JP2004271490A - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP2004271490A
JP2004271490A JP2003066452A JP2003066452A JP2004271490A JP 2004271490 A JP2004271490 A JP 2004271490A JP 2003066452 A JP2003066452 A JP 2003066452A JP 2003066452 A JP2003066452 A JP 2003066452A JP 2004271490 A JP2004271490 A JP 2004271490A
Authority
JP
Japan
Prior art keywords
flow rate
measurement
flow
value
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003066452A
Other languages
Japanese (ja)
Other versions
JP4082246B2 (en
Inventor
Yasuhiro Umekage
康裕 梅景
Yukio Nagaoka
行夫 長岡
Norio Niimura
紀夫 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003066452A priority Critical patent/JP4082246B2/en
Publication of JP2004271490A publication Critical patent/JP2004271490A/en
Application granted granted Critical
Publication of JP4082246B2 publication Critical patent/JP4082246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a flowmeter for measuring the flow rate of a fluid such as air, gas or water by use of ultrasonic waves, which can attain both a low power consumption and a high precise measurement. <P>SOLUTION: This flowmeter comprises a high-precision flow measuring means, a low-power consumption flow measuring means, and a measurement switching means 29 for switching the flow measuring means depending on the measured flow rate of at least one of the high-precision flow measuring means and the low-power consumption flow measuring means. According to such a structure, a plurality of flow measuring means can be switchingly used, and a precise flow measurement and a flow measurement with low power consumption can be realized compatibly. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を利用して空気、ガス、水などの流体の流量を計測する超音波式の流量計に関するものである。
【0002】
【従来の技術】
従来この種の超音波式流量計は、図9に示すように流路内1に備えた一対の音響トランスジューサ2、3を設けて実現する超音波式流速測定手段4と、前記超音波式流速測定手段4の測定間隔を変更する測定間隔変更手段5と、流路内の圧力を検知する圧力検知手段6と、圧力判定手段7と、判定値調整手段8と、脈波検出手段9とで構成される。
【0003】
ここで、10はランダム時間発生手段、11は流量計測手段、12は流量積算手段、13は表示手段、14は遮断弁手段、15は弁制御手段である(例えば、特許文献1参照)。
【0004】
上記構成において、流路中の流体の脈波を監視し、予め定めた判定値より大きい脈波を検出した時、測定間隔を短くするようにして計測精度をあげて流速を測定するようにしたものである。
【0005】
また、図10に示すように、計測流量部16と、流量値積算部17と、第1のバッファ18と、第2のバッファ19と、流量積算値記憶部20とから構成されているものも知られている(例えば、特許文献2参照)。
【0006】
上記構成において、流体中の脈動の発生に起因して発生する流量計測誤差を、第1バッファ3と第2バッファ4を用いて解消するものである。
【0007】
すなわち、第1バッファ3では、流量計測部1から送られてくる流量値を積算してカウンタ値をインクリメントしていき、その積算値が所定の積算桁上げしきい値以上に達すると、流量積算値を1単位量ずつカウントアップすると共に、そのとき積算桁上げしきい値を超えた剰余の値を切り捨ててカウンタ値をゼロリセットする。そしてその切り捨てられた剰余の値は第2のバッファ4が積算可能に保持しておき、所定のタイミングで流量積算値のカウントアップに反映させ加算することとしていたものである。
【0008】
よって、脈動による流量値が発生しても、第1バッファが吸収し、すぐに1単位量のカウントアップには至らないので、脈動時の流量計測誤差を吸収できる。
【0009】
【特許文献1】
特開平11−258018号公報
【特許文献2】
特開2001−349752号公報
【0010】
【発明が解決しようとする課題】
しかしながら前記従来の構成では、計測間隔を短くして計測すると計測に使用する消費電力が多くなり、電池で使用する場合には長時間の使用に耐えられないという課題があった。
【0011】
また、バッファの方法では、積算流量のカウントアップが遅れるという課題と、剰余の値だけが残っていく第2バッファの値を最終的には加算しているので、脈動による誤差を加算していくことになり、累積誤差は解消できなく精度も悪くなるという課題があった。
【0012】
本発明はこのような従来の課題を解決するもので、計測精度の向上と省電力化を高めた流量計を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明は上記課題を解決するために、高精度流量計測手段と、低消費電力流量計測手段と、前記高精度流量計測手段と前記低消費電力流量計測手段の少なくとも一方の流量計測手段の計測流量によって流量計測手段を切り替える計測切替手段とを備えた構成とした。
【0014】
上記発明によれば、複数の流量計測手段を切り替えて使用することによって精度の高い流量計測と、低消費電力の流量計測を両立して実現することができる。
【0015】
【発明の実施の形態】
本発明の実施の形態は、高精度流量計測手段と、低消費電力流量計測手段と、前記高精度流量計測手段と前記低消費電力流量計測手段の少なくとも一方の流量計測手段の計測流量によって前記流量計測手段を切り替える計測切替手段とを備えたもので、複数の流量計測手段を切り替えて使用することができ、精度の高い流量計測と、低消費電力の流量計測を両立して実現することができる。
【0016】
高精度流量計測手段は、流路に設けられて音波を送受信する一対の音波送受信手段と、前記音波送受信手段により音波の送受信を繰返し行う繰返手段と、前記繰返手段で繰り返される間の音波の伝搬時間を計測する計時手段と、前記計時手段の値に基づいて流量を検出する流量検出手段と、前記繰返手段の繰返し回数を変更する繰返し回数変更手段とからなり、前記繰返し回数変更手段により繰返し回数を増加して高精度流量計測を行なうようにしたものであり、繰返し回数を増加することによって、計測時間を長くすることができるので計測ばらつきが小さくなり計測精度を向上することができる。
【0017】
低消費電力流量計測手段は、流路に設けられて音波を送受信する一対の音波送受信手段と、前記音波送受信手段により音波の送受信を繰返し行う繰返手段と、前記繰返手段で繰り返される間の音波の伝搬時間を計測する計時手段と、前記計時手段の値に基づいて流量を検出する流量検出手段と、前記繰返手段の繰返し回数を変更する繰返し回数変更手段とからなり、前記繰返し回数変更手段により繰返し回数を減少して低消費電力流量計測を行なうようにしたものであり、繰返し回数を減少することで計測時間が短くなり消費電力を低減することができる。
【0018】
また、上流側から下流側への送受信を繰返し行った時の第1伝搬時間計測と、下流側から上流側への送受信を繰返し行った時の第2伝搬時間計測を1つの計測単位とする送受信繰返手段と、前記送受信繰返手段の計測を少なくとも1回以上繰り返す計測繰返手段と、前記送受信繰返手段と前記計測繰返手段で繰り返された時の総第1伝搬時間と総第2伝搬時間から流量を検出する流量検出手段と、前記送受信繰返手段の送受信繰返し回数と前記計測繰返手段の計測繰返し回数とを変更して高精度流量計測手段と低消費電力流量計測手段を実現する超音波式流量計測手段を備えたもので、送受信の繰返し回数と計測の繰返し回数を変更することで、計測流量に適した精度と消費電力を選定して計測することができ、かつ流量変動が周期的に起こる脈動時においても脈動周期から外した計測周期、あるいは一致させた計測周期で計測するタイミングをとることができ精度の高い計測を実現することができる。
【0019】
