JP2004273465A - Surface light source element and light transmission body used for the same - Google Patents

Surface light source element and light transmission body used for the same Download PDF

Info

Publication number
JP2004273465A
JP2004273465A JP2004168851A JP2004168851A JP2004273465A JP 2004273465 A JP2004273465 A JP 2004273465A JP 2004168851 A JP2004168851 A JP 2004168851A JP 2004168851 A JP2004168851 A JP 2004168851A JP 2004273465 A JP2004273465 A JP 2004273465A
Authority
JP
Japan
Prior art keywords
light
light guide
light source
prism
source element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004168851A
Other languages
Japanese (ja)
Inventor
Kazukiyo Chiba
一清 千葉
Masaharu Oda
雅春 小田
Yasuko Hayashi
泰子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004168851A priority Critical patent/JP2004273465A/en
Publication of JP2004273465A publication Critical patent/JP2004273465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light transmission body for a surface light source element, having high luminance and uniform luminance distribution in a light emitting surface without applying any uniformizing process such as a dot pattern. <P>SOLUTION: The surface light source element comprises at least one side surface as a light incident surface, and one surface approximately orthogonal to the light incident surface as a light emitting surface. A plurality of lens arrays having an inclined surface of an average inclination angle of 0.5-6°, arranged on at least one surface of the light emitting surface and its back surface, extending in a direction parallel with the light incident surface. The light emission from the light emitting surface has a directivity of 60-80° with respect to the normal line of the the light emitting surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、ノートパソコン、液晶テレビ等に使用される液晶表示装置、駅や公共施設等における案内標示板や大型看板等の表示装置、高速道路や一般道路における種々の案内標識や交通標識等の交通表示装置等の表示装置を構成する面光源素子、および面光源素子に使用される導光体に関するものである。   The present invention relates to a liquid crystal display device used for a notebook personal computer, a liquid crystal television, etc., a display device such as a signboard or a large signboard at a station or a public facility, and various guide signs and traffic signs on an expressway or a general road. The present invention relates to a surface light source element constituting a display device such as a traffic display device, and a light guide used for the surface light source element.

近年、カラー液晶表示装置は、ノートパソコンや、液晶テレビあるいはビデオ一体型液晶テレビ等として種々の分野で広く使用されてきている。この液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子の直下に光源を設けた直下方式や導光体の側面に光源を設けたエッジライト方式があり、液晶表示装置のコンパクト化からエッジライト方式が多用されてきている。このエッジライト方式は、板状の導光体の側面部に光源を配置して、導光体の表面全体を発光させる方式のバックライトであり、いわゆる面光源素子と呼ばれるものである。   In recent years, color liquid crystal display devices have been widely used in various fields such as notebook personal computers, liquid crystal televisions, and video-integrated liquid crystal televisions. This liquid crystal display device basically includes a backlight section and a liquid crystal display element section. As the backlight unit, there are a direct type in which a light source is provided immediately below a liquid crystal display element and an edge light type in which a light source is provided on a side surface of a light guide. I have. The edge light type is a backlight of a type in which a light source is disposed on a side surface of a plate-shaped light guide to emit light on the entire surface of the light guide, and is a so-called surface light source element.

このような面光源素子では、アクリル樹脂板等の板状透明材料を導光体とし、その一端に配置された光源からの光を光入射面から導光体中に入射させ、入射した光を導光体の表面(光出射面)あるいは裏面に形成した光散乱部等の光出射機能を設けることにより、光出射面から面状に出射させるものである。しかし、導光体の表面あるいは裏面に光出射機能を均一に形成したものでは、光源から離れるに従って出射光の輝度が低下して、光出射面内における輝度が不均一となり、良好な表示画面が得られないものであった。このような傾向は、液晶表示素子の大型化に伴って顕著となり、10インチ以上の大型液晶表示装置においては実用に耐えうるものではなかった。特に、最近の液晶画面の大型化に伴い、ノートパソコンや液晶テレビ等に使用される液晶表示装置においては、その画面内での輝度分布は非常に高い均一性が要求されるものである。   In such a surface light source element, a plate-shaped transparent material such as an acrylic resin plate is used as a light guide, and light from a light source disposed at one end is made to enter the light guide from a light incident surface, and the incident light is reflected. By providing a light emitting function such as a light scattering portion formed on the front surface (light emitting surface) or the back surface of the light guide, light is emitted from the light emitting surface in a planar manner. However, when the light emitting function is formed uniformly on the front surface or the back surface of the light guide, the brightness of the emitted light decreases as the distance from the light source increases, and the brightness in the light emitting surface becomes non-uniform. It could not be obtained. Such a tendency becomes conspicuous as the size of the liquid crystal display element increases, and is not practical for a large-sized liquid crystal display device of 10 inches or more. In particular, with the recent increase in the size of liquid crystal screens, very high uniformity of the luminance distribution within the screen is required for liquid crystal display devices used for notebook computers, liquid crystal televisions, and the like.

また、案内標示板や大型看板等の表示装置、高速道路や一般道路での案内標識や交通標識等の交通表示装置においては、夜間の視認性、判読性を高めるために、内部照明方式と外部照明方式の2つの照明方式が採用されていた。内部照明方式では、メタクリル板等の半透明のプラスッチク板に切抜きや印刷等によって文字、図形、写真等を形成して表示板とし、この表示板の内側にバックライトとなる光源を配置し、この光源により表示板を照らすようにしたものであり、光源としては直管形または環形の蛍光灯が一般的に使用されている。また、外部照明方式では、表示内容を形成した表示板の前面側の上方、下方、側方等に光源を配置し、この光源により表示板の全面を照らすようにしたもので、光源としては直管形の蛍光灯が一般的に使用されている。   In addition, display devices such as guide signs and large signboards, and traffic display devices such as guide signs and traffic signs on expressways and general roads, require an internal lighting system and an external lighting system to enhance visibility and legibility at night. Two illumination systems, illumination systems, have been employed. In the internal lighting system, characters, figures, photographs, etc. are formed on a translucent plastic plate such as a methacryl plate by cutting or printing to form a display plate, and a light source serving as a backlight is arranged inside the display plate. The display panel is illuminated by a light source, and a straight tube or annular fluorescent lamp is generally used as the light source. In the external illumination system, a light source is disposed above, below, or on the front side of a display panel on which display contents are formed, and the light source illuminates the entire surface of the display panel. Tube-shaped fluorescent lamps are commonly used.

このような表示装置においては、表示板の全面上の輝度分布、すなわち輝度の最大値/最小値の値が非常に大きくなり、このような方式では輝度分布の小さい均一な明るさを有する表示装置を得ることは困難であった。この傾向は、外部照明方式において特に著しいものであった。また、内部照明方式においては、光源として使用する蛍光灯等が標示板から透けて見えるシースルー現象が起こりやすいという問題点をも有していた。そこで、これら表示装置においても、板状の導光体の側面部に光源を配置して導光体の表面全体を発光させるエッジライト方式のバックライトの採用が試みられている。しかし、このような表示装置では、大型の面光源素子が必要であり、上記液晶表示装置と同様に光出射面内での輝度の十分な均一性が達成できないという問題点を有している。   In such a display device, the luminance distribution over the entire surface of the display panel, that is, the maximum value / minimum value of the luminance becomes extremely large, and in such a method, the display device having a small luminance distribution and uniform brightness. It was difficult to get. This tendency was particularly remarkable in the external lighting system. In addition, the internal illumination system has a problem that a see-through phenomenon in which a fluorescent lamp or the like used as a light source can be seen through a sign plate easily occurs. Therefore, in these display devices, an attempt is being made to adopt an edge-light type backlight that arranges a light source on the side surface of a plate-shaped light guide and emits light over the entire surface of the light guide. However, such a display device requires a large surface light source element, and has a problem that sufficient uniformity of luminance on the light emitting surface cannot be achieved as in the case of the liquid crystal display device.

このような面光源素子の輝度の不均一性という課題を解決するために、種々の提案がなされている。例えば、特開平1−24522号公報(特許文献1)には、導光体の光出射面に対向する裏面に光入射面から離れるに従って光拡散物質を密に塗布または付着させた光出射機能を設けた面光源素子が提案されている。また、特開平1−107406号公報(特許文献2)には、表面に光散乱物質からなる細かい斑点を種々のパターンで形成した複数の透明板を積層して導光体としたのもが提案されている。このような面光源素子においては、光散乱物質として酸化チタンや硫酸バリウム等の白色顔料を使用しているため、光散乱物質に当たった光が散乱する際に光吸収等の光のロスが生じ、出射光の輝度の低下を招くため好ましくないものであった。   Various proposals have been made in order to solve the problem of uneven brightness of the surface light source element. For example, Japanese Patent Application Laid-Open No. 1-24522 (Patent Literature 1) discloses a light emitting function in which a light diffusing substance is applied or adhered densely to a back surface opposite to a light emitting surface of a light guide as the distance from the light incident surface increases. A provided surface light source element has been proposed. Also, Japanese Patent Application Laid-Open No. 1-107406 (Patent Document 2) proposes that a light guide is formed by laminating a plurality of transparent plates on the surface of which fine spots made of a light scattering substance are formed in various patterns. Have been. In such a surface light source element, since a white pigment such as titanium oxide or barium sulfate is used as a light scattering substance, light loss such as light absorption occurs when light hitting the light scattering substance is scattered. This is not preferable because it causes a decrease in the luminance of the emitted light.

