JP2004271314A - クロマトグラフイー用チューブフィルター - Google Patents

クロマトグラフイー用チューブフィルター Download PDF

Info

Publication number
JP2004271314A
JP2004271314A JP2003061580A JP2003061580A JP2004271314A JP 2004271314 A JP2004271314 A JP 2004271314A JP 2003061580 A JP2003061580 A JP 2003061580A JP 2003061580 A JP2003061580 A JP 2003061580A JP 2004271314 A JP2004271314 A JP 2004271314A
Authority
JP
Japan
Prior art keywords
filter
tube
column
sample
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061580A
Other languages
English (en)
Other versions
JP4136725B2 (ja
Inventor
Masahiko Nyudo
正彦 入道
Mineo Tawara
峰雄 田原
Masayoshi Ohira
真義 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GL Science Inc
Original Assignee
GL Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GL Science Inc filed Critical GL Science Inc
Priority to JP2003061580A priority Critical patent/JP4136725B2/ja
Publication of JP2004271314A publication Critical patent/JP2004271314A/ja
Application granted granted Critical
Publication of JP4136725B2 publication Critical patent/JP4136725B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • G01N30/603Construction of the column end pieces retaining the stationary phase, e.g. Frits

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】クロマトグラフィーに於いて、取扱う試料は微少化し、更に極微量化して、試料の前処理、即ち沈殿物の遠心分離機による処理やフィルターによる濾過作業の負担の増大を軽減し、容易に極微量試料の取り扱いが簡単な機構で実施できる。
【解決手段】キャピラリーカラム、マイクロシリンジ等の細管が挿通可能で、且つ弾性を有するチューブを用い、該チューブの一端又は内部に孔径0.1〜50μmのフィルターを挿通定置させ、カップフィルター、ミッドフィルターのチューブフィルターを構成する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】本発明は、クロマトグラフィー用チューブフィルターに関するものである。
【0002】
【従来の技術】クロマトグラフィーに於いて、試料の前処理として、試料中の沈殿物を除去するためには遠心分離機を用いて処理したり、各種フィルター等を用いて濾過することが行われている。
然し、液体試料の場合、これらに使用したビン、器具等に試料成分を含んだ液体が残るため、更なる液体による洗浄が必要となり、希釈されることになってしまう。
【0003】
それらを解決するため、HPLCではループ代りにモノリス構造キャピラリーを用いて更に濃縮したり、インチューブSPE(solid phase extraction=固相抽出 )等を用いて濃縮して分析が行われている。(例えば特許文献1参照)
これらの方法は、濃縮率が高く、数百μLの試料を用いるだけで、十分満足できる結果が得られる。
従来の技術に於いては、この数百μL程度の少量の試料を濾過する効率の良い方法がなく、濾過せずにモノリス構造キャピラリーやインチューブSPEなどを用いた分析装置に導入するしか方法がない。しかし、モノリス構造キャピラリーやインチューブSPEは、内径の細いキャピラリー管で構成されており、前処理で取り切れない細かい浮遊物や、取扱い過程で混入する浮遊物は、目詰まりの原因となる。