また、低消費電力流量計測手段の計測値から流量変動を検出する変動検出手段と、前記変動検出手段が変動を検出したときに高精度流量計測手段で計測するように流量計測手段を切り替える計測切替手段を備えたもので、流量が変動するときには、高精度流量計測手段で計測することで安定して精度の高い流量計測を実現することができる。
【0020】
また、高精度流量計測手段の計測値から流量範囲を判別する流量判別手段と、前記流量判別手段が小流量と判別したときは高精度流量計測手段による流量計測を継続し、前記流量判別手段が大流量と判別したときは低消費電力流量計測手段に流量計測手段を切り替える計測切替手段を備えたもので、流量範囲によって計測手段を切り替えて計測することで、流量値に適した精度と消費電力で計測することができるので、無駄な消費電力を抑えることができる。
【0021】
また、流量計測手段が計測した瞬時流量値を所定時間において積算する流量積算手段と、前記流量積算手段の積算値が所定流量値以上になった時に高精度流量計測手段に切り替える計測切替手段を備えたもので、所定流量値以上の積算流量が発生したとき、高精度流量計測手段で計測することで、その積算値が正しい値か否かを判断することができ、正しい積算値を更新することができるので精度の高い流量計とすることができる。
【0022】
また、高精度流量計測手段で計測した流量値によって流量積算値が正常か否かを判定する流量異常判定手段とを備えたもので、積算値が正しい値か否かを判断することができ、正しい積算値を更新することができるので精度の高い流量計とすることができる。
【0023】
また、所定時間を越えても積算流量値が所定流量を越えない時、積算流量値をクリアする流量積算手段を備えたもので、所定時間内に積算値が所定流量を越えないとき、その積算値をクリアして再スタートすることができるので、誤差の積み重ねが発生せず精度の高い流量計測を実現することができる。
【0024】
また、流量異常判定手段が正常ではないと判断した時、積算流量値をクリアする流量積算手段と、クリアする前の積算流量値を記憶しておく流量記憶手段を備えたもので、クリアする前の流量値を記憶しておく流量記憶手段を設けることで、微小流量の積算を継続して長時間積み重ねることができるので、短時間での判断の結果では得られない長時間の判断と学習効果により精度の高い流量計測を実現することができる。
【0025】
また、積算流量を表示する流量表示手段を備え、前記流量表示手段の最下位の桁の単位を所定流量とすれば、表示手段の最下位の桁を最小単位とすることで、一時的に誤計測をしていても表示上に現れないので、外部からわからず誤認識、誤記録を防止することができる。
【0026】
また、所定流量を1リッターとすれば、1リッターの余裕流量を設けることができ、一時的な誤計測を吸収することができる。
【0027】
また、所定時間は1分以上とし、12分を最適とすれば、1時間当りの流量値を5リッターの余裕流量を設けることができ、一時的な誤計測を吸収することができる。
【0028】
また、所定時間と積算流量値と計測手法の変更回数から異常を判別する計測異常判別手段と、前記計測異常判別手段が異常を判別したとき異常警告を表示する警告表示手段を備えれば、計測手段の切替が頻繁に発生する場合に、計測異常判別手段と警告手段によって異常を報知することができ、脈動発生などの異常を早期に発見することができる。
【0029】
そして、電池を電源とすることで屋外に使用される流量計として使用することができ、低消費電力流量計測手段を備えているので、電池を使用しても長寿命とすることができる。
【0030】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0031】
(実施例1)
図1において、21は流体を流す流路、22は超音波を送受信するために流路の上流側に設置された音波送受信手段、23は超音波を送受信するために流路の下流側に設置された音波送受信手段、24は音波の送受信を繰り返して行う繰返手段、25は前記繰返手段24で繰返し行われる音波の伝搬時間を計測する計時手段、26は前記計時手段25で計測された時間情報を基に流量を検出する流量検出手段である。
【0032】
また、27は音波の送受信の繰返し回数を変更する繰返し回数変更手段、28は所定条件によって繰返し回数を都度変更する超音波式流量計測手段である。
【0033】
そして、超音波式流量計測手段28は、繰返し回数変更手段27によって繰返し回数を増加して高精度流量計測手段を実現し、逆に繰返し回数を減少して低消費電力流量計測手段を実現するものであり、この計測手段の計測切替えを行う手段が計測切替手段29である。
【0034】
ここで、30は変動検出手段、31は流量判別手段、32は流量積算手段、33は流量異常判定手段、34は警告表示手段、35は電池、36は流量記憶手段、37は流量表示手段、38は計測異常判別手段である。
【0035】
以上のような構成の流量計の計測原理について説明する。
【0036】
図1に示す流路の上流側の音波送受信手段22から下流側の音波送受信手段23に向かって音波が伝搬する伝搬時間T1を計測すると、伝搬時間T1は、式(1)のようになる。
【0037】
T1=L/(C+Vcosθ) (1)
また、下流側の音波送受信手段23から上流側の音波送受信手段22に向かって伝搬する伝搬時間T2を計測すると、伝搬時間T2は、式(2)のようになる。
【0038】
T2=L/(C−Vcosθ) (2)
ここで、Vは流路内の流速、Lは音波送受信手段間の距離、θは流路に対する音波送受信手段の対向する角度、Cは音速である。
【0039】
そして、T1とT2の逆数の差をとり、式を変形するとT1、T2から流速Vは、式(3)のように求めることができる。
【0040】
V=(L/2cosθ)・(1/T1−1/T2) (3)
そして、この流速Vに流路の断面積などを考慮して流量Qを算出することができるのである。以上は、1回の送受信の計測で説明しているが、繰返手段24で伝搬時間を繰り返して計測する方法で積算伝搬時間を求めることによって、より精度よく流速Vを求めることができることは明白であろう。
【0041】
しかしながら、この計測は上流側からの送信時の流速V1と、下流側からの送信時流速V2が同じであることが条件である。実際には脈動のように流量変動を発生している場合がある。もし、図2のように流速に変動があった場合、計測している時間が短いと、上流側からの伝搬時間を測定している時の平均流速V1は、下流側からの伝搬時間を測定しているときの平均流速V2とは同じにはならず、計測誤差を生じることになる。
【0042】
そのため図3のように、繰り返し回数を多くして変動の1周期以上を計測範囲とすることによって、流速を平均化して伝播時間を計測することで、流速V1とV2が同じような状態になり、精度を向上、維持することができる。この原理を利用した方法が繰返し回数を増加して実現する高精度流量計測手段である。
【0043】
また、繰返し回数が少ないと動作時間が短いので処理に使用される消費電力が少なくなるのは明白である。このように繰返し回数を少なくして消費電力を低減する計測方法が低消費電力流量計測手段である。
【0044】
次に、図4と図5に示すフローチャートを用いて動作の流れを説明する。図4に示すように流量計測は、通常、低消費電力流量計測手段による低消費電力モードで計測が行われる(STEP10)。
【0045】
そして、計測された瞬時流量値から変動検出手段30により流量変動が判定される(STEP11)。流量変動がない場合は、流量積算処理(STEP12)を経て低消費電力モード(STEP10)で継続して流量計測が行われる。
【0046】
ここで、変動検出手段30(STEP11)について説明する。例えば、変動検出手段30は、流量検出手段26により検出された瞬時流量値から、所定時間内の最大流量値Qmaxと、所定時間内の最小流量値Qminの差(Qmax−Qmin)を求めて流量変動を検出する。
【0047】
そして、その流量変動(Qmax−Qmin)が、所定流量としての10リッター/時間以上の時は、変動があると検出し、10リッター/時間未満の時は、変動がないと変動検出手段30が検出するのである。
【0048】
次に、このような変動検出手段30により変動が検出された場合、流量判別手段31により流量判別が行われる(STEP13)。
【0049】
流量判別手段31は、流量範囲を大流量範囲(例えば、3000リッター/時間以上)と判別すると、繰返し回数を最適な最小回数(例えば8回から128回、最適は64回)に減少して低消費電力モードで計測する。
【0050】
また、流量判別手段31が流量範囲を小流量範囲(例えば、3000リッター/未満)と判別すると、繰返し回数を最適な回数(例えば64から512回、最適は252回)に増加して高精度流量計測手段として高精度計測モードで継続して計測を行うことができる(STEP14)。
【0051】
この高精度計測モード時においても、変動検出(STEP11)が繰返し行われ、変動がなくなったときは、流量積算処理(STEP12)を経て低消費電力計測モード(STEP10)に戻ることにしている。
【0052】
また、大流量範囲と判別した場合において、最初から低消費電力モードで計測している場合は、繰返し回数は変更しない。
【0053】
そして、それぞれの計測モードにおいて計測した流量値は、流量積算手段32によって積算処理が行われる。
【0054】
図5にその積算処理のフローチャートを示す。積算処理は、所定時間内の流量増加が所定時間内(例えば、所定時間12分内)で所定流量値以上(例えば、所定流量1リッター以上)になったか否かを判別して(STEP20)、高精度計測モードで計測を行う(STEP21)ものである。
【0055】
所定流量値未満の場合は、その所定時間内の積算値をクリア(STEP22)して、計測に異常かないか否かを判断して(STEP23)計測モードに戻る(STEP24)。
【0056】
これにより、脈動のような流量変動時の計測誤差値や計測分解能以下の微小流量値の積算誤差による積算流量値のカウントアップを防止することができるのである。
【0057】