また、特開平1−244490号公報(特許文献3)や特開平1−252933号公報(特許文献4)には、導光体の光出射面上に出射光分布の逆数に見合う光反射パターンを有する出射光調整部材や光拡散板を配置した面光源素子が提案されている。しかし、このような面光源素子においても、出射光調整部材や光拡散板で反射した光の再利用ができないために光のロスが生じ、出射光の輝度の低下を招くものであった。   Japanese Patent Application Laid-Open Nos. 1-244490 (Patent Literature 3) and 1-225933 (Patent Literature 4) disclose a light reflection pattern corresponding to the reciprocal of the emission light distribution on the light emission surface of the light guide. There has been proposed a surface light source element in which an emission light adjusting member and a light diffusion plate having the same are arranged. However, even in such a surface light source element, since the light reflected by the emission light adjusting member or the light diffusion plate cannot be reused, light loss occurs, and the luminance of the emission light is reduced.

さらに、特開平2−17号公報(特許文献5)や特開平2−84618号公報(特許文献6)には、導光体の光出射面およびその裏面の少なくとも一方の面を梨地面としたり、多数のレンズ単位を形成したりするとともに、光出射面上にプリズムシートを載置した面光源素子が提案されている。しかし、このような面光源素子は、非常に高い輝度が得られるものの、光出射面における均一性の点では未だ満足できるものではなかった。   Further, JP-A Nos. 2-17 (Patent Document 5) and 2-84618 (Patent Document 6) disclose a light emitting surface of a light guide and at least one of its back surface as a matte surface. A surface light source element has been proposed in which a large number of lens units are formed, and a prism sheet is mounted on a light exit surface. However, although such a surface light source element can obtain extremely high luminance, it has not been satisfactory in terms of uniformity on a light emitting surface.

一方、出射光の輝度の均一化とともに光のロスを低減して輝度を高める面光源素子については、特開平6−18879号公報(特許文献7)に提案されているように、導光体の光出射面に多数のレンズ単位を形成したり、梨地面とするとともに、その裏面に粗面部分と平滑部分を粗面部分の割合が光源から離れるに従って増加するように形成するとともに、光出射面上にプリズムシートを載置した面光源素子が提案されている
特開平1−24522号公報 特開平1−107406号公報 特開平1−244490号公報 特開平1−252933号公報 特開平2−17号公報 特開平2−84618号公報 特開平6−18879号公報
On the other hand, as for a surface light source element that increases the luminance by reducing the light loss while making the luminance of the emitted light uniform, as disclosed in JP-A-6-18879 (Patent Document 7), A large number of lens units are formed on the light emitting surface or a matte surface is formed, and a rough surface portion and a smooth portion are formed on the back surface so that the ratio of the rough surface portion increases as the distance from the light source increases. A surface light source element on which a prism sheet is mounted has been proposed.
JP-A-1-24522 JP-A-1-107406 JP-A-1-244490 JP-A-1-252933 JP-A No. 2-17 JP-A-2-84618 JP-A-6-18879

しかしながら、特許文献7に記載のような面光源素子では、出射光の輝度の均一化と光のロスの低減を図れるものの、液晶表示装置等の表示装置として使用する場合に、液晶表示素子や表示板を通して導光体の裏面に形成した粗面部分と平滑部分とで形成されるパターンが観察され、画像の観察に支障をきたすものであった。また、導光体面にこのような均一光出射機能を施すことは、導光体の生産性の観点からも好ましいものではない。   However, in the surface light source element as described in Patent Document 7, although the luminance of emitted light can be made uniform and the loss of light can be reduced, when used as a display device such as a liquid crystal display device, the liquid crystal display element or the display A pattern formed by a rough surface portion and a smooth portion formed on the back surface of the light guide through the plate was observed, which hindered image observation. Also, providing such a uniform light emitting function to the light guide surface is not preferable from the viewpoint of productivity of the light guide.

そこで、本発明は、高い輝度を有するとともに、斑点パターン等の均一化処理を施すことなく光出射面内での輝度の高い均一性が得られる面光源素子用導光体および面光源素子を提供することを目的とする。   Therefore, the present invention provides a light guide for a surface light source element and a surface light source element which have high luminance and can obtain high uniformity of luminance on a light emitting surface without performing a uniform processing of a speckle pattern or the like. The purpose is to do.

すなわち、本発明の面光源素子用導光体は、少なくとも1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とし、前記光出射面およびその裏面の少なくとも一方の面に、前記光入射面と平行な方向に延び、平均傾斜角が0.5〜6゜の斜面からなる多数のレンズ列から構成され、前記光出射面からの出射光が前記光出射面の法線に対して60〜80°の角度に指向性をもって出射することを特徴とするものである。   That is, the light guide for a surface light source element of the present invention has at least one side end surface as a light incident surface, one surface substantially orthogonal to the light incident surface as a light exit surface, and the light exit surface and the back surface thereof. At least one surface is formed of a large number of lens arrays formed of inclined surfaces extending in a direction parallel to the light incident surface and having an average inclination angle of 0.5 to 6 °. The light is emitted with directivity at an angle of 60 to 80 ° with respect to the normal line of the emission surface.

また、本発明の面光源素子は、光源と、該光源に対向する少なくとも1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とする導光体と、該導光体の光出射面側に配設された少なくとも一方の面に多数のプリズム列が平行して形成されたプリズムシートからなり、前記導光体の光出射面およびその裏面の少なくとも一方の面が、前記光入射面と平行な方向に延び、平均傾斜角が0.5〜6゜の斜面からなる多数のレンズ列から構成され、前記プリズムシートが、前記光出射面上にプリズム列が形成された面を前記光出射面側となるように配設され、前記導光体の光出射面からの出射光が該光出射面の法線に対して60〜80°の角度に指向性をもって出射し、該出射光を前記プリズムシートで略法線方向に変角させることを特徴とするものである。   Further, the surface light source element of the present invention comprises a light source, a light guide having at least one side end face facing the light source as a light incident surface, and one surface substantially orthogonal to the light incident surface as a light exit surface. A prism sheet in which a number of prism rows are formed in parallel on at least one surface provided on the light exit surface side of the light guide, and at least one of the light exit surface of the light guide and the back surface thereof Surface extends in a direction parallel to the light incident surface, and is composed of a large number of lens rows including inclined planes having an average inclination angle of 0.5 to 6 °, and the prism sheet is provided on the light exit surface. The light emitting surface of the light guide is directed at an angle of 60 to 80 ° with respect to a normal line of the light emitting surface. Emitted by the prism sheet, and the emitted light is deflected by the prism sheet in a substantially normal direction. It is characterized in.

本発明は、導光体の光出射面およびそれと対向する裏面の少なくとも一方の面を、平均傾斜角(θa)が0.5〜6゜の斜面で構成される多数のレンズ列を形成することによって、導光体の光出射面からの出射光の出射率を小さくすることができ、斑点パターン等の均一化処理を施すことなく光出射面内での均一な輝度分布が得られるとともに、導光体の光出射面からその法線に対して60〜80°の角度に指向性をもって光を出射させ、この出射光をプリズムシートで法線方向に変角させることによって、面光源素子としての輝度を高くすることができ、ノートパソコン、液晶テレビ等に使用される液晶表示装置、案内標示板や大型看板、高速道路や一般道路での案内標識や交通標識等の表示装置として適した面光源素子を提供できるものである。   According to the present invention, at least one of the light emitting surface of the light guide and the back surface facing the light emitting surface is formed with a large number of lens rows each having an inclined surface having an average inclination angle (θa) of 0.5 to 6 °. As a result, the emission rate of the light emitted from the light exit surface of the light guide can be reduced, and a uniform luminance distribution can be obtained in the light exit surface without performing a uniform processing such as a speckle pattern. A light is emitted from the light exit surface of the light body with directivity at an angle of 60 to 80 ° with respect to the normal line, and the emitted light is changed in the direction of the normal line by a prism sheet. A surface light source that can increase brightness and is suitable as a liquid crystal display device used for notebook computers, liquid crystal televisions, etc., as a display device for information signs and traffic signs, etc. Can provide elements is there.

本発明の面光源素子用導光体は、少なくとも1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とする透明基板から構成される。このような導光体において、導光体中に入射した光は、臨界角以内の分布の光が導光体の面で反射を繰り返して導光体中を伝搬する。導光体の表面に粗面部分を形成した場合には、粗面部分に到達した光のうち粗面に対して臨界角を超える光は屈折して導光体の外へ出射し、臨界角以内の光は反射して導光体を伝搬する。これは、光の進行方向が、スネルの法則に従って媒体の屈折率と入射した面の法線に対する光の入射角によって決定されることによる。   The light guide for a surface light source element of the present invention is composed of a transparent substrate having at least one side end surface as a light incident surface and one surface substantially orthogonal to the light incident surface as a light emitting surface. In such a light guide, the light incident on the light guide propagates through the light guide with light having a distribution within the critical angle repeatedly reflected on the surface of the light guide. When a rough surface portion is formed on the surface of the light guide, light exceeding the critical angle with respect to the rough surface out of the light reaching the rough surface portion is refracted and emitted out of the light guide, and the critical angle The light within is reflected and propagates through the light guide. This is because the traveling direction of light is determined by the refractive index of the medium and the angle of incidence of the light with respect to the normal to the incident surface according to Snell's law.