又、最近では、バイオ関連分析に於いては、数μL程度の極微量液体の取扱いの必要性が増加してきており、キャピラリーなどの細管を用いた分析が重要となってきている。
【0004】
【発明が解決しようとする課題】これらの極微量試料の取扱いは、試料の移し替えなどの従来のバッチ方式では試料ロスが多く、使用困難である。そのためオンラインでのシステムアップした装置が必要となり、装置は大掛りとなり、高額となる。
尚、実際には生体試料は、液体に溶解し難いので、各種システム、モノリス構造キャピラリー等を用いても細いチューブ内部での目詰まりは避けらない。その場合には、インチューブやモノリス構造キャピラリーの交換が必要となり、装置の組直しを要する等の問題が多い。
【0005】
これらを解決できる装置乃至フィルターは存在せず、極微量成分を扱う場合にも遠心分離機などで浮遊物を取り除く面倒な作業が必要不可欠であった。
更に、最近フューズトシリカチューブに直接充填剤を詰めて分離カラムとして或いはガードカラムとして使用することが提案されている。
この際、高圧状態での使用の際には、充填剤が抜け落ちるため、高圧状態での使用には危険が伴っていた。
【0006】
【特許文献1】特開平2002−79001号公報
【0007】
【課題を解決するための手段】そこで本発明者は、極微量の試料を取扱う際に、試料ロスがなく、大掛かりな装置は必要なく、極めて簡単な器具にて試料、就中液体試料を極めて簡単に濾過し、極少量の液体試料も殆ど手を加えることなく、試料として使用する状態にすることが可能なフィルターを提案せんとするもので、キャピラリーカラム、マイクロシリンジ等の細管の挿通可能であって、該細管に適合する外径3mm以下の適宜長のチューブにフィルターを固定又は形成したことを特徴とする。
【0008】
【発明の実施の形態】以下、図に示す実施形態により、本発明を詳細に説明する。
1はチューブで、外径3mm以下の、テフロン(登録商標)、ピークなどの合成樹脂製でキャピラリーカラム2、シリンジ針3等の細管5を挿通可能で且つ大きな隙間なく適合できる径に形成している。該チューブ1は弾力性を有することが必要である。このチューブ1の内径は、キャピラリーカラム2、シリンジ針3等の細管を挿通可能且つ大きな隙間なく適合できるものであればよく、例えば、キャピラリーカラム2の外径が0.375mmであれば、内径0.4mmのように挿通自在に形成する。又、このチューブ1の長さは、その使用用途に応じ適宜選択できるが、通常の使用時、例えば濾過フィルターとしては液面から、好ましくは30mm以上、上部に位置する程度が使用に便である。又、溶液フィルターとして、溶液中に入れる場合、その液の深さに対応して、又、シリンジ針3等に使用する場合等、例えばフェラル止めに適当な長さに選択できる。
【0009】
4はフィルターで、ステンレス等の金属製、ガラス、石英、パット(ピークテフロン)モノリス構造等の適度の硬度を有する材質で、20Mpa程度の耐圧性を有するものがよい。
このフィルター4のメッシュ乃至スルポア径は使用目的に応じて選択できるが、0.1μm以上50μm位がよい。
又、このフィルター4の厚さは用途に応じ選択できるが、この厚さの変化に応じて溶液の通過量を選定できる。
【0010】
上記フィルター4をチューブ1の一端又は内部に固定させる。この一端の固定はパイプの先端を加熱し、温度により拡開し、フィルター4を挿入し、チューブ1の先端の温度低下により凝縮してフィルター4を締付固定させる。或いは又、フィルター4をチューブ1内に挿通定置させることもできる。
又、チューブ1端を切り口の角を面取りしたり、段を付けることにより、フィルターを挿入し易く出来る。或いは、チューブ1端を加熱溶融させ、フィルターを挿入した後、チューブの冷却により固着させ融着する方法もとられる。この場合はフィルター4を金属、就中ステンレスのメッシュスクリーンを用いることは推奨される。チューブ1の端部にフィルター4を固定した型をカップフィルターとし、チューブ1の内部にフィルター4を挿通した型をミッドフィルターとし、これらを総称してチューブフィルターと云う。
【0011】
【実施例】
〔実施例1〕 内径1.5mm、外径3mm、長さ20cmのテフロン(登録商標)製チューブ1の一端を300℃で加熱して拡開しながら、該拡開部に外径1.58mm、孔径5μm、厚み1mmのステンレス焼結フィルター4を挿入し、融着とその後の冷却により固定し、チューブフィルターとしてのカップフィルターA(以下同じ)とした。(図1)