また、蓄積してきた積算値と、新たに高精度計測モードで計測した瞬時流量値とを、同じ所定時間当たりに換算して比較し、その積算値が正しいか否かを流量異常判定手段33が判定する(STEP25)。
【0058】
異常なしと判定された時、積算値は加算され(STEP26)、計測モードへ戻る(STEP24)。
【0059】
しかし、異常があると判定されたときは、現在の流量値は記憶手段に記憶され(STEP27)、その流量値と積算値はクリアされる(STEP28)。
【0060】
流量計の警告表示手段34には異常の警告表示が行われ(STEP29)、高精度計測モードへ戻る(STEP30)。
【0061】
すなわち、クリアする前の所定時間当たりの積算値を流量記憶手段36に記憶しておくことによって、異常が判定されるごとにその記憶手段に流量値を加算しつつ記憶していくことができ、異常時の積算流量を知ることができる。
【0062】
例えば、この記憶手段の積算値がゼロに収束していくようであれば、異常の現象はランダムに発生していると考えられ、処理上短時間で判定している故の誤差と考えられるので、将来的な問題は少ないと学習することができる。
【0063】
また、例えば2秒に1回の測定であれば、1回の計測で1リッターを超える流量は1800リッター/時間になる。
【0064】
通常、こんなに大流量が一度に流れることはないので、1リッターの積算流量を超えるまでに、2回、3回の計測を繰り返すことになる。脈動流のようにランダムな流れの場合は、おおよそプラス側、マイナス側の流量が繰り返されることになり、平均するとゼロに収束することになる。
【0065】
また、計測タイミングも2秒に1回ではあるが、僅かにタイミングをランダム化して計測しているので、おおよそプラス側、マイナス側の流量が繰り返されることになる。よって、積算を続けていけば、通常はゼロに収束していくはずである。
【0066】
しかし、この流量記憶手段36の積算値がゼロに収束しない場合、何らかの改善が必要であることがわかり、記憶手段に積算される積算値から学習していくこと(STEP31)で、流量計の設置された環境に対処することができる。
【0067】
例えば、記憶手段の積算値がゼロに収束していくような時期であれば、所定時間の12分を長くすることでカウントアップは防止できるし、ゼロに収束しない時期であれば、1リッターの量を増やして短時間でカウントアップしないように修正することでカウントアップは防止できる。このように学習しながら所定時間や所定流量を修正することで、誤計測を防止することができる。
【0068】
そして、変動なしの時の異常か、変動ありの時の異常かまで表示することによって、流路の異常状態をつかむことができ、異常が確認された後、早期に対応をとり異常を改善することが可能である。
【0069】
異常が確認されると、さらに精度よく計測するために高精度計測モードへ戻るので、消費電力が多くなり電池35の寿命を短くすることがあるので、警告表示により早期に流路の改善が必要であることを促すわけである。
【0070】
さらに、計測異常判別手段38の計測異常判別処理(STEP23)は、流量のカウントアップを判別する所定時間(例えば、12分)とその所定時間内の積算流量値(例えば、1リッター)と計測手法の変更回数から異常を判別する。
【0071】
例えば、所定時間になる前に頻繁に所定積算流量の1リッターを超える場合や、計測手法が低消費電力モードと高精度計測モードの計測手法変更が頻繁(例えば、1日に100回以上)に行われる場合、明らかに正常ではないので、計測異常判別手段38が異常と判定して、警告表示手段34に異常警告を表示する。
【0072】
これによって、早期に計測モードの切替異常を検出でき、安定した流量計測を実現して計測精度を向上することができる。
【0073】
なお、計測処理を整理すると図6に示すような階層構造に示すこともできる。また、超音波式流量計測手段で説明したが、フローセンサやフルイディク流量計、または膜式メータのような機械式流量計などの流量計を用いて複数の流量計測手法を用いた場合も、機械式流量計を低消費電力流量計測手段とし、フローセンサを高精度流量計測手段として、低消費電力化と高精度化の両立を実現できることは容易に類推できる。
【0074】
以上は大流量と小流量の2分類で説明したが、大流量、中流量、小流量の3分類以上に細かく分けて行えば、より一層精度を向上できる。さらに、積算流量が所定流量以上として説明したが、所定流量になる前に検出することでも同様である。そして、変動として説明したが、ガス配管に発生する脈動流の計測に対して効果があることは明白である。
【0075】
また、ガス流を計測するガスメーターの場合、ガス漏洩やガス器具の使用状態を把握して安全管理する保安機能が付加されているが、それらの保安機能からの要求により高精度流量計測手段が処理される場合もあり得る。
【0076】
異常を判別した場合は、警告表示のみならずガス遮断を行うようにガス遮断手段を装備しておくことも容易である。
【0077】
さらに、電池を駆動電源としているため、電池の消耗状況に応じて低消費電力流量計測手段に切り替えることによって、長寿命化を実現することも十分考えられ、電池交換までの間は保安機能優先で安全メーターとして利用できる。
【0078】
(実施例2)
実施例2について、図7を用いて説明する。実施例1と異なる点は、超音波の送受信を繰返し行う送受信繰返手段39と、前記送受信繰返手段39の計測をさらに繰返し行う計測繰返手段40を備えたことにある。
【0079】
すなわち、流路21の上流側から下流側への送受信を繰返し行った時の第1伝搬時間計測T1と、下流側から上流側への送受信を繰返し行った時の第2伝搬時間計測T2を1つの計測単位とする送受信繰返手段39と、前記送受信繰返手段39の計測を少なくとも1回以上繰り返す計測繰返手段40と、前記送受信繰返手段39と前記計測繰返手段40で繰り返された時の総第1伝搬時間ΣT1と総第2伝搬時間ΣT2から流量を検出する流量検出手段41と、繰返し回数変更手段27によって前記送受信繰返手段39の送受信繰返し回数Nと前記計測繰返手段40の計測繰返し回数Mとを変更して高精度流量計測手段と低消費電力流量計測手段を実現する超音波式流量計測手段42を備えたしたものである。
【0080】
具体的には、高精度流量計測手段は、繰返し回数変更手段27によって送受信繰返し回数Nは少なく(例えば、1回から16回で、最適には2回)し、逆に計測繰返し回数Mを多く(例えば、16回から1024回で、最適には126回)してトータルの積N*Mが多くなるように設定する。
【0081】
このような設定とすることで、時間変化の激しい脈動流速の変化を細かく計測し、かつ長時間計測することで高精度化を実現するものである。
【0082】
また、低消費電力流量計測手段は、繰返し回数変更手段27によって送受信繰返し回数Nを多く(例えば、8回から512回、最適には64回)して、計測繰返し回数Mを少なく(例えば、1回から8回、最適には1回)して短時間で計測が完了するようにして実現するものである。この計測手段の計測切替えを行う手段が計測切替手段29である。
【0083】
本実施例の構成によれば、図8に示すように、送受信繰返し回数を少なくして計測することで、上流からの伝搬時間と下流からの伝搬時間を計測するタイミングが近接でき、時間変化が激しく起こる脈動においても、計測精度を上げることができる。
【0084】
そして、送受信の計測単位を計測繰返手段40によって繰返し行うことできるとともに、長時間の計測が行えるので、変動する伝搬時間を平均化することができ、さらに精度を向上することができる。
【0085】
なお、計測単位の繰返しは待ち時間を介して連続的に行うものであるが、この待ち時間を調整して総計測時間を調整することで計測精度を向上することもできる。
【0086】
待ち時間を短くすることで計測がより精密になり高精度計測が行えることは明白である。そして、送受信繰返し回数Nと計測繰返し回数Mを組み合わせることによって、低消費電力モードと高精度計測モードの中間計測モードを作り出すこともできる。
【0087】
例えば、脈動が大きく、流量範囲が小流量の範囲の場合、少し精度の高い計測でかつ消費電力も抑えた計測モードとして中間計測モードをいくつも実現することができる。
【0088】
さらに、繰返し回数を変えて脈動の周期に合わせることで、脈動の影響を極力低減することができ、流量計測精度を向上することも可能である。
【0089】
【発明の効果】
以上の説明から明らかなように本発明の流量計によれば、次の効果が得られる。
【0090】
高精度流量計測手段と、低消費電力流量計測手段と、前記高精度流量計測手段と前記低消費電力流量計測手段の少なくとも一方の流量計測手段の計測流量によって前記流量計測手段を切り替える計測切替手段を備えた構成とすることで、複数の流量計測手段を切り替えて使用することができ、精度の高い流量計測と、低消費電力の流量計測を両立して実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例1の流量計のブロック図
【図2】同流量計の原理説明図
【図3】同流量計の原理説明図
【図4】同流量計のフローチャート
【図5】同流量計のフローチャート
【図6】同流量計のフローチャート
【図7】本発明の実施例2を示すブロック図
【図8】同流量計の原理説明図
【図9】従来の流量計のブロック図
【図10】従来の他の流量計のブロック図
【符号の説明】
21 流路
22、23 音波送受信手段
24 繰返手段
25 計時手段
26 流量検出手段
27 回数変更手段
28 超音波式流量計測手段
29 計測切替手段
30 変動検出手段
31 流量判別手段
32 流量積算手段
33 流量異常判定手段
34 警告表示手段
35 電池
36 流量記憶手段
37 流量表示手段
38 計測異常判別手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid such as air, gas, or water using ultrasonic waves.