図1に、凹凸形状を有する導光体表面での光の屈折および反射を模式的に示した。臨界角を超える入射角iで凹凸部の斜面に入射した光Aは、スネルの法則によりnsini=sini’(nは導光体の屈折率)の関係を満足する出射角i’で導光体外に出射する。一方、臨界角内である入射角kで入射した光Bは、角度k’(k’=k)で反射して導光体内を伝搬する。一旦、凹凸部分に入射して反射した光は、次に凹凸部分に入射する際に入射角が鋭くなるため、臨界角を超えやすくなり導光体外へ出射しやすくなる。   FIG. 1 schematically shows the refraction and reflection of light on the surface of a light guide having an uneven shape. The light A incident on the slope of the uneven portion at an incident angle i exceeding the critical angle is out of the light guide at an emission angle i 'that satisfies the relationship of nsini = sini' (n is the refractive index of the light guide) according to Snell's law. Out. On the other hand, light B incident at an incident angle k that is within the critical angle is reflected at an angle k ′ (k ′ = k) and propagates in the light guide. The light once incident on the concave and convex portion and reflected therefrom has a sharp incident angle when the light is next incident on the concave and convex portion, so that the light easily exceeds the critical angle and easily exits the light guide.

本発明者等は、面光源素子用導光体において、ある点での光の出射強度(I)と光入射面端での出射光強度(I)との関係は、出射率(a)、光出射面端からの距離(L’)および導光体の厚さ(t)によって、実験的に次の(1)式で表されることを見出した。

Figure 2004273465
The inventors of the present invention have found that the relationship between the light emission intensity (I) at a certain point and the light emission intensity (I 0 ) at the end of the light incident surface in the light guide for a surface light source element is the emission rate (a). It was found experimentally that the following formula (1) was used depending on the distance (L ') from the end of the light emitting surface and the thickness (t) of the light guide.
Figure 2004273465

(1)式から、導光体の長さ(L)と厚さ(t)が決定すれば、出射率(a)によって光出射面内での輝度の均一性が決定されることがわかる。なお、厚さtmmの導光体の出射率(a)は、導光体の光入射面端から20mm間隔で輝度の測定を行い、光入射面端からの距離(l)と輝度の対数のグラフから、その勾配(K(mm−1))を求めて、次の(2)式によって求められる。

Figure 2004273465
From the equation (1), it can be seen that if the length (L) and the thickness (t) of the light guide are determined, the uniformity of luminance in the light emission surface is determined by the emission rate (a). The emission rate (a) of the light guide having a thickness of tmm was measured at intervals of 20 mm from the light incident surface end of the light guide, and the distance (l) from the light incident surface end and the logarithm of the luminance were measured. The gradient (K (mm −1 )) is obtained from the graph, and is obtained by the following equation (2).
Figure 2004273465

本発明においては、輝度の均一性の尺度として、次の(3)式で示されるバラツキ度(R%)を用いて、面光源素子用導光体における輝度の均一性についての評価および検討を行った。バラツキ度(R%)は、導光体のほぼ中央部において光入射面端から5mm離れた点から対向する端部までの範囲内を20mm間隔で輝度測定を行い、測定輝度の最大値(Imax )、測定輝度の最小値(Imin )、測定輝度の平均値(Iav)を求め、次の(3)式によって求める。

Figure 2004273465
In the present invention, the uniformity of luminance in the light guide for a surface light source element is evaluated and examined using the degree of variation (R%) represented by the following equation (3) as a measure of the uniformity of luminance. went. For the degree of variation (R%), the luminance was measured at intervals of 20 mm in a range from a point 5 mm away from the end of the light incident surface to the opposite end in the approximate center of the light guide, and the maximum value of the measured luminance (I max ), the minimum value of the measured luminance (I min ), and the average value of the measured luminance (I av ), and are calculated by the following equation (3).
Figure 2004273465

その結果、出射率(a)とバラツキ度(R%)とは、導光体の長さ(L)と厚さ(t)に依存して特定の関係にあることが見出され、出射率(a)が大きくなるとバラツキ度(R%)はそれに伴って増加し、出射率(a)が一定であれば導光体の長さ(L)と厚さ(t)の比(L/t)が大きくなるに従ってバラツキ度(R%)も大きくなる。すなわち、一定の大きさの導光体においては、導光体の光出射面内での輝度の均一性(バラツキ度)は、導光体からの出射率(a)に依存するものであり、出射率(a)を制御することによって輝度の均一性を図ることができることがわかる。   As a result, it was found that the emission rate (a) and the degree of variation (R%) had a specific relationship depending on the length (L) and the thickness (t) of the light guide. When (a) increases, the degree of variation (R%) increases accordingly, and when the emission rate (a) is constant, the ratio (L / t) of the length (L) to the thickness (t) of the light guide is obtained. ) Increases, the degree of variation (R%) also increases. In other words, in a light guide having a certain size, the uniformity of luminance (degree of variation) in the light exit surface of the light guide depends on the emission rate (a) from the light guide. It can be seen that uniformity of luminance can be achieved by controlling the emission ratio (a).

一方、本発明者等は、導光体の表面に光入射面と平行な方向に延びる多数のレンズ列を形成した場合に、このようなレンズ列を形成する傾斜面の勾配に依存して、導光体から出射する光の出射方向や出射率が変化することを見出した。ここで、この勾配としてISO4287/1−1987で規定される平均傾斜角(θa)を用いることができる。すなわち、平均傾斜角(θa)が大きくなると、導光体からの出射光は出射角が小さくなり法線方向に近づいた出射光となる。また、平均傾斜角(θa)が大きくなると、それに伴って導光体からの出射率も高くなる。このことから、面光源素子の光出射面内での輝度の均一性は、導光体からの出射率を低くすることによって高めることができ、平均傾斜角(θa)を小さくすれば均一化が図れることを見出した。導光体における輝度の均一性は、その用途によって異なるが、案内標示板、大型看板、案内標識や交通標識等の大型の表示装置においては、そのバラツキ度(R%)が250%以下、好ましくは200%以下である。また、ノートパソコンや液晶テレビ等の液晶表示装置において使用される面光源素子としては、非常に高い均一性が要求され、そのバラツキ度(R%)が25%以下、好ましくは20%以下である。   On the other hand, the present inventors, when forming a large number of lens rows extending in the direction parallel to the light incident surface on the surface of the light guide, depending on the gradient of the inclined surface forming such a lens row, It has been found that the emission direction and the emission rate of the light emitted from the light guide change. Here, the average inclination angle (θa) specified by ISO4287 / 1-1987 can be used as the gradient. That is, when the average inclination angle (θa) increases, the light emitted from the light guide has a smaller emission angle and becomes closer to the normal direction. Further, as the average inclination angle (θa) increases, the emission rate from the light guide increases accordingly. From this, the uniformity of the luminance in the light emitting surface of the surface light source element can be improved by lowering the emission rate from the light guide, and the uniformity can be achieved by reducing the average inclination angle (θa). I found that I could do it. The uniformity of the brightness of the light guide varies depending on the application, but in a large display device such as a signboard, a large signboard, a sign or a traffic sign, the degree of variation (R%) is preferably 250% or less. Is not more than 200%. Further, a surface light source element used in a liquid crystal display device such as a notebook computer or a liquid crystal television is required to have extremely high uniformity, and the degree of variation (R%) is 25% or less, preferably 20% or less. .

