heat-radiation ability and method of manufacturing the same
JP2020120543A (en) * 2019-01-25 2020-08-06 ファナック株式会社 Electric motor with improved heat dissipation and productivity and method of manufacturing the same
US11418093B2 (en) 2019-01-25 2022-08-16 Fanuc Corporation Electric motor with improved heat dissipation and productivity and method for manufacturing same
CN112054619A (en) * 2019-06-06 2020-12-08 松下知识产权经营株式会社 Stator structure and motor
CN112054619B (en) * 2019-06-06 2024-05-28 松下知识产权经营株式会社 Stator structure and motor

Similar Documents

Publication Publication Date Title
JP5216038B2 (en) Rotating motor
JP2008283730A (en) Split stator for electric motor, stator for electric motor equipped with this split stator, electric motor equipped with this stator for electric motor, and manufacturing method of split stator for electric motor
JP2010035310A (en) Rotating electric machine and manufacturing method thereof
JP5267091B2 (en) Stator for rotating electrical machine
JP2007215335A (en) Stator for motor and motor equipped with this stator
JP6373854B2 (en) Stator or rotor
CN111699619A (en) Stator for a rotating field machine with axial heat dissipation
CN111712993B (en) External stator of an electric motor having stator tooth sets, each stator tooth set having two adjacent stator teeth and a connecting yoke
US20110156504A1 (en) Motor and method for manufacturing the same
JP2007143245A (en) Rotating machine
JP4415433B2 (en) Electric motor
JP6768142B2 (en) Axial gap type rotary electric machine
JP2002191149A (en) Rotating electric machine
JP2004274884A (en) Motor
JP6194877B2 (en) Rotating electric machine
JP2002191155A (en) Rotating electric machine
JP2002369449A (en) Motor
JP2000116063A (en) Motor
JP5013827B2 (en) Brushless electric motor
JP2007312497A (en) Manufacturing method for winding body for motors, winding body for motors, and stator for motors
JP2008278654A (en) Stator of concentrated winding
JP4173416B2 (en) Rotating machine
JP4403703B2 (en) Slotless permanent magnet motor
JP2009130958A (en) Rotating electric machine
JP2011166977A (en) Molded motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909