[0002]
[Prior art]
Conventionally, an ultrasonic flow meter of this type includes an ultrasonic flow velocity measuring means 4 provided by providing a pair of acoustic transducers 2 and 3 provided in a flow path 1 as shown in FIG. A measurement interval changing unit 5 for changing a measurement interval of the measurement unit 4, a pressure detection unit 6 for detecting a pressure in the flow path, a pressure determination unit 7, a determination value adjustment unit 8, and a pulse wave detection unit 9 Be composed.
[0003]
Here, 10 is a random time generating means, 11 is a flow rate measuring means, 12 is a flow rate integrating means, 13 is a display means, 14 is a shutoff valve means, and 15 is a valve control means (for example, see Patent Document 1).
[0004]
In the above configuration, the pulse wave of the fluid in the flow path is monitored, and when a pulse wave larger than a predetermined determination value is detected, the measurement interval is shortened to increase the measurement accuracy and measure the flow velocity. Things.
[0005]
Further, as shown in FIG. 10, the one configured of a measured flow rate unit 16, a flow rate value integration unit 17, a first buffer 18, a second buffer 19, and a flow rate integration value storage unit 20 is also available. It is known (for example, see Patent Document 2).
[0006]
In the above configuration, the flow rate measurement error caused by the generation of the pulsation in the fluid is eliminated by using the first buffer 3 and the second buffer 4.
[0007]
That is, in the first buffer 3, the flow rate value sent from the flow rate measuring section 1 is integrated and the counter value is incremented. When the integrated value reaches a predetermined integration carry threshold or more, the flow rate integration is performed. The value is counted up by one unit, and the value of the remainder exceeding the accumulated carry threshold at that time is rounded down to reset the counter value to zero. The value of the truncated remainder is held by the second buffer 4 so that it can be integrated, and is reflected at a predetermined timing on the count-up of the integrated flow value and added.
[0008]
Therefore, even if a flow value is generated due to pulsation, the first buffer absorbs the flow value and does not immediately count up one unit amount, so that a flow measurement error at the time of pulsation can be absorbed.
[0009]
[Patent Document 1]
JP-A-11-258018
[Patent Document 2]
JP 2001-349752 A
[0010]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, there is a problem that when the measurement is performed with the measurement interval shortened, power consumption used for the measurement increases, and when the battery is used, the device cannot withstand long-time use.
[0011]
In addition, in the buffer method, the problem that the counting up of the integrated flow rate is delayed and the value of the second buffer in which only the residual value remains are finally added, so errors due to pulsation are added. As a result, there is a problem that the accumulated error cannot be eliminated and the accuracy deteriorates.
[0012]
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a flowmeter with improved measurement accuracy and reduced power consumption.
[0013]
[Means for Solving the Problems]
The present invention, in order to solve the above problems, high-precision flow measurement means, low power consumption flow measurement means, the flow rate of at least one of the high-precision flow measurement means and the low power consumption flow measurement means flow measurement means And a measurement switching means for switching the flow measurement means.
[0014]
According to the above invention, it is possible to achieve both high-accuracy flow measurement and low-power-consumption flow measurement by switching and using a plurality of flow measurement units.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment of the present invention is a high-precision flow rate measuring means, a low power consumption flow rate measuring means, the high-precision flow rate measuring means and the low power consumption flow rate measuring means at least one of the flow rate measurement means the flow rate. It is provided with a measurement switching means for switching the measurement means, and can be used by switching a plurality of flow measurement means, thereby realizing both high precision flow measurement and low power consumption flow measurement. .
[0016]
The high-precision flow rate measuring means is provided in a flow path, a pair of sound wave transmitting and receiving means for transmitting and receiving a sound wave, a repeating means for repeatedly transmitting and receiving the sound wave by the sound wave transmitting and receiving means, and a sound wave while being repeated by the repeating means. A time measuring means for measuring the propagation time, a flow rate detecting means for detecting a flow rate based on the value of the time measuring means, and a repetition number changing means for changing the repetition number of the repetition means, wherein the repetition number changing means , The number of repetitions is increased to perform high-precision flow measurement. By increasing the number of repetitions, the measurement time can be lengthened, so that measurement variation is reduced and measurement accuracy can be improved. .
[0017]
The low-power-consumption flow rate measuring means is provided in the flow path, and transmits and receives a sound wave. A pair of sound wave transmitting and receiving means, a repeating means for repeatedly transmitting and receiving sound waves by the sound wave transmitting and receiving means, A timer for measuring the propagation time of the sound wave; a flow rate detector for detecting a flow rate based on the value of the timer; and a repetition number changing means for changing the number of repetitions of the repetition means. The low power consumption flow rate measurement is performed by reducing the number of repetitions by means. By reducing the number of repetitions, the measurement time is shortened and the power consumption can be reduced.
[0018]
In addition, the first propagation time measurement when transmission and reception from the upstream side to the downstream side are repeatedly performed, and the second propagation time measurement when transmission and reception from the downstream side to the upstream side are repeatedly performed are one measurement unit. A repetition means, a measurement repetition means for repeating the measurement of the transmission / reception repetition means at least once or more, a total first propagation time and a total second propagation time when the transmission / reception repetition means and the measurement repetition means are repeated. A flow rate detection means for detecting a flow rate from a propagation time, and a high precision flow rate measurement means and a low power consumption flow rate measurement means are realized by changing the number of transmission / reception repetitions of the transmission / reception repetition means and the number of measurement repetitions of the measurement repetition means. By changing the number of repetitions of transmission and reception and the number of repetitions of measurement, it is possible to select and measure the accuracy and power consumption suitable for the measured flow rate, and to measure the flow rate fluctuation. Periodically occurs Also it is possible to realize a measurement cycle, or measurement with high accuracy can be timed to measure the measurement cycle matched removed from the pulse period during pulsations.
[0019]
A change detecting means for detecting a change in the flow rate from the measurement value of the low power consumption flow rate measuring means; and a measurement switch for switching the flow rate measuring means so as to measure by the high precision flow measuring means when the change detecting means detects the change. When the flow rate fluctuates, high-precision flow rate measurement can be stably performed by measuring the flow rate with the high-precision flow rate measurement means.
[0020]
Further, a flow rate determining means for determining a flow rate range from a measurement value of the high-precision flow rate measuring means, and when the flow rate determining means determines that the flow rate is small, the flow rate measurement by the high-precision flow rate measuring means is continued, and the flow rate determining means is When it is determined that the flow rate is large, the low power consumption flow rate measurement means is equipped with a measurement switching means for switching the flow rate measurement means. By measuring the measurement means by switching the flow rate range, the accuracy and power consumption suitable for the flow rate value are measured. , And wasteful power consumption can be suppressed.