このような面光源素子用導光体の光出射面内における輝度の均一化を図るためには、導光体の光出射面およびその裏面の少なくとも一方の面に、平均傾斜角(θa)が0.5〜6゜であって、平滑な斜面からなる多数のレンズ列を、導光体の光入射面と平行な方向に延びるように形成することが必要である。これは、レンズ列を構成する平滑な斜面の平均傾斜角(θa)が0.5゜未満であると、光出射面からの出射光の出射角(光出射面の法線に対する角度)が大きくなりすぎ、後述するようなプリズムシート等の変角部材を使用しても十分に法線方向へ出射光を向けることができなくなるためである。逆に、レンズ列を構成する平滑な斜面の平均傾斜角(θa)が6゜を超えると、光出射面からの出射光の出射角(光出射面の法線に対する角度)が小さくなり、出射光の指向性も低下し、面光源素子としての輝度が低下するとともに、導光体からの出射率が大きくなり、面光源素子としての輝度の均一性が損なわれるためである。好ましくは、平均傾斜角(θa)が2〜5゜の範囲である。なお、平均傾斜角(θa)0.5〜6゜の平滑な斜面からなる多数のレンズ列は、輝度の均一化や高輝度等の点から、導光体の光出射面に形成することが好ましい。また、このような平均傾斜角(θa)の平滑な斜面からなる多数のレンズ列を、導光体の光入射面と平行な方向に延びるように形成することよって、導光体の光出射面からの出射光をその法線に対して60〜80°の角度に高い指向性を有して出射させることができる。   In order to make the brightness uniform within the light exit surface of such a light guide for a surface light source element, an average inclination angle (θa) is required on at least one of the light exit surface and the back surface of the light guide. It is necessary to form a large number of lens rows each having a smooth slope of 0.5 to 6 ° so as to extend in a direction parallel to the light incident surface of the light guide. This is because when the average inclination angle (θa) of the smooth slopes constituting the lens array is less than 0.5 °, the emission angle of the light emitted from the light emission surface (the angle with respect to the normal to the light emission surface) is large. This is because it becomes impossible to sufficiently direct the emitted light in the normal direction even if a variable-angle member such as a prism sheet described later is used. Conversely, when the average inclination angle (θa) of the smooth inclined surfaces constituting the lens array exceeds 6 °, the exit angle of the light emitted from the light exit surface (the angle with respect to the normal line of the light exit surface) becomes smaller. This is because the directivity of the emitted light also decreases, the luminance as the surface light source element decreases, and the emission rate from the light guide increases, thereby deteriorating the uniformity of luminance as the surface light source element. Preferably, the average inclination angle (θa) is in the range of 2 to 5 °. A large number of lens arrays each having a smooth inclined surface having an average inclination angle (θa) of 0.5 to 6 ° may be formed on the light emitting surface of the light guide from the viewpoint of uniform luminance and high luminance. preferable. Also, by forming a large number of lens rows each having a smooth inclined surface having such an average inclination angle (θa) so as to extend in a direction parallel to the light incident surface of the light guide, the light exit surface of the light guide is formed. Can be emitted with high directivity at an angle of 60 to 80 degrees with respect to the normal line.

本発明の面光源素子用導光体としては、その大きさは特に限定されるものではないが、本発明の効果をより顕著に発揮させるためには導光体の長さ(L)と厚さ(t)との比(L/t)が150以下の導光体として使用することが好ましい。L/tが150を超えると、導光体の平均傾斜角(θa)を小さくしても、光出射面内での輝度の均一性が十分に図れない傾向にあるためであり、さらに好ましくは130以下、より好ましくは80以下の範囲である。   The size of the light guide for a surface light source element of the present invention is not particularly limited, but the length (L) and the thickness of the light guide are required in order to exert the effect of the present invention more remarkably. It is preferable to use it as a light guide having a ratio (L / t) of 150 or less to (t). When L / t exceeds 150, even if the average inclination angle (θa) of the light guide is reduced, there is a tendency that uniformity of luminance on the light emitting surface cannot be sufficiently achieved. It is in the range of 130 or less, more preferably 80 or less.

本発明において、導光体としては、ガラスや合成樹脂等の透明板状体を使用することができる。合成樹脂としては、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂等の高透明性の種々の合成樹脂を用いることができ、この樹脂を押出成形、射出成形等の通常の成形方法で板状体に成形することによって導光体を製造することができる。特に、メタクリル樹脂が、その光線透過率の高さ、耐熱性、力学的特性、成形加工性にも優れており、導光体用材料として最適である。このようなメタクリル樹脂とは、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であることが好ましい。また、導光体中には、必要に応じて光拡散剤や微粒子等を混入してもよい。   In the present invention, as the light guide, a transparent plate such as glass or synthetic resin can be used. As the synthetic resin, for example, various synthetic resins having high transparency such as acrylic resin, polycarbonate resin, vinyl chloride resin and the like can be used, and this resin can be extruded by a normal molding method such as injection molding. The light guide can be manufactured by molding into a plate-like body. In particular, methacrylic resin is excellent in light transmittance, heat resistance, mechanical properties, and moldability, and is most suitable as a light guide material. Such a methacrylic resin is a resin containing methyl methacrylate as a main component, and preferably has a methyl methacrylate content of 80% by weight or more. Further, a light diffusing agent, fine particles and the like may be mixed in the light guide as needed.

導光体の表面に形成する多数のレンズ列としては、図3あるいは図4に示したように、前記範囲内の平均傾斜角(θa)を有する平滑な斜面から構成されるレンズ列であれば特に限定されるものではく、断面が弧状のレンチキュラーレンズ列、断面が鋸歯状のプリズム列、連続した断面が波形となる凹凸列等が挙げられる。中でも、断面が左右対称であるプリズム列およびレンチキュラーレンズ列が特に好ましい。また、このようなレンズ列は、導光体の光入射面に平行な方向にレンズ列が延びるように形成され、好ましくは各レンズ列が平行に連続して形成される。レンズ列のピッチは、その用途によって適宜選択されるが、通常は20μm〜5mmの範囲とすることが好ましい。   As shown in FIG. 3 or FIG. 4, as the number of lens rows formed on the surface of the light guide, a lens row composed of a smooth inclined surface having an average tilt angle (θa) within the above range can be used. It is not particularly limited, and examples thereof include a lenticular lens array having an arc-shaped cross section, a prism array having a serrated cross section, and a concavo-convex array having a continuous cross section having a waveform. Among them, a prism row and a lenticular lens row whose cross sections are symmetrical are particularly preferable. Further, such a lens row is formed so that the lens row extends in a direction parallel to the light incident surface of the light guide, and preferably, each lens row is formed continuously in parallel. The pitch of the lens rows is appropriately selected depending on the application, but is usually preferably in the range of 20 μm to 5 mm.

導光体の表面に、特定の平均傾斜角(θa)の平滑な斜面から構成される多数のレンズ列を形成する加工方法としては、平均傾斜角(θa)が特定の範囲となれば特に限定されるものではないが、例えば、化学エッチング、バイド切削、レーザー加工等によってレンズパターンを形成した金型等を用いて、透明基板を加熱プレスしたり、透明基板上に活性エネルギー線硬化性樹脂を塗布して活性エネルギー線の照射によって賦型硬化させてレンズパターンを転写する方法、射出成形によって形成する方法、導光体をエッチング、バイト切削、レーザー加工等によって直接加工する方法等が挙げられる。   The processing method for forming a large number of lens arrays composed of smooth inclined surfaces having a specific average inclination angle (θa) on the surface of the light guide is not particularly limited as long as the average inclination angle (θa) falls within a specific range. Although it is not a thing, for example, using a mold or the like on which a lens pattern is formed by chemical etching, bead cutting, laser processing, etc., the transparent substrate is heated and pressed, or the active energy ray-curable resin is placed on the transparent substrate. A method of transferring a lens pattern by applying and curing by application of active energy rays to transfer a lens pattern, a method of forming by injection molding, and a method of directly processing a light guide by etching, cutting with a tool, laser processing, or the like are included.

本発明の面光源素子は、図2に示したように、上記のような導光体1の一方の端部に蛍光灯等の光源2を配置し、光出射面と対向する裏面には、反射フィルム等によって反射層4が形成される。光源2から導光体1へ有効に光を導入するために、光源2および導光体1の光入射面を内側に反射剤を塗布したケースやフィルムで覆うように構成される。また、導光体1としては、板状、くさび状、船型状等の種々の形状のものが使用できる。   As shown in FIG. 2, the surface light source element of the present invention has a light source 2 such as a fluorescent lamp disposed at one end of the light guide 1 as described above, and has a back surface facing the light emitting surface. The reflection layer 4 is formed by a reflection film or the like. In order to effectively introduce light from the light source 2 to the light guide 1, the light incident surfaces of the light source 2 and the light guide 1 are configured to be covered with a case or film coated with a reflective agent on the inside. Further, as the light guide 1, various shapes such as a plate shape, a wedge shape, and a boat shape can be used.