〔実施例2〕 内径1.5mm、外径3mm、長さ20cmのテフロン(登録商標)製チューブ1の一端を300℃で加熱して拡開しながら、該拡開部に外径1.58mm、孔径5μm、厚み2mmのガラス製フィルター4を挿入し、融着とその後の冷却により固定し、カップフィルターBとした。(図1)
〔実施例3〕 内径1.5mm、外径3mm、長さ20cmのテフロン(登録商標)製チューブ1の一端を200℃で加熱して拡開しながら、該拡開部に外径1.58mm、孔径5μm、厚み2mmのパットフィルター4を挿入し、融着とその後の冷却により固定し、カップフィルターCとした。(図1)
〔実施例4〕 内径0.35mm、外径1.58mm、長さ3cmのピーク製チューブ1の一端を300℃で加熱して拡開しながら、該拡開部に外径0.40mm、孔径2μmのステンレス製メッシュフィルター4を挿入し、融着とその後の冷却により固定し、カップフィルターDとした。(図2)
〔実施例5〕 内径0.35mm、外径1.58mm、長さ3cmのピーク製チューブ1の一端を300℃で加熱して拡開しながら、該拡開部に外径0.37mm、厚み1mmのステンレス焼結フィルター4を挿入し、融着とその後の冷却により固定し、カップフィルターEとした。(図1)
〔実施例6〕 内径0.35mm、外径1.58mm、長さ3cmのテフロン(登録商標)製チューブ1の一端を拡開しながら、該拡開部に外径0.375mm、スルポア径1μm、長さ5mmのモノリス構造のハイブリッドシリカゲルフューズドシリカチューブ41をテフロン(登録商標)製チューブ1を60℃で加熱しながら差込みミッドフィルターFとした。(図3)
〔実施例7〕 内径0.67mm、外径1.58mm、長さ3cmのピーク製チューブ1の一端を200℃で加熱して拡開しながら、該拡開部に外径0.7mm、孔径5μm、厚み2mmのパットフィルター4を挿入し、融着とその後の冷却により固定し、カップフィルターGとした。(図1)
【0012】
〔実施例8〕 内径0.0635mm、外径0.37mm、長さ51cmのピーク製チューブ1の両端2.5mmを、0.01WT%白金触媒を添加した20%ポリシラザンキシレン溶液に漬け、空気中で2時間加熱し、両端2.5mm部分にアモルファスシリカ膜を形成させた。
20%テトラメトシキシラン、10%メチルトリメトキシシラン、5%ポリエチレングリコール、0.1N酢酸溶液をパイプに満たし、シリコンゴムで封管し、80℃で12時間過熱し、1次孔を持つモノリス構造のハイブリッドゾルを内部に作成した。
ポリエチレングリコール添加量で1次孔を0.3〜50μmまでコントロールできる。
ポリエチレングリコールなどの緩衝ポリマーを添加しないアルコキシランだけにより作成したフリットでは、モノリス構造にならず、十分な貫通孔がなく、液圧が高くなった。
中央部分で切断し、結合された両端部分より水を0.5Mpaで流し、両端部分の内面に結合した2.5mmのゾル部分を残し、内表面と結合していない未反応ゾル及び及び未反応試薬を抜いた。
次に、150℃で加熱し、完全にゲル化したモノリス構造を持つハイブリッドシリカゲルフィルター42を一端に作成した長さ25.5cmのカップフィルターHとした。(図4)
アモルファスシリカを表面に作成せず、同様の方法でゲルを作成したものは、表面との結合が生じず、0.5Mpaでの洗浄工程でゾルが全て抜けてしまった。
フィルター作成には、アモルファスシリカ膜を作成後のゲル化が重要と云うことになる。
【0013】
〔実施例9〕 又、溶液フィルターとしての使用について図5,図6により説明する。
ポンプ8に連結したキャピラリーカラム等の細管5により、容器6中の溶液、例えば試料溶液7を吸引する際に、細管5先端に本願チューブフィルターを用い、細管5先端に挿通して本願カップフィルターEを嵌合した状態で容器6中の試料溶液7に投入して、ポンプ8を作動させる。この際、カップフィルターEを細管5に嵌合しただけで、フェラル等の固定具或いは接着等の固定をしないでもよい。
然るとき、フィルター4を介して試料溶液7が吸入されるが、試料溶液7中の浮遊物等はフィルター4により阻止され、濾過された試料溶液7のみが吸引され、細管5、ポンプ8を経て所望のインジェクター91、本カラム92、検出器93等よりなる分析機器9等へ送られる。
【0014】
〔実施例10〕 上記の実施例について具体例を説明する。
HPLC用送液ポンプMP711の溶離液入り口に外径1/16in、内径0.25mm、長さ1mのテフロン(登録商標)細管5を接続し、ポンプ8後に、インジェクター91(内部ループ方式が推奨される。)を経由し、内径0.3mm×150mmイナートシル(登録商標)WP300C8充填カラム92を接続し、更にUV検出器93を接続し、水道水を濾過せず4μL/minの一定流速で流した。