[0021]
A flow rate integrating means for integrating the instantaneous flow rate value measured by the flow rate measuring means for a predetermined time; and a measurement switching means for switching to a high-precision flow rate measuring means when the integrated value of the flow rate integrating means becomes equal to or more than a predetermined flow rate value. When an integrated flow rate equal to or more than a predetermined flow rate value is generated, high-precision flow measurement means can measure whether the integrated value is a correct value, and update the correct integrated value. Therefore, a highly accurate flowmeter can be obtained.
[0022]
Further, it is provided with a flow rate abnormality determining means for determining whether or not the integrated flow value is normal based on the flow value measured by the high-precision flow measuring means, and can determine whether the integrated value is a correct value, Since the correct integrated value can be updated, a highly accurate flowmeter can be obtained.
[0023]
Also provided is a flow rate integrating means for clearing the integrated flow rate value when the integrated flow rate value does not exceed the predetermined flow rate even if the integrated flow value does not exceed the predetermined flow rate within a predetermined time. Since the value can be cleared and restarted, a high-accuracy flow rate measurement can be realized without accumulation of errors.
[0024]
Further, when the flow rate abnormality determination means determines that the flow rate is not normal, the flow rate abnormality determination means includes a flow rate integration means for clearing the integrated flow rate value and a flow rate storage means for storing the integrated flow rate value before clearing. By providing a flow rate storage unit that stores the flow rate values of the above, the accumulation of minute flow rates can be continued and accumulated for a long time. Thereby, highly accurate flow rate measurement can be realized.
[0025]
In addition, a flow rate display means for displaying the integrated flow rate is provided, and if the unit of the least significant digit of the flow rate display means is a predetermined flow rate, the least significant digit of the display means is set to the minimum unit, thereby temporarily causing an error. Since the measurement does not appear on the display even when the measurement is performed, erroneous recognition and erroneous recording can be prevented without being externally known.
[0026]
If the predetermined flow rate is one liter, a marginal flow rate of one liter can be provided, and temporary erroneous measurement can be absorbed.
[0027]
If the predetermined time is 1 minute or more and 12 minutes is optimal, the flow rate per hour can be provided with a surplus flow rate of 5 liters, and temporary erroneous measurement can be absorbed.
[0028]
In addition, if the measurement abnormality determination means for determining an abnormality based on the predetermined time, the integrated flow rate value, and the number of times the measurement method has been changed, and a warning display means for displaying an abnormality warning when the measurement abnormality determination means determines an abnormality, When the switching of the means frequently occurs, the abnormality can be notified by the measurement abnormality determining means and the warning means, and the abnormality such as the occurrence of pulsation can be found at an early stage.
[0029]
Since the battery is used as a power source, the battery can be used as a flowmeter used outdoors. Since the battery is provided with a low-power-consumption flow rate measuring means, a long life can be obtained even if a battery is used.
[0030]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0031]
(Example 1)
In FIG. 1, reference numeral 21 denotes a flow path for flowing a fluid, 22 denotes a sound wave transmitting / receiving means provided upstream of the flow path for transmitting / receiving ultrasonic waves, and 23 denotes a sound wave transmitting / receiving means provided downstream of the flow path for transmitting / receiving ultrasonic waves. Sound wave transmitting and receiving means, 24 is a repeating means for repeatedly transmitting and receiving sound waves, 25 is a time measuring means for measuring the propagation time of the sound wave repeatedly performed by the repeating means 24, and 26 is measured by the time measuring means 25 It is a flow rate detecting means for detecting a flow rate based on time information.
[0032]
Reference numeral 27 denotes a repetition number changing means for changing the number of repetitions of transmission and reception of sound waves, and reference numeral 28 denotes an ultrasonic flow rate measurement means for changing the number of repetitions each time according to predetermined conditions.
[0033]
The ultrasonic flow rate measuring means 28 realizes a high-precision flow rate measuring means by increasing the number of repetitions by the repetition number changing means 27, and realizes a low power consumption flow rate measuring means by decreasing the number of repetitions. The means for performing the measurement switching of the measuring means is the measurement switching means 29.
[0034]
Here, 30 is a fluctuation detecting means, 31 is a flow rate determining means, 32 is a flow rate integrating means, 33 is a flow rate abnormality determining means, 34 is a warning display means, 35 is a battery, 36 is a flow rate storage means, 37 is a flow rate display means, 38 is a measurement abnormality determining means.
[0035]
The measurement principle of the flowmeter having the above configuration will be described.
[0036]
When the propagation time T1 during which the sound wave propagates from the sound wave transmission / reception means 22 on the upstream side of the flow channel shown in FIG. 1 to the sound wave transmission / reception means 23 on the downstream side is measured, the propagation time T1 is represented by the equation (1).
[0037]
T1 = L / (C + Vcosθ) (1)
Also, when the propagation time T2 propagating from the downstream sound wave transmitting / receiving means 23 toward the upstream sound wave transmitting / receiving means 22 is measured, the propagation time T2 is as shown in Expression (2).
[0038]
T2 = L / (C−Vcos θ) (2)
Here, V is the flow velocity in the flow path, L is the distance between the sound wave transmitting / receiving means, θ is the angle of the sound wave transmitting / receiving means facing the flow path, and C is the sound speed.
[0039]
Then, by taking the difference between the reciprocals of T1 and T2 and transforming the equation, the flow velocity V can be obtained from T1 and T2 as in equation (3).
[0040]
V = (L / 2 cos θ) · (1 / T1-1 / T2) (3)
The flow rate Q can be calculated in consideration of the flow velocity V and the cross-sectional area of the flow path. Although the above description has been given of one transmission / reception measurement, it is apparent that the flow velocity V can be more accurately obtained by obtaining the integrated propagation time by a method of repeatedly measuring the propagation time by the repeating means 24. Will.
[0041]
However, this measurement is based on the condition that the flow velocity V1 at the time of transmission from the upstream side is the same as the flow velocity V2 at the time of transmission from the downstream side. Actually, there is a case where a flow rate fluctuation occurs like a pulsation. If there is a fluctuation in the flow velocity as shown in FIG. 2, if the measurement time is short, the average flow velocity V1 when measuring the propagation time from the upstream side measures the propagation time from the downstream side. Does not become the same as the average flow velocity V2, and a measurement error occurs.
[0042]
Therefore, as shown in FIG. 3, by increasing the number of repetitions and setting the measurement range to at least one cycle of fluctuation, the flow velocities are averaged and the propagation time is measured, so that the flow velocities V1 and V2 become similar. , Accuracy can be improved and maintained. A method using this principle is a high-accuracy flow rate measuring means realized by increasing the number of repetitions.
[0043]
Also, it is clear that the power consumption used for processing is reduced when the number of repetitions is small because the operation time is short. A measurement method for reducing the power consumption by reducing the number of repetitions is the low power consumption flow rate measurement unit.
[0044]
Next, the flow of the operation will be described with reference to the flowcharts shown in FIGS. As shown in FIG. 4, the flow measurement is usually performed in a low power consumption mode by a low power consumption flow measurement unit (STEP 10).
[0045]
Then, a fluctuation in flow rate is determined by the fluctuation detecting means 30 from the measured instantaneous flow rate value (STEP 11). If there is no fluctuation in the flow rate, the flow rate measurement is continuously performed in the low power consumption mode (STEP 10) through the flow rate integrating process (STEP 12).
[0046]
Here, the fluctuation detecting means 30 (STEP 11) will be described. For example, the fluctuation detecting means 30 obtains a difference (Qmax-Qmin) between the maximum flow rate value Qmax within a predetermined time and the minimum flow rate value Qmin within a predetermined time from the instantaneous flow rate value detected by the flow rate detecting means 26. Detect fluctuations.
[0047]
When the flow rate fluctuation (Qmax-Qmin) is 10 liters / hour or more as a predetermined flow rate, it is detected that there is fluctuation, and when the flow rate fluctuation is less than 10 liters / hour, the fluctuation detecting means 30 detects that there is no fluctuation. Detect it.
[0048]
Next, when the fluctuation is detected by the fluctuation detecting means 30, the flow rate is determined by the flow rate determining means 31 (STEP 13).
[0049]
When the flow rate determination unit 31 determines that the flow rate range is a large flow rate range (for example, 3000 liters / hour or more), the number of repetitions is reduced to an optimal minimum number (for example, from 8 to 128 times, and optimally 64 times) to reduce the number of repetitions. Measure in power consumption mode.