本発明の面光源素子においては、通常、導光体1からの出射光の出射方向は、法線方向からずれた方向となるため、法線方向から観察を行うような用途に使用する場合には、導光体1の上にレンズシート3を載置する等の手段を講じて、出射光を法線方向に変角することが好ましい。この場合、使用されるレンズシート3としては、少なくとも一方の面に多数のレンズ単位が平行に形成されたレンズ面を有するものである。形成されるレンズ形状は、目的に応じて種々の形状のものが使用され、例えば、プリズム形状、レンチキュラーレンズ形状、波型形状等が挙げられる。レンズシート3のレンズ単位のピッチは20μm〜5mm程度とすることが好ましく、プリズムシートを使用する場合には、そのプリズム頂角は導光体からの出射光の出射角によって適宜選定されるが、一般的には50〜120゜の範囲とすることが好ましい。また、プリズムシートの向きについても、導光体からの出射光の出射角によって適宜選定され、レンズ面が導光体側となるように載置してもよいし、逆向きに載置してもよい。導光体の光出射面に平均傾斜角(θa)が0.5〜6゜の平滑な斜面から構成される多数のレンズ列を形成する場合には、光出射面からの出射光が法線に対して80〜60°程度の比較的大きな角度の高い指向性を有して出射するため、プリズム頂角が55〜70゜程度のプリズム列を形成したプリズムシートを、プリズム面が導光体の光出射面側となるように載置することによって、導光体からの出射光を略法線方向に効率的に変角させ、法線方向の輝度を向上させることができる。   In the surface light source element of the present invention, the emission direction of the emitted light from the light guide 1 is generally a direction deviated from the normal direction. It is preferable that the output light be deflected in the normal direction by taking measures such as placing the lens sheet 3 on the light guide 1. In this case, the lens sheet 3 used has a lens surface in which a large number of lens units are formed in parallel on at least one surface. As the lens shape to be formed, various shapes are used depending on the purpose, and examples thereof include a prism shape, a lenticular lens shape, and a corrugated shape. The lens unit pitch of the lens sheet 3 is preferably about 20 μm to 5 mm. When a prism sheet is used, the prism apex angle is appropriately selected according to the emission angle of the light emitted from the light guide. Generally, it is preferable to be in the range of 50 to 120 °. Also, the orientation of the prism sheet is appropriately selected according to the emission angle of the light emitted from the light guide, and may be mounted so that the lens surface is on the light guide side, or may be mounted in the opposite direction. Good. When a large number of lens arrays composed of smooth inclined surfaces having an average inclination angle (θa) of 0.5 to 6 ° are formed on the light emitting surface of the light guide, light emitted from the light emitting surface has a normal line. A prism sheet having a prism array having a prism apex angle of about 55 to 70 ° is formed on a prism sheet to emit light with a relatively large angle of high directivity of about 80 to 60 °. The light emitted from the light guide is efficiently deflected substantially in the normal direction, and the luminance in the normal direction can be improved.

本発明のレンズシート3は、可視光透過率が高く、屈折率の比較的高い材料を用いて製造することが好ましく、例えば、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、活性エネルギー線硬化型樹脂等が挙げられる。中でも、レンズシートの耐擦傷性、取扱い性、生産性等の観点から活性エネルギー線硬化型樹脂が好ましい。また、レンズシートには、必要に応じて、酸化防止剤、紫外線吸収剤、黄変防止剤、ブルーイング剤、顔料、拡散剤等の添加剤を添加することもできる。レンズシートを製造する方法としては、押出成形、射出成形等の通常の成形方法が使用できる。活性エネルギー線硬化型樹脂を用いてレンズシートを製造する場合には、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂、ポリオレフィン系樹脂等の透明樹脂からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂によってレンズ部を形成する。まず、所定のレンズパターンを形成したレンズ型に活性エネルギー線硬化型樹脂液を注入し、透明基材を重ね合わせる。次いで、透明基材を通して紫外線、電子線等の活性エネルギー線を照射し、活性エネルギー線硬化型樹脂液を重合硬化して、レンズ型から剥離してレンズシートを得る。   The lens sheet 3 of the present invention is preferably manufactured using a material having a high visible light transmittance and a relatively high refractive index. For example, acrylic resin, polycarbonate resin, vinyl chloride resin, active energy ray curing Mold resin and the like. Among them, an active energy ray-curable resin is preferable from the viewpoints of scratch resistance, handleability, productivity and the like of the lens sheet. Further, additives such as an antioxidant, an ultraviolet absorber, a yellowing inhibitor, a bluing agent, a pigment, and a diffusing agent can be added to the lens sheet as needed. As a method for producing the lens sheet, a usual molding method such as extrusion molding, injection molding or the like can be used. When manufacturing a lens sheet using an active energy ray-curable resin, the lens sheet is made of a transparent resin such as a polyester resin, an acrylic resin, a polycarbonate resin, a vinyl chloride resin, a polymethacrylimide resin, and a polyolefin resin. A lens portion is formed on a transparent substrate such as a transparent film or sheet by using an active energy ray-curable resin. First, an active energy ray-curable resin liquid is injected into a lens mold having a predetermined lens pattern formed thereon, and a transparent substrate is overlaid. Next, an active energy ray such as an ultraviolet ray or an electron beam is irradiated through the transparent base material, and the active energy ray-curable resin liquid is polymerized and cured, and is separated from the lens mold to obtain a lens sheet.

本発明の面光源素子においては、上記したようなレンズシートの他に、拡散シート、カラーフィルター、偏光膜等、光学的に光を変角、集束、拡散させたり、その光学特性を変化させる種々の光学素子を使用することができる。
本発明の面光源素子は、液晶表示素子を用いたノートパソコンや、液晶テレビあるいはビデオ一体型液晶テレビ等のカラー液晶表示装置のバックライトや、半透明のプラスッチク板に切抜きや印刷等によって文字、図形、写真等を形成した表示板を用いた案内標示板や大型看板、高速道路や一般道路での案内標識や交通標識等の表示装置のバックライトとして好適である。
In the surface light source device of the present invention, in addition to the lens sheet as described above, various types of optical sheet such as a diffusion sheet, a color filter, a polarizing film, and the like that optically change, converge, and diffuse light or change its optical characteristics. Can be used.
The surface light source element of the present invention is a notebook personal computer using a liquid crystal display element, a backlight of a color liquid crystal display device such as a liquid crystal television or a video integrated liquid crystal television, a character by cutting out or printing on a translucent plastic plate, and the like. It is suitable as a backlight of a display device such as a guide signboard or a large signboard using a display board formed with figures, photographs, or the like, or a guide sign or a traffic sign on an expressway or a general road.

以下、実施例により本発明を具体的に説明する。
輝度の測定
導光体の冷陰極管にインバーター(TDK社製CXA−M10L)を介して直流電源に接続し、DC12Vを印加して点灯させた。面光源素子を測定台に載置し、輝度計(ミノルタ社製nt−1゜)の中心線に対して面光源素子が垂直となり、測定円が直径8〜9mmとなるように測定距離を調整した。次いで、冷陰極管のエイジングを30分間以上行った後、輝度の測定を行った。測定は、光源近傍の5mmを除いた部分を20mm×20mmの領域に区分し、輝度計の測定円の中心を各領域の中心と一致させて各領域の輝度を測定し、これらの平均値を法線方向の輝度とした。なお、大型の表示装置においては、冷陰極管に変えて30Wの蛍光灯を点灯させて測定を行った。
Hereinafter, the present invention will be specifically described with reference to examples.
Measurement of brightness The cold cathode tube of the light guide was connected to a DC power supply via an inverter (CXA-M10L manufactured by TDK), and was lit by applying DC 12V. Place the surface light source device on the measuring table and adjust the measurement distance so that the surface light source device is perpendicular to the center line of the luminance meter (Minolta nt-1 ゜) and the measurement circle has a diameter of 8 to 9 mm. did. Next, after aging the cold cathode tubes for 30 minutes or more, the luminance was measured. For the measurement, the part excluding 5 mm near the light source was divided into 20 mm x 20 mm areas, the center of the measurement circle of the luminance meter was matched with the center of each area, and the brightness of each area was measured. The luminance in the normal direction was used. In the case of a large-sized display device, the measurement was performed by turning on a 30 W fluorescent lamp instead of a cold cathode tube.

バラツキ度(R%)
面光源素子の中央部の光源側から他端面に至る各領域での輝度の測定値から、
式(3)に基づいて算出した。
出射率(a)
面光源素子の中央部の光源側から他端面に至る各領域での輝度の測定値から、
式(2)に基づいて算出した。
Variation (R%)
From the measured value of the luminance in each region from the light source side at the center of the surface light source element to the other end surface,
It was calculated based on equation (3).
Emission rate (a)
From the measured value of the luminance in each region from the light source side at the center of the surface light source element to the other end surface,
It was calculated based on equation (2).

平均傾斜角(θa)
ISO4287/1−1984に従って求めた。触針としてE−DT−S04A(1μmR、55゜円錐、ダイヤモンド)を用いた触針式表面粗さ計(東京精器社製サーフコム570A)にて、粗面の表面粗さを駆動速度0.03mm/秒で測定した。この測定した平均線より、その平均線を差し引いて傾斜を補正し、下記(4)〜(5)式によって計算して求めた。

Figure 2004273465
Figure 2004273465
Average tilt angle (θa)
It was determined according to ISO4287 / 1-1984. Using a stylus type surface roughness meter (Surfcom 570A, manufactured by Tokyo Seiki Co., Ltd.) using E-DT-S04A (1 μmR, 55 ° cone, diamond) as a stylus, the surface roughness of the rough surface was adjusted to a drive speed of 0. It was measured at 03 mm / sec. The inclination was corrected by subtracting the average line from the measured average line, and was calculated by the following equations (4) and (5).
Figure 2004273465
Figure 2004273465

実施例1
真鍮板にダイヤモンドバイトを用いて図3に示したような頂角172゜、ピッチ50μmの多数のプリズム列が平行に連続したプリズムパターンが形成された金型を用いて、4mm×210mm×165mmの透明アクリル樹脂板の一方の表面に熱転写によってプリズム面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のプリズム列が平行に連続したプリズムパターンが形成され、その平均傾斜角(θa)は4.2゜であった。得られた導光体の165mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC230T4E、4mmφ×230mm)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表1に示した。
Example 1
Using a diamond tool on a brass plate, using a mold in which a prism pattern in which a number of prism rows with a vertical angle of 172 ° and a pitch of 50 μm are continuous in parallel as shown in FIG. The prism surface was transferred to one surface of the transparent acrylic resin plate by thermal transfer to obtain a light guide. On the surface of the obtained light guide, a prism pattern was formed in which a large number of prism rows composed of smooth inclined surfaces continued in parallel, and the average inclination angle (θa) was 4.2 °. A silver-deposited PET film was adhered to two end faces of 165 mm and the other end face of the obtained light guide by adhesion processing, and a silver-deposited PET film was formed on the back face opposite to the light emission face serving as the prism face. The tape was fixed to form a reflective surface. A cold cathode tube (KC230T4E, 4 mmφ × 230 mm, manufactured by Matsushita Electric Co., Ltd., 4 mmφ × 230 mm) is wound around a PET film on which silver is vapor-deposited on the other end surface of the light guide, and the light guide is installed as a light source lamp. A prism sheet having a large number of parallel prism rows with a vertical angle of 63 ° and a pitch of 50 μm made of an acrylic ultraviolet curable resin having a refractive index of 1.53 is placed so that the prism surface faces the light emitting surface side of the light guide. To provide a surface light source element. The normal luminance and the degree of variation (R%) of the obtained surface light source element were determined and are shown in Table 1.