当初、圧力は6Mpaであったが、約30分後には、カラム92の圧力が徐々に上がり始め、1時間後には推奨使用圧力の20Mpaを超え、カラム92が破損した。
同様に、入り口テフロン(登録商標)細管5に本願カップフィルターAを被せて流したところ、2時間後でもカラム92圧力の上がりはなく、圧力の上昇はなかった。
カップフィルターB,Cでも同じ結果となり、溶液濾過に有効であることが実証された。
カップフィルターCに於いては、約6時間後に気泡が入り込み、ポンプの下降が見られた。
同様に作成した、新しいカップフィルターCに交換したところ、気泡の発生はなくなり、汎用のポンプ溶離液フィルターと同様に使用できることが判った。
【0015】
従来から市販されている汎用のステンレス容液フィルターと本発明カップフィルタAで、溶離液を0.1%アセトン水溶液に変えてから、実際の検出器のUV吸収が変化する時間を調べた。
従来のフィルターでは、数100μLの内部容量を持っているため、流し始めから40分後にベースがゆっくりと上昇し、140分後に一定のベースとなった。(図7)
本発明のカップフィルターAでは、パイプ先端にフィルター4が濾過面でしっかりと接触するので、十分な濾過機能を保ちながら通液内部容量は殆んどなくなる。パイプ1内部容量50μL分経過後の10分後に急激にベースが上がり、40分後に安定した(図8)。フィルター4部分の容積が従来のフィルターより小さく、すぐに置換がなされた。
以上のように、キャピラリーLCにおける溶液フィルターとして有効であった。
【0016】
図9,図10,図11により、微量液体の送液の際に、スプリット量の制御を行う場合を説明する。
12は三方ジョイントであって、T字状に形成され、流入部13は流入パイプ14の挿入口15と流入パイプ14を締付固定するオシネ16とフェラル17を備えている。流入パイプ14を挿入口15の隔壁に押付け固定することができるようになっている。内部空間18を挟んで対応位置に同型の流出部19を設け、流出パイプ20を挿入口21の隔壁まで挿入し、オシネ22とフェラル23により固定してある。
【0017】
三方ジョイント12の流入部13と流出部19の側壁に流出部24を流出部19と同型に形成してある。即ち、流出部24は流出パイプ25を挿入口26を隔壁まで挿通し、オシネ等27とフェラル28により固定してある。
フェラル17,23,28はテフロン(登録商標)、ダイフロン、ピークなどの樹脂製のものが繰り返し使用でき、よく使用される。又、オシネ16,22,27とフェラル17,23,28が各々1つになった手締めで使える一体型タイプもある。
【0018】
而して、三方ジョイント12を用いて、スプリットする場合、流入パイプ14より流入部13に流入された液体は、流出部19、同24の液体抵抗に応じて、スプリット量が制御されるのである。そこで、微量液体の送液に於けるスプリット比を調整するため、流出パイプ25には内径の細かいカラムやパイプなどを取付けることになる。然し、内径の細かいカラムは、詰まり易いのが常であり、故障の原因となる。
【0019】
そこで、この流出パイプ25である内径の細いカラムやパイプなどの細管5端部にカップフィルターEを被せて、フェラル28とオシネ27を用いて、流出部24の挿入口26に挿入固定できる。フェラル28とオシネ27が一体型の樹脂製のものでも良い。
然るとき、液抵抗のあるカラムや細いパイプなどの細管5を使用しても、浮遊物等はフィルター4にて止められ、流入することはなく、スプリット抵抗管として機能する。
然も、本願カップフィルターEは、被せてあるため、オシネ27を外すことにより着脱自在である。更に、フェラル28はカップフィルターEに締め込まれているだけであり、カップフィルターEは抵抗管25となるパイプやカラムなどの細管5から簡単に取外すことができ、交換が極めて容易である。詰まるのは、フィルター部分のみであり、簡単に取替えられ、抵抗管としてのカラム等はそのまま使用できる。
【0020】
〔実施例11〕 図11の具体的使用例を以下に示す。
HPLC用送液ポンプMP711の溶離液入り口に外径1/16in、内径0.25mm、長さ1mのテフロン(登録商標)チューブ5を接続し、ポンプ8後にスプリッター用3方ジョイント12を経由し、インジェクター91(内部ループ方式が推奨される。)を経由し、内径0.3mm×150mmのイナートシル(登録商標)WP300C8充填カラム92を接続し、水道水を濾過せず20μL/minの一定流速で流した。