[0050]
When the flow rate determining means 31 determines that the flow rate range is a small flow rate range (for example, less than 3000 liters /), the number of repetitions is increased to an optimum number (for example, 64 to 512 times, and optimally 252 times), and the high precision flow rate is increased. Measurement can be continuously performed in the high-accuracy measurement mode as a measuring means (STEP 14).
[0051]
Even in the high-accuracy measurement mode, the fluctuation detection (STEP 11) is repeatedly performed. When the fluctuation stops, the flow returns to the low power consumption measurement mode (STEP 10) through the flow rate integration processing (STEP 12).
[0052]
In addition, when it is determined that the flow rate is in the large flow rate range and the measurement is performed in the low power consumption mode from the beginning, the number of repetitions is not changed.
[0053]
Then, the flow rate values measured in the respective measurement modes are integrated by the flow rate integrating means 32.
[0054]
FIG. 5 shows a flowchart of the integration process. The integration process determines whether or not the flow rate increase within a predetermined time period has reached a predetermined flow rate value (eg, a predetermined flow rate of 1 liter or more) within a predetermined time period (eg, a predetermined time period of 12 minutes) (STEP 20). The measurement is performed in the high-accuracy measurement mode (STEP 21).
[0055]
If it is less than the predetermined flow value, the integrated value within the predetermined time is cleared (STEP 22), it is determined whether there is any abnormality in the measurement (STEP 23), and the process returns to the measurement mode (STEP 24).
[0056]
As a result, it is possible to prevent the count-up of the integrated flow value due to the measurement error value at the time of flow fluctuation such as pulsation or the integration error of the minute flow value smaller than the measurement resolution.
[0057]
In addition, the accumulated integrated value and the instantaneous flow rate value newly measured in the high-accuracy measurement mode are converted and compared per the same predetermined time, and the flow rate abnormality determining means 33 determines whether or not the integrated value is correct. A determination is made (STEP 25).
[0058]
When it is determined that there is no abnormality, the integrated value is added (STEP 26), and the process returns to the measurement mode (STEP 24).
[0059]
However, when it is determined that there is an abnormality, the current flow value is stored in the storage means (STEP 27), and the flow value and the integrated value are cleared (STEP 28).
[0060]
The warning display means 34 of the flow meter displays a warning of abnormality (STEP 29), and returns to the high-accuracy measurement mode (STEP 30).
[0061]
That is, by storing the integrated value per predetermined time before clearing in the flow rate storage means 36, the flow rate value can be stored in the storage means while being added each time an abnormality is determined, It is possible to know the integrated flow rate at the time of abnormality.
[0062]
For example, if the integrated value of this storage means converges to zero, it is considered that the abnormal phenomenon has occurred at random and is considered to be an error due to the determination in a short time in processing. You can learn that there are few future problems.
[0063]
For example, if the measurement is performed once every two seconds, the flow rate exceeding one liter in one measurement is 1800 liters / hour.
[0064]
Normally, such a large flow rate does not flow at once, so that measurement is repeated twice or three times before exceeding the integrated flow rate of one liter. In the case of a random flow such as a pulsating flow, the flow rate on the positive side and the flow rate on the negative side are repeated, and converge to zero on average.
[0065]
Although the measurement timing is once every two seconds, since the timing is slightly randomized and measured, the flow rate on the plus side and the minus side is approximately repeated. Therefore, if the integration is continued, it should normally converge to zero.
[0066]
However, if the integrated value of the flow rate storage means 36 does not converge to zero, it is known that some improvement is necessary, and learning is performed from the integrated value integrated in the storage means (STEP 31). Environment can be addressed.
[0067]
For example, at a time when the integrated value of the storage means converges to zero, counting up can be prevented by increasing the predetermined time of 12 minutes. The count-up can be prevented by increasing the amount so as not to count up in a short time. By correcting the predetermined time and the predetermined flow rate while learning in this way, erroneous measurement can be prevented.
[0068]
By displaying whether there is an abnormality when there is no fluctuation or an abnormality when there is fluctuation, it is possible to grasp the abnormal state of the flow path, and after the abnormality is confirmed, take an early action to improve the abnormality. It is possible.
[0069]
When an abnormality is confirmed, the mode returns to the high-accuracy measurement mode for more accurate measurement, so that power consumption increases and the life of the battery 35 may be shortened. That is,
[0070]
Further, the measurement abnormality determination processing (STEP 23) of the measurement abnormality determination means 38 includes a predetermined time (for example, 12 minutes) for determining the count up of the flow rate, an integrated flow value (for example, 1 liter) within the predetermined time, and a measuring method. An abnormality is determined from the number of times of change.
[0071]
For example, the frequency frequently exceeds one liter of the predetermined integrated flow rate before the predetermined time, or the measurement method frequently changes (for example, 100 times or more per day) between the low power consumption mode and the high accuracy measurement mode. When the measurement is performed, since the measurement is obviously not normal, the measurement abnormality determination unit 38 determines that the measurement is abnormal, and displays an abnormality warning on the warning display unit 34.
[0072]
This makes it possible to detect a measurement mode switching abnormality at an early stage, realize stable flow measurement, and improve measurement accuracy.
[0073]
When the measurement processing is arranged, it can be shown in a hierarchical structure as shown in FIG. In addition, although the description has been made with reference to the ultrasonic flow rate measuring means, when a plurality of flow rate measuring methods are used using a flow meter such as a flow sensor, a fluid flow meter, or a mechanical flow meter such as a membrane meter, the mechanical It is easy to guess that it is possible to achieve both low power consumption and high accuracy by using a flow meter as a low power consumption flow measurement unit and a flow sensor as a high precision flow measurement unit.
[0074]
Although the above description has been made on the basis of two classifications of a large flow rate and a small flow rate, the accuracy can be further improved by finely dividing the flow rate into three or more classifications of a large flow rate, a medium flow rate and a small flow rate. Further, although the description has been made assuming that the integrated flow rate is equal to or more than the predetermined flow rate, the same applies to the detection before the predetermined flow rate is reached. And although it demonstrated as fluctuation, it is clear that it is effective for measurement of the pulsating flow generated in a gas pipe.
[0075]
In addition, in the case of gas meters that measure gas flow, security functions for grasping gas leaks and use conditions of gas appliances and managing safety are added, but high-precision flow measurement means are processed according to requests from these security functions. Could be done.
[0076]
When an abnormality is determined, it is easy to provide a gas shut-off means so as to perform not only a warning display but also gas shut-off.
[0077]
In addition, since the battery is used as the driving power source, it is conceivable that the life can be extended by switching to the low power consumption flow rate measuring means according to the battery consumption status. Can be used as a safety meter.
[0078]
(Example 2)
Example 2 will be described with reference to FIG. The difference from the first embodiment is that a transmission / reception repetition unit 39 for repeatedly transmitting and receiving ultrasonic waves and a measurement repetition unit 40 for repeating the measurement of the transmission / reception repetition unit 39 are further provided.
[0079]
That is, the first propagation time measurement T1 when transmission / reception from the upstream side to the downstream side of the flow path 21 is repeated and the second propagation time measurement T2 when transmission / reception from the downstream side to the upstream side are repeated are 1 The transmission / reception repetition means 39 as one measurement unit, the measurement repetition means 40 for repeating the measurement of the transmission / reception repetition means 39 at least once, and the transmission / reception repetition means 39 and the measurement repetition means 40 are repeated. The flow rate detecting means 41 for detecting the flow rate from the total first propagation time ΔT1 and the total second propagation time ΔT2 at the time; And an ultrasonic flow rate measuring means 42 for realizing a high-accuracy flow rate measuring means and a low power consumption flow rate measuring means by changing the number M of measurement repetitions.
[0080]
More specifically, the high-accuracy flow rate measuring means reduces the number N of transmission / reception repetitions by the repetition number changing means 27 (for example, 1 to 16 times, optimally 2 times) and conversely increases the number M of measurement repetitions. (For example, 16 to 1024 times, optimally 126 times), and set so that the total product N * M increases.
[0081]
With such a setting, a change in the pulsating flow velocity, which changes drastically over time, is measured finely, and high precision is realized by measuring the change over a long period of time.