一方、3mm×90mm×300mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の90mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表1に示した。   On the other hand, using a transparent acrylic resin plate of 3 mm × 90 mm × 300 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a PET film on which silver was vapor-deposited was adhered to two end faces of 90 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 1.

実施例2
真鍮板にダイヤモンドバイトを用いて図4に示したようなピッチ50μmの多数のレンチキュラーレンズ列が平行に連続したレンズパターンが形成された金型を用いて、4mm×210mm×165mmの透明アクリル樹脂板の一方の表面に熱転写によってレンズ面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のレンズ列が平行に連続したレンズパターンが形成され、その平均傾斜角(θa)は4.3゜であった。得られた導光体の165mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC230T4E、4mmφ×230mm)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表1に示した。
Example 2
4 mm × 210 mm × 165 mm transparent acrylic resin plate using a mold in which a large number of lenticular lens rows having a pitch of 50 μm as shown in FIG. The lens surface was transferred to one surface of the substrate by thermal transfer to form a light guide. On the surface of the obtained light guide, a lens pattern was formed in which a large number of lens rows composed of smooth slopes were continuous in parallel, and the average tilt angle (θa) was 4.3 °. A silver-deposited PET film was attached to two end faces of 165 mm and the other end face of the obtained light guide by adhesive processing, and a silver-deposited PET film was deposited on the back face opposite to the light emission face serving as the prism face. The tape was fixed to form a reflective surface. A cold cathode tube (KC230T4E, 4 mmφ × 230 mm, manufactured by Matsushita Electric Co., Ltd., 4 mmφ × 230 mm) is wound around a PET film on which silver is vapor-deposited on the other end surface of the light guide, and the light guide is installed as a light source lamp. A prism sheet is formed by forming a large number of parallel prism rows with a vertical angle of 63 [deg.] And a pitch of 50 [mu] m using an acrylic UV curable resin having a refractive index of 1.53 so that the prism surface faces the light emitting surface side of the light guide. To provide a surface light source element. Table 1 shows the normal luminance and the degree of variation (R%) of the obtained surface light source element.

一方、3mm×90mm×300mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の90mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表1に示した。   On the other hand, using a transparent acrylic resin plate of 3 mm × 90 mm × 300 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a PET film on which silver was vapor-deposited was adhered to two end faces of 90 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 1.

比較例1〜2
ガラス板の表面をサンドブラスト処置を行った後にフッ素処理を行うことにより化学エッチングした後、電鋳によりレプリカ型を取って得た電鋳型を用いて、厚さ3mm×210mm×165mmおよび4mm×210mm×165mmの2種の透明アクリル樹脂板の一方の表面に熱転写によって粗面を転写し導光体とした。得られた導光体の表面には、その平均傾斜角(θa)が8.4゜の粗面が形成されていた。得られた導光体の165mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、粗面化した光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC130T4E72、4mmφ×130mm)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表1に示した。
Comparative Examples 1-2
After the surface of the glass plate is subjected to chemical etching by performing a fluorine treatment after performing a sandblasting treatment, the thickness is 3 mm × 210 mm × 165 mm and 4 mm × 210 mm × using an electroforming mold obtained by taking a replica mold by electroforming. The rough surface was transferred by heat transfer to one surface of two types of transparent acrylic resin plates of 165 mm to form a light guide. A rough surface having an average inclination angle (θa) of 8.4 ° was formed on the surface of the obtained light guide. A silver-deposited PET film was adhered to two end surfaces of 165 mm and the other end surface of the obtained light guide by adhesive processing, and a silver-deposited PET film was formed on the back surface opposite to the roughened light emission surface. The tape was fixed to form a reflective surface. A cold cathode tube (KC130T4E72, 4 mmφ × 130 mm, manufactured by Matsushita Electric Industrial Co., Ltd., 4 mmφ × 130 mm) is wound around a PET film on which silver is vapor-deposited on the other end surface of the light guide, and the light guide is installed as a light source lamp. A prism sheet is formed by forming a large number of parallel prism rows with a vertical angle of 63 [deg.] And a pitch of 50 [mu] m using an acrylic UV curable resin having a refractive index of 1.53 so that the prism surface faces the light emitting surface side of the light guide. To provide a surface light source element. Table 1 shows the normal luminance and the degree of variation (R%) of the obtained surface light source element.

一方、3mm×90mm×300mmの透明アクリル樹脂板を用いて、同様の手順で導光体1を作製した。得られた導光体1の90mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表1に示した。   On the other hand, using a transparent acrylic resin plate of 3 mm × 90 mm × 300 mm, the light guide 1 was produced in the same procedure. A surface light source device was prepared in the same manner as described above, except that a PET film on which silver was vapor-deposited was adhered to two 90 mm end surfaces of the obtained light guide 1, and the obtained surface light source device was obtained. Table 1 shows the emission rates of the samples.

比較例3
真鍮板にダイヤモンドバイトを用いて図5に示したような頂角164゜、ピッチ50μmの多数のプリズム列が平行に連続したプリズムパターンが形成された金型を用いて、4mm×210mm×165mmの透明アクリル樹脂板の一方の表面に熱転写によってプリズム面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のプリズム列が平行に連続したプリズムパターンが形成され、その平均傾斜角(θa)は8.2゜であった。得られた導光体の165mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC230T4E、4mmφ×230mm)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表1に示した。
Comparative Example 3
Using a diamond tool on a brass plate, using a mold having a prism pattern in which a number of prism rows having a vertical angle of 164 ° and a pitch of 50 μm are formed in parallel and continuous as shown in FIG. 5, a 4 mm × 210 mm × 165 mm The prism surface was transferred to one surface of the transparent acrylic resin plate by thermal transfer to obtain a light guide. On the surface of the obtained light guide, a prism pattern was formed in which a large number of prism rows composed of smooth inclined surfaces continued in parallel, and the average inclination angle (θa) was 8.2 °. A silver-deposited PET film was attached to two end faces of 165 mm and the other end face of the obtained light guide by adhesive processing, and a silver-deposited PET film was deposited on the back face opposite to the light emission face serving as the prism face. The tape was fixed to form a reflective surface. A cold cathode tube (KC230T4E, 4 mmφ × 230 mm, manufactured by Matsushita Electric Co., Ltd., 4 mmφ × 230 mm) is wound around a PET film on which silver is vapor-deposited on the other end surface of the light guide, and the light guide is installed as a light source lamp. A prism sheet is formed by forming a large number of parallel prism rows with a vertical angle of 63 [deg.] And a pitch of 50 [mu] m using an acrylic UV curable resin having a refractive index of 1.53 so that the prism surface faces the light emitting surface side of the light guide. To provide a surface light source element. Table 1 shows the normal luminance and the degree of variation (R%) of the obtained surface light source element.

一方、3mm×90mm×300mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の90mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表1に示した。   On the other hand, using a transparent acrylic resin plate of 3 mm × 90 mm × 300 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a PET film on which silver was vapor-deposited was adhered to two end faces of 90 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 1.

比較例4
真鍮板にダイヤモンドバイトを用いて図6に示したようなピッチ50μmの多数のレンチキュラーレンズ列が平行に連続したレンズパターンが形成された金型を用いて、4mm×210mm×165mmの透明アクリル樹脂板の一方の表面に熱転写によってレンズ面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のレンズ列が平行に連続したレンズパターンが形成され、その平均傾斜角(θa)は8.3゜であった。得られた導光体の165mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで冷陰極管(松下電器社製KC230T4E、4mmφ×230mm)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表1に示した。
Comparative Example 4
A transparent acrylic resin plate of 4 mm × 210 mm × 165 mm using a mold in which a lens pattern in which a large number of lenticular lens rows with a pitch of 50 μm as shown in FIG. The lens surface was transferred to one surface of the substrate by thermal transfer to form a light guide. On the surface of the obtained light guide, a lens pattern was formed in which a large number of lens rows each formed of a smooth inclined surface continued in parallel, and the average inclination angle (θa) was 8.3 °. A silver-deposited PET film was attached to two end faces of 165 mm and the other end face of the obtained light guide by adhesive processing, and a silver-deposited PET film was deposited on the back face opposite to the light emission face serving as the prism face. The tape was fixed to form a reflective surface. A cold cathode tube (KC230T4E, 4 mmφ × 230 mm, manufactured by Matsushita Electric Industrial Co., Ltd., 4 mmφ × 230 mm) is wound around a PET film on which silver is vapor-deposited on the other end surface of the light guide, and is set as a light source lamp. A prism sheet is formed by forming a large number of parallel prism rows with a vertical angle of 63 [deg.] And a pitch of 50 [mu] m using an acrylic UV curable resin having a refractive index of 1.53 so that the prism surface faces the light emitting surface side of the light guide. To provide a surface light source element. Table 1 shows the normal luminance and the degree of variation (R%) of the obtained surface light source element.

一方、3mm×90mm×300mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の90mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表1に示した。

Figure 2004273465
On the other hand, using a transparent acrylic resin plate of 3 mm × 90 mm × 300 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a PET film on which silver was vapor-deposited was adhered to two end faces of 90 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 1.
Figure 2004273465

表1から明らかなように、本発明の実施例1〜4の面光源素子では、光出射面内での輝度のバラツキ度(R%)が20%以下と均一性に優れており、液晶表示装置用の面光源素子として十分に実用可能なものであった。一方、比較例1〜4の面光源素子では、光出射面内での輝度のバラツキ度(R%)が100%を超えるものであり、輝度の均一性が十分に得られているものではなかった。   As is clear from Table 1, in the surface light source devices of Examples 1 to 4 of the present invention, the degree of variation (R%) of the luminance in the light emitting surface is excellent at 20% or less and excellent in uniformity. The device was sufficiently practicable as a surface light source element for an apparatus. On the other hand, in the surface light source elements of Comparative Examples 1 to 4, the degree of luminance variation (R%) in the light emitting surface exceeds 100%, and the uniformity of luminance is not sufficiently obtained. Was.

実施例3
真鍮板にダイヤモンドバイトを用いて図3に示したような頂角172゜、ピッチ50μmの多数のプリズム列が平行に連続したプリズムパターンが形成された金型を用いて、10mm×600mm×1250mmの透明アクリル樹脂板の一方の表面に熱転写によってプリズム面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のプリズム列が平行に連続したプリズムパターンが形成され、その平均傾斜角(θa)は4.2゜であった。得られた導光体の1250mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで30Wの蛍光灯(松下電器社製FSL30T6)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表2に示した。
Example 3
A 10 mm × 600 mm × 1250 mm mold was used, in which a diamond pattern was used as a brass plate and a prism pattern in which a number of prism rows having a vertical angle of 172 ° and a pitch of 50 μm were formed in parallel and continuous as shown in FIG. 3 was formed. The prism surface was transferred to one surface of the transparent acrylic resin plate by thermal transfer to obtain a light guide. On the surface of the obtained light guide, a prism pattern was formed in which a large number of prism rows composed of smooth inclined surfaces were continuous in parallel, and the average inclination angle (θa) was 4.2 °. A silver-evaporated PET film was adhered to two end faces of 1250 mm and the other end face of the obtained light guide, and the silver-evaporated PET film was adhered to the back face opposite to the light emission face as the prism face. The tape was fixed to form a reflective surface. A 30 W fluorescent lamp (FSL30T6 manufactured by Matsushita Electric Co., Ltd.) was wound around a PET film on which silver was deposited on the other end face of the light guide, and the light guide was installed as a light source lamp. A prism sheet made of 1.53 acrylic ultraviolet curable resin and having a large number of parallel prism rows with a vertical angle of 63 ° and a pitch of 50 μm is placed so that the prism surface faces the light exit surface side of the light guide. A surface light source element was used. The normal line luminance and the degree of variation (R%) of the obtained surface light source element were determined and are shown in Table 2.

一方、10mm×600mm×1250mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の1250mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, using a transparent acrylic resin plate of 10 mm × 600 mm × 1250 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a silver-evaporated PET film was adhered to two end faces of 1250 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 2.

実施例4
真鍮板にダイヤモンドバイトを用いて図4に示したようなピッチ50μmの多数のレンチキュラーレンズ列が平行に連続したレンズパターンが形成された金型を用いて、10mm×600mm×1250mmの透明アクリル樹脂板の一方の表面に熱転写によってレンズ面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のレンズ列が平行に連続したレンズパターンが形成され、その平均傾斜角(θa)は4.3゜であった。得られた導光体の1250mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで30Wの蛍光灯(松下電器社製FSL30T6)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表2に示した。
Example 4
A transparent acrylic resin plate of 10 mm × 600 mm × 1250 mm using a mold in which a lens pattern in which a large number of lenticular lens rows with a pitch of 50 μm are continuous in parallel as shown in FIG. The lens surface was transferred to one surface of the substrate by thermal transfer to form a light guide. On the surface of the obtained light guide, a lens pattern was formed in which a large number of lens rows each formed of a smooth inclined surface continued in parallel, and the average inclination angle (θa) was 4.3 °. A silver-evaporated PET film was adhered to two end faces of 1250 mm and the other end face of the obtained light guide, and the silver-evaporated PET film was adhered to the back face opposite to the light emission face as the prism face. The tape was fixed to form a reflective surface. A 30 W fluorescent lamp (FSL30T6 manufactured by Matsushita Electric Co., Ltd.) was wound around a PET film on which silver was deposited on the other end face of the light guide, and the light guide was installed as a light source lamp. A prism sheet made of 1.53 acrylic ultraviolet curable resin and having a large number of parallelly arranged prism rows with a vertical angle of 63 ° and a pitch of 50 μm is placed so that the prism surface faces the light emitting surface side of the light guide. A surface light source element was used. The normal line luminance and the degree of variation (R%) of the obtained surface light source element were determined and are shown in Table 2.

一方、10mm×600mm×1250mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の1250mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, using a transparent acrylic resin plate of 10 mm × 600 mm × 1250 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a silver-evaporated PET film was adhered to two end faces of 1250 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 2.

比較例5
真鍮板にダイヤモンドバイトを用いて図5に示したような頂角164゜、ピッチ50μmの多数のプリズム列が平行に連続したプリズムパターンが形成された金型を用いて、10mm×600mm×1250mmの透明アクリル樹脂板の一方の表面に熱転写によってプリズム面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のプリズム列が平行に連続したプリズムパターンが形成され、その平均傾斜角(θa)は8.2゜であった。得られた導光体の1250mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで30Wの蛍光灯(松下電器社製FSL30T6)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表2に示した。
Comparative Example 5
Using a diamond tool on a brass plate, a 10 mm × 600 mm × 1250 mm mold was used in which a prism pattern in which a number of prism rows having a vertical angle of 164 ° and a pitch of 50 μm were continuously formed in parallel as shown in FIG. 5 was formed. The prism surface was transferred to one surface of the transparent acrylic resin plate by thermal transfer to obtain a light guide. On the surface of the obtained light guide, a prism pattern was formed in which a large number of prism rows composed of smooth inclined surfaces continued in parallel, and the average inclination angle (θa) was 8.2 °. A silver-evaporated PET film was adhered to two end faces of 1250 mm and the other end face of the obtained light guide, and the silver-evaporated PET film was adhered to the back face opposite to the light emission face as the prism face. The tape was fixed to form a reflective surface. A 30 W fluorescent lamp (FSL30T6 manufactured by Matsushita Electric Co., Ltd.) was wound around a PET film on which silver was deposited on the other end face of the light guide, and the light guide was installed as a light source lamp. A prism sheet made of 1.53 acrylic ultraviolet curable resin and having a large number of parallelly arranged prism rows with a vertical angle of 63 ° and a pitch of 50 μm is placed so that the prism surface faces the light emitting surface side of the light guide. A surface light source element was used. The normal line luminance and the degree of variation (R%) of the obtained surface light source element were determined and are shown in Table 2.

一方、10mm×600mm×1250mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の1250mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。   On the other hand, using a transparent acrylic resin plate of 10 mm × 600 mm × 1250 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a silver-evaporated PET film was adhered to two end faces of 1250 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 2.