[0082]
Further, the low power consumption flow rate measuring means increases the number N of transmission / reception repetitions (for example, 8 to 512 times, optimally 64 times) by the repetition number changing means 27, and decreases the number M of measurement repetitions (for example, 1 to 1). From eight times, optimally once) to complete the measurement in a short time. The means for performing the measurement switching of the measuring means is the measurement switching means 29.
[0083]
According to the configuration of the present embodiment, as shown in FIG. 8, by measuring with a reduced number of transmission / reception repetitions, the timing of measuring the propagation time from the upstream and the propagation time from the downstream can be close to each other, and the time change can be reduced. The measurement accuracy can be improved even in the case of a violent pulsation.
[0084]
Since the measurement unit for transmission and reception can be repeatedly performed by the measurement repetition means 40 and long-time measurement can be performed, the fluctuating propagation time can be averaged, and the accuracy can be further improved.
[0085]
Although the measurement unit is repeated continuously through the waiting time, the measurement accuracy can be improved by adjusting the waiting time to adjust the total measurement time.
[0086]
Obviously, the shorter the waiting time, the more precise the measurement and the more accurate the measurement. Then, by combining the number of transmission / reception repetitions N and the number of measurement repetitions M, an intermediate measurement mode between the low power consumption mode and the high-accuracy measurement mode can be created.
[0087]
For example, when the pulsation is large and the flow rate range is a small flow rate range, a number of intermediate measurement modes can be realized as measurement modes with slightly higher accuracy and reduced power consumption.
[0088]
Further, by changing the number of repetitions to match the cycle of the pulsation, the influence of the pulsation can be reduced as much as possible, and the flow measurement accuracy can be improved.
[0089]
【The invention's effect】
As is clear from the above description, the flow meter according to the present invention has the following advantages.
[0090]
A high-accuracy flow measurement unit, a low-power consumption flow measurement unit, and a measurement switching unit that switches the flow measurement unit according to the measurement flow of at least one of the high-precision flow measurement unit and the low-power consumption flow measurement unit. With this configuration, a plurality of flow rate measuring means can be switched and used, and both high-accuracy flow rate measurement and low power consumption flow rate measurement can be realized.
[Brief description of the drawings]
FIG. 1 is a block diagram of a flow meter according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating the principle of the flow meter.
FIG. 3 is a diagram illustrating the principle of the flowmeter.
FIG. 4 is a flowchart of the flow meter.
FIG. 5 is a flowchart of the flow meter.
FIG. 6 is a flowchart of the flow meter.
FIG. 7 is a block diagram showing a second embodiment of the present invention.
FIG. 8 is a diagram illustrating the principle of the flow meter.
FIG. 9 is a block diagram of a conventional flow meter.
FIG. 10 is a block diagram of another conventional flow meter.
[Explanation of symbols]
21 Channel
22, 23 sound wave transmitting / receiving means
24 Repeat means
25 Timekeeping means
26 Flow rate detection means
27 Number change means
28 Ultrasonic flow rate measuring means
29 Measurement switching means
30 Fluctuation detection means
31 Flow rate determination means
32 Flow rate integration means
33 Flow rate abnormality determination means
34 Warning display means
35 batteries
36 Flow rate storage means
37 Flow rate display means
38 Measurement abnormality determination means

Claims (16)

高精度流量計測手段と、低消費電力流量計測手段と、前記高精度流量計測手段と前記低消費電力流量計測手段の少なくとも一方の流量計測手段の計測流量によって前記流量計測手段を切り替える計測切替手段とを備えた流量計。High-precision flow measurement means, low power consumption flow measurement means, measurement switching means for switching the flow measurement means by the measurement flow of at least one flow measurement means of the high-precision flow measurement means and the low power consumption flow measurement means, With a flow meter. 高精度流量計測手段は、流路に設けられて音波を送受信する一対の音波送受信手段と、前記音波送受信手段により音波の送受信を繰返し行う繰返手段と、前記繰返手段で繰り返される間の音波の伝搬時間を計測する計時手段と、前記計時手段の値に基づいて流量を検出する流量検出手段と、前記繰返手段の繰返し回数を変更する繰返し回数変更手段とからなり、前記繰返し回数変更手段により繰返し回数を増加して高精度流量計測を行なうようにした請求項1記載の流量計。The high-precision flow rate measuring means is provided in a flow path, a pair of sound wave transmitting and receiving means for transmitting and receiving a sound wave, a repeating means for repeatedly transmitting and receiving the sound wave by the sound wave transmitting and receiving means, and a sound wave while being repeated by the repeating means. A time measuring means for measuring the propagation time, a flow rate detecting means for detecting a flow rate based on the value of the time measuring means, and a repetition number changing means for changing the repetition number of the repetition means, wherein the repetition number changing means The flowmeter according to claim 1, wherein the number of repetitions is increased to perform high-accuracy flow measurement. 低消費電力流量計測手段は、流路に設けられて音波を送受信する一対の音波送受信手段と、前記音波送受信手段により音波の送受信を繰返し行う繰返手段と、前記繰返手段で繰り返される間の音波の伝搬時間を計測する計時手段と、前記計時手段の値に基づいて流量を検出する流量検出手段と、前記繰返手段の繰返し回数を変更する繰返し回数変更手段とからなり、前記繰返し回数変更手段により繰返し回数を減少して低消費電力流量計測を行なうようにした請求項1項記載の流量計。The low-power-consumption flow rate measuring means is provided in the flow path, and transmits and receives a sound wave. A pair of sound wave transmitting and receiving means, a repeating means for repeatedly transmitting and receiving sound waves by the sound wave transmitting and receiving means, A timer for measuring the propagation time of the sound wave; a flow rate detector for detecting a flow rate based on the value of the timer; and a repetition number changing means for changing the number of repetitions of the repetition means. 2. The flowmeter according to claim 1, wherein the number of repetitions is reduced by the means to measure the low power consumption flow rate. 上流側から下流側への送受信を繰返し行った時の第1伝搬時間計測と、下流側から上流側への送受信を繰返し行った時の第2伝搬時間計測を1つの計測単位とする送受信繰返手段と、前記送受信繰返手段の計測を少なくとも1回以上繰り返す計測繰返手段と、前記送受信繰返手段と前記計測繰返手段で繰り返された時の総第1伝搬時間と総第2伝搬時間から流量を検出する流量検出手段と、前記送受信繰返手段の送受信繰返し回数と前記計測繰返手段の計測繰返し回数とを変更して高精度流量計測手段と低消費電力流量計測手段を実現する超音波式流量計測手段を備えた請求項1記載の流量計。Repetition of transmission and reception using one measurement unit as the first propagation time measurement when transmission and reception from the upstream side to the downstream side are repeatedly performed and the second propagation time measurement when transmission and reception from the downstream side to the upstream side are repeatedly performed. Means, a measurement repeating means for repeating the measurement of the transmission / reception repeating means at least once or more, a total first propagation time and a total second propagation time when the transmission / reception repeating means and the measurement repeating means repeat the measurement. A flow rate detecting means for detecting a flow rate from the apparatus, and an ultra-high-speed flow rate measuring means and a low power consumption flow rate measuring means by changing the number of transmission / reception repetitions of the transmission / reception repetition means and the number of measurement repetitions of the measurement repetition means. The flow meter according to claim 1, further comprising an acoustic flow rate measuring means. 低消費電力流量計測手段の計測値から流量変動を検出する変動検出手段と、前記変動検出手段が変動を検出したときに高精度流量計測手段で計測するように流量計測手段を切り替える計測切替手段を備えた請求項1記載の流量計。