比較例6
真鍮板にダイヤモンドバイトを用いて図6に示したようなピッチ50μmの多数のレンチキュラーレンズ列が平行に連続したレンズパターンが形成された金型を用いて、10mm×600mm×1250mmの透明アクリル樹脂板の一方の表面に熱転写によってレンズ面を転写し導光体とした。得られた導光体の表面には、平滑な斜面から構成された多数のレンズ列が平行に連続したレンズパターンが形成され、その平均傾斜角(θa)は8.3゜であった。得られた導光体の1250mmの二つの端面および他の一方の端面に銀蒸着したPETフィルムを粘着加工して貼り付け、プリズム面とした光出射面と対向する裏面に銀蒸着したPETフィルムをテープ止めして反射面を形成した。導光体の残りの一つの端面に銀蒸着したPETフィルムで30Wの蛍光灯(松下電器社製FSL30T6)を巻き付けて光源ランプとして設置し、導光体の光出射面上にPETフィルムに屈折率1.53のアクリル系紫外線硬化樹脂で、頂角63゜、ピッチ50μmのプリズム列を平行に多数形成したプリズムシートを、プリズム面が導光体の光出射面側に向くように載置して面光源素子とした。得られた面光源素子の法線輝度、バラツキ度(R%)を求めて表2に示した。
Comparative Example 6
A transparent acrylic resin plate of 10 mm × 600 mm × 1250 mm using a mold having a lens pattern in which a large number of lenticular lens rows with a pitch of 50 μm as shown in FIG. The lens surface was transferred to one surface of the substrate by thermal transfer to form a light guide. On the surface of the obtained light guide, a lens pattern was formed in which a large number of lens rows each formed of a smooth inclined surface continued in parallel, and the average inclination angle (θa) was 8.3 °. A silver-evaporated PET film was adhered to two end faces of 1250 mm and the other end face of the obtained light guide, and the silver-evaporated PET film was adhered to the back face opposite to the light emission face as the prism face. The tape was fixed to form a reflective surface. A 30 W fluorescent lamp (FSL30T6 manufactured by Matsushita Electric Industrial Co., Ltd.) was wound around a PET film on which silver was deposited on the other end surface of the light guide, and the light guide was installed as a light source lamp. A prism sheet made of 1.53 acrylic ultraviolet curable resin and having a large number of parallel prism rows with a vertical angle of 63 ° and a pitch of 50 μm is placed so that the prism surface faces the light exit surface side of the light guide. A surface light source element was used. The normal line luminance and the degree of variation (R%) of the obtained surface light source element were determined and are shown in Table 2.

一方、10mm×600mm×1250mmの透明アクリル樹脂板を用いて、同様の手順で導光体を作製した。得られた導光体の1250mmの二つの端面に銀蒸着したPETフィルムを粘着加工して貼り付けた点以外は、上記と同様の方法で面光源素子を作製し、得られた面光源素子の出射率を求めて表2に示した。

Figure 2004273465
On the other hand, using a transparent acrylic resin plate of 10 mm × 600 mm × 1250 mm, a light guide was produced in the same procedure. A surface light source element was prepared in the same manner as described above, except that a silver-evaporated PET film was adhered to two end faces of 1250 mm of the obtained light guide, and the resulting film was adhered. The emission ratio was determined and is shown in Table 2.
Figure 2004273465

表2から明らかなように、本発明の実施例3〜4の面光源素子では、光出射面内での輝度のバラツキ度(R%)が200%以下と均一性に優れており、大型表示装置用の面光源素子として十分に実用可能なものであった。一方、比較例5〜6の面光源素子では、光出射面内での輝度のバラツキ度(R%)が600%を超えるものであり、輝度の均一性が十分に得られているものではなかった。   As is clear from Table 2, in the surface light source devices of Examples 3 and 4 of the present invention, the degree of variation (R%) of the luminance in the light emission surface is 200% or less, which is excellent in uniformity, and large display. The device was sufficiently practicable as a surface light source element for an apparatus. On the other hand, in the surface light source elements of Comparative Examples 5 to 6, the degree of variation in luminance (R%) in the light emitting surface exceeds 600%, and the uniformity of luminance is not sufficiently obtained. Was.

本発明の導光体のレンズ面における光の光路を示す概略図である。It is the schematic which shows the optical path of the light in the lens surface of the light guide of this invention. 本発明の面光源素子を示す部分斜視図である。FIG. 2 is a partial perspective view showing a surface light source element of the present invention. 実施例の導光体のプリズム面を示す部分断面図である。FIG. 4 is a partial cross-sectional view illustrating a prism surface of a light guide according to an example. 実施例の導光体のレンチキュラーレンズ面を示す部分断面図である。FIG. 3 is a partial cross-sectional view illustrating a lenticular lens surface of a light guide according to an example. 比較例の導光体のプリズム面を示す部分断面図である。It is a partial sectional view showing the prism surface of the light guide of a comparative example. 比較例の導光体のレンチキュラーレンズ面を示す部分断面図である。It is a partial sectional view showing the lenticular lens surface of the light guide of a comparative example.

符号の説明Explanation of reference numerals

1 導光体
2 光源
3 レンズシート
4 反射層

Reference Signs List 1 light guide 2 light source 3 lens sheet 4 reflection layer

Claims (2)

少なくとも1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とし、前記光出射面およびその裏面の少なくとも一方の面に、前記光入射面と平行な方向に延び、平均傾斜角が0.5〜6゜の斜面からなる多数のレンズ列から構成され、前記光出射面からの出射光が前記光出射面の法線に対して60〜80°の角度に指向性をもって出射することを特徴とする面光源素子用導光体。   At least one side end surface is a light incident surface, and one surface substantially orthogonal to the light incident surface is a light emitting surface, and at least one of the light emitting surface and the back surface thereof is in a direction parallel to the light incident surface. And an average inclination angle is comprised of a number of lens rows composed of inclined surfaces having an angle of 0.5 to 6 °, and the light emitted from the light exit surface has an angle of 60 to 80 ° with respect to the normal line of the light exit surface. A light guide for a surface light source element, wherein the light guide emits light with directivity. 光源と、該光源に対向する少なくとも1つの側端面を光入射面とし、この光入射面と略直交する1つの面を光出射面とする導光体と、該導光体の光出射面側に配設された少なくとも一方の面に多数のプリズム列が平行して形成されたプリズムシートからなり、前記導光体の光出射面およびその裏面の少なくとも一方の面が、前記光入射面と平行な方向に延び、平均傾斜角が0.5〜6゜の斜面からなる多数のレンズ列から構成され、前記プリズムシートが、前記光出射面上にプリズム列が形成された面を前記光出射面側となるように配設され、前記導光体の光出射面からの出射光が該光出射面の法線に対して60〜80°の角度に指向性をもって出射し、該出射光を前記プリズムシートで略法線方向に変角させることを特徴とする面光源素子。
A light source, a light guide having at least one side end surface facing the light source as a light incident surface, and a light exit surface as one surface substantially orthogonal to the light incident surface; and a light exit surface side of the light guide. A prism sheet in which a number of prism rows are formed in parallel on at least one surface of the light guide, and at least one of the light exit surface and the back surface of the light guide is parallel to the light entrance surface. And a plurality of lens rows each having an inclined surface having an average inclination angle of 0.5 to 6 °, and the prism sheet is configured such that a surface on which the prism rows are formed on the light exit surface is the light exit surface. The light emitted from the light exit surface of the light guide emits light with directivity at an angle of 60 to 80 ° with respect to the normal to the light exit surface, and the emitted light is A surface light source element characterized in that the angle is changed in a substantially normal direction by a prism sheet.
JP2004168851A 2004-06-07 2004-06-07 Surface light source element and light transmission body used for the same Pending JP2004273465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168851A JP2004273465A (en) 2004-06-07 2004-06-07 Surface light source element and light transmission body used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168851A JP2004273465A (en) 2004-06-07 2004-06-07 Surface light source element and light transmission body used for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17512296A Division JP3682124B2 (en) 1996-01-02 1996-07-04 Surface light source element

Publications (1)

Publication Number Publication Date
JP2004273465A true JP2004273465A (en) 2004-09-30

Family

ID=33128738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168851A Pending JP2004273465A (en) 2004-06-07 2004-06-07 Surface light source element and light transmission body used for the same

Country Status (1)

Country Link
JP (1) JP2004273465A (en)

Similar Documents

Publication Publication Date Title
US6099135A (en) Surface light source element and liquid crystal display device, sign device and traffic control sign device using same
KR980010515A (en) Backlight system, prism lens sheet and liquid crystal display device
WO2005085914A1 (en) Light control film and backlight device using it
JP2000056107A (en) Prism sheet and surface light source element
KR101107828B1 (en) Optical deflector element and light source device
JP2001176315A (en) Surface type luminescence and desktop lighting system using the same
JP3442247B2 (en) Light guide for surface light source element and surface light source element
JP4446460B2 (en) Surface light source device, light guide for surface light source device, and manufacturing method thereof
JP3682124B2 (en) Surface light source element
JP2010135220A (en) Surafce light source element and image display device using the same
JP3560273B2 (en) Double-sided surface light source element and double-sided marking device using the same
JP3929599B2 (en) Prism sheet and surface light source element
JPH1031113A (en) Light transmission body for surface light source element and surface light source element
JP2000056106A (en) Prism sheet and surface light source element
JP3773129B2 (en) Light guide for surface light source element and surface light source element
JP4424641B2 (en) Surface light source device and light guide for surface light source device
JPH1164645A (en) Plane illuminant
JPH09329714A (en) Surface light source element for display device, and display device
JP4170991B2 (en) Surface light source element for liquid crystal display device and liquid crystal display device using the same
JP2004273465A (en) Surface light source element and light transmission body used for the same
JP3656967B2 (en) Surface light source element for liquid crystal display device
JPH09160024A (en) Back light and liquid crystal display device using the back light
JP3729429B2 (en) Light guide for surface light source element and surface light source element
JPH09212116A (en) Display device
JP4632378B2 (en) Surface light source element and liquid crystal display device using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113