A fluctuation detecting means for detecting a flow fluctuation from a measurement value of the low power consumption flow measuring means, and a measurement switching means for switching the flow measuring means so as to measure by the high precision flow measuring means when the fluctuation detecting means detects the fluctuation. The flowmeter according to claim 1, further comprising: 高精度流量計測手段の計測値から流量範囲を判別する流量判別手段と、前記流量判別手段が小流量と判別したときは高精度流量計測手段による流量計測を継続し、前記流量判別手段が大流量と判別したときは低消費電力流量計測手段に流量計測手段を切り替える計測切替手段を備えた請求項1記載の流量計。The flow rate determining means for determining the flow rate range from the measurement value of the high-precision flow rate measuring means, and when the flow rate determining means determines that the flow rate is small, the flow rate measurement by the high-precision flow rate measuring means is continued, and the flow rate determining means determines the large flow rate. 2. The flow meter according to claim 1, further comprising: a measurement switching unit that switches the flow measurement unit to the low power consumption flow measurement unit when the determination is made. 流量計測手段が計測した瞬時流量値を所定時間において積算する流量積算手段と、前記流量積算手段の積算値が所定流量値以上になった時に高精度流量計測手段に切り替える計測切替手段を備えた請求項1記載の流量計。A flow rate integrating means for integrating the instantaneous flow rate value measured by the flow rate measuring means for a predetermined time; and a measurement switching means for switching to a high-precision flow rate measuring means when the integrated value of the flow rate integrating means becomes equal to or more than a predetermined flow rate value. Item 7. The flow meter according to Item 1. 高精度流量計測手段で計測した流量値によって流量積算値が正常か否かを判定する流量異常判定手段とを備えた請求項7記載の流量計。8. The flowmeter according to claim 7, further comprising a flow rate abnormality determining means for determining whether or not the integrated value of the flow rate is normal based on the flow rate value measured by the high precision flow rate measuring means. 所定時間を越えても積算流量値が所定流量を越えない時、積算流量値をクリアする流量積算手段を備えた請求項7項記載の流量計。8. The flowmeter according to claim 7, further comprising a flow rate integrating means for clearing the integrated flow rate value when the integrated flow rate value does not exceed the predetermined flow rate even after the predetermined time has elapsed. 流量異常判定手段が正常ではないと判断した時、積算流量値をクリアする流量積算手段を備えた請求項8記載の流量計。9. The flowmeter according to claim 8, further comprising a flow integrating means for clearing the integrated flow value when the flow abnormality determining means determines that the flow rate is not normal. 流量異常判定手段が正常ではないと判断した時、積算流量値をクリアする流量積算手段と、クリアする前の積算流量値を記憶しておく流量記憶手段を備えた請求項8〜10いずれか1項記載の流量計。11. A flow rate integrating means for clearing an integrated flow value when the flow rate abnormality determining means determines that it is not normal, and a flow rate storing means for storing an integrated flow value before clearing. Flow meter according to the item. 積算流量を表示する流量表示手段を備え、前記流量表示手段の最下位の桁の単位を所定流量とした請求項7〜11いずれか1項記載の流量計。The flow meter according to any one of claims 7 to 11, further comprising flow rate display means for displaying an integrated flow rate, wherein a unit of the least significant digit of the flow rate display means is a predetermined flow rate. 所定流量を1リッターとした請求項12記載の流量計。The flow meter according to claim 12, wherein the predetermined flow rate is 1 liter. 所定時間は1分以上とし、12分を最適とした請求項7記載の流量計。The flow meter according to claim 7, wherein the predetermined time is 1 minute or more, and 12 minutes is optimal. 所定時間と積算流量値と計測手法の変更回数から異常を判別する計測異常判別手段と、前記計測異常判別手段が異常を判別したとき異常警告を表示する警告表示手段を備えた請求項7記載の流量計。8. The apparatus according to claim 7, further comprising: a measurement abnormality determination unit configured to determine an abnormality based on the predetermined time, the integrated flow rate value, and the number of times the measurement method has been changed, and a warning display unit configured to display an abnormality warning when the measurement abnormality determination unit determines the abnormality. Flowmeter. 電池を電源とした請求項1〜15いずれか1項記載の流量計。The flow meter according to any one of claims 1 to 15, wherein the battery is a power supply.
JP2003066452A 2003-03-12 2003-03-12 Flowmeter Expired - Lifetime JP4082246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066452A JP4082246B2 (en) 2003-03-12 2003-03-12 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066452A JP4082246B2 (en) 2003-03-12 2003-03-12 Flowmeter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007206594A Division JP4518120B2 (en) 2007-08-08 2007-08-08 Flowmeter

Publications (2)

Publication Number Publication Date
JP2004271490A true JP2004271490A (en) 2004-09-30
JP4082246B2 JP4082246B2 (en) 2008-04-30

Family

ID=33127171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066452A Expired - Lifetime JP4082246B2 (en) 2003-03-12 2003-03-12 Flowmeter

Country Status (1)

Country Link
JP (1) JP4082246B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194597A (en) * 2005-01-11 2006-07-27 Matsushita Electric Ind Co Ltd Flow velocity or flow rate measuring apparatus
JP2007024690A (en) * 2005-07-15 2007-02-01 Tokyo Gas Co Ltd Ultrasonic flowmeter
JP2007064881A (en) * 2005-09-01 2007-03-15 Ricoh Elemex Corp Ultrasonic flowmeter
JP2007101224A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Flow measuring device of fluid
JP2008116231A (en) * 2006-11-01 2008-05-22 Yamatake Corp Flowmeter and flow control device
JP2008267995A (en) * 2007-04-20 2008-11-06 Yazaki Corp Flow presence determining method in gas meter
JP2010139283A (en) * 2008-12-09 2010-06-24 Yazaki Corp Measuring device and trigger signal generation device
JP2010139284A (en) * 2008-12-09 2010-06-24 Yazaki Corp Measuring device and trigger signal generation device
JP2012103088A (en) * 2010-11-10 2012-05-31 Panasonic Corp Flow rate measurement device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194597A (en) * 2005-01-11 2006-07-27 Matsushita Electric Ind Co Ltd Flow velocity or flow rate measuring apparatus
JP4689278B2 (en) * 2005-01-11 2011-05-25 パナソニック株式会社 Flow velocity or flow rate measuring device
JP2007024690A (en) * 2005-07-15 2007-02-01 Tokyo Gas Co Ltd Ultrasonic flowmeter
JP2007064881A (en) * 2005-09-01 2007-03-15 Ricoh Elemex Corp Ultrasonic flowmeter
JP2007101224A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Flow measuring device of fluid
JP2008116231A (en) * 2006-11-01 2008-05-22 Yamatake Corp Flowmeter and flow control device
JP4730839B2 (en) * 2006-11-01 2011-07-20 株式会社山武 Flow meter and flow control device
JP2008267995A (en) * 2007-04-20 2008-11-06 Yazaki Corp Flow presence determining method in gas meter
JP2010139283A (en) * 2008-12-09 2010-06-24 Yazaki Corp Measuring device and trigger signal generation device
JP2010139284A (en) * 2008-12-09 2010-06-24 Yazaki Corp Measuring device and trigger signal generation device
JP2012103088A (en) * 2010-11-10 2012-05-31 Panasonic Corp Flow rate measurement device

Also Published As

Publication number Publication date
JP4082246B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4788235B2 (en) Fluid flow measuring device
JPH08122117A (en) Flow rate measuring device
WO2004048902A1 (en) Ultrasonic flowmeter and ultrasonic flow rate measuring method
WO2011040027A1 (en) Flow rate measuring device
JP2004271490A (en) Flowmeter
JP4518120B2 (en) Flowmeter
JP2006292377A (en) Ultrasonic type gas meter
JP4760115B2 (en) Fluid flow measuring device
EP0932029A2 (en) Acoustic flow meter
JP4157313B2 (en) Flowmeter
JP2004069524A (en) Flow rate measuring apparatus
JP4116822B2 (en) Flowmeter
JP2003028688A (en) Flow rate-measuring instrument
JP2002116073A (en) Method for measuring flow rate
JP2003232663A (en) Flow rate measuring device
JP2001304930A (en) Ultrasonic gas meter
JP4163887B2 (en) Flowmeter
JP7203355B2 (en) gas meter
JP3945530B2 (en) Flow measuring device
JP4689278B2 (en) Flow velocity or flow rate measuring device
JP2004069522A (en) Apparatus for controlling measurement on flow quantity
JP3399938B2 (en) Flow measurement method and ultrasonic flow meter
JP3406311B2 (en) Ultrasonic flowmeter and driving method thereof
JP5229349B2 (en) Fluid flow measuring device
JP2007322442A (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R151 Written notification of patent or utility model registration

Ref document number: 4082246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term