ウラシルを注入した結果、溶出時間は3.5分であった。
スプリッター12には、抵抗管25として内径0.05mm、外径0.375mm、長さ5mのフューズドシリカキャピラリーカラムを取付けた。
当初、圧力は6.0Mpaであったが、40分後にカラム圧が急に上がり、推奨使用圧力の20Mpaを超え、カラム92が破損した。
スプリッター12側の抵抗管25が溶離液の汚れによって詰まってしまったのが原因であった。新しいフューズドシリカキャピラリーカラムに交換したところ、5.8Mpaとなり、溶出時間は3.9分となった。
異なる抵抗管を使用すると、2.9分となった。
結局、抵抗管の作成のバラつきが大きく保持に影響した。
【0021】
本発明カップフィルターEをスプリット流出口24側に取付けたところ、同じように圧力上昇が生じた。然し、カップフィルターEだけを替えて、同じ抵抗管25を使用したところ、同じ圧力で同じ保持時間が得られた。
本発明カップフィルターEを用いれば、抵抗管25本体が詰まらず、何回でも使用でき、再現性のよいデータが得られることになった。
又、当然ながらインジェクター側の入り口に同じ本発明のカップフィルターを入れることにより、インジェクターや本カラムの詰まりを防止することも出来る。
【0022】
次いで、前処理ロボットや注入用軽量シリンジなどのシリンジ針3及び細管5の使用について図12、図13により説明する。
注入用シリンジ針3及び細管5の先端に本願カップフィルターGを嵌合して被覆状態とすると、樹脂製であるため、その弾性により前処理ロボットなどのシリンジ針に被せるだけで、充分シールされる。
そのため、前処理における濾過に十分に使用できる。
従来の減圧濾過や遠心分離などと異なり、シリンジ針3の先部分に濾過のためのフィルター4が接触することになり、試料ロスがなく、微量成分の濾過に適する(図13)。
又、従来、減圧濾過では無理で、加圧濾過を必要とする不要物が多い試料に於いては、例えば、インジェクター91のヘッドに固定する。この固定の際にはフェラル29やオシネ30等を用いて締付固定する。
この締付固定は、チューブ1が樹脂製で弾性があるため、フェラル29等により確実に締付固定が出来る。
フェラル29は、テフロン(登録商標)、ダイフロン、ピークなどの樹脂製のものが繰り返し使用でき、推奨される。
【0023】
その後、プランジャー31により試料溶液を圧入すると、試料溶液中の不純物は、フィルター4により濾過され、インジェクター91のヘッドにシリンジ針32より直接圧入され、インチューブキャピラリーやモノリス構造体等へのダメージとなる浮遊物、他の流入を防ぎ、或いは少なくすることが出来る(図12)。
したがって、HPLCに於いて、モノリスキャピラリー、インチューブSPEを用いて試料溶液7を濃縮し、分析を行う場合のそれらに対する詰まりの原因を除去し、インチューブキャピラリーやモノリスキャピラリーの交換の必要性をなくし、或いは減少させることが出来る。
【0024】
〔実施例12〕 図6と同じシステムにより、容器61を用い、細管5にカップフィルターCを取付け、グラジエントモードにした。
試料として、タンパク質を消化したペプチド試料をそのまま4方バルブ用注入ポートを経由し、25μLマイクロシリンジ(702N)で10μLを連続分析した。
分析条件
Figure 2004271314
図14にそのクロマトグラムを示す。
52回注入後にはカラム圧力の上昇が見られ、54回目に20Mpaを超え、カラムが使用できなくなった。
シリンジ針32の先端に本願カップフィルターGを被せ、バルブに直接接続し、同様に連続分析を行った。30回後にカップフィルターGが詰まり、液の注入が出来なくなったが、新しいカップフィルターCに交換することで問題なく注入できた。
20回毎にカップフィルターGを交換することにより、そのような詰まりもなく連続分析が可能となり、500回注入後でもカラム92の圧力上昇はなかった。
従来分析に於いては、このような試料による詰まりを防ぐため、遠心分離やフィルター濾過を行うが、試料が少量しか得られないタンパク質成分では、ロスが生じ、試料の前処理が出来なかった。又、高価な分析カラムが劣化することを諦めて分析することもあった。
【0025】
本発明のカップフィルターGは、シリンジ針3に簡単に被せることが出来、更にインジェクター91に直接、手締めタイプのジョイント30などで供締めで取付けることが出来るため、粘性試料でもカップと針の周りからの漏れがなくなる。
又、試料による詰まりが生じた場合には、カップフィルターGのみ簡単に取外し交換ができ、連続分析が可能となる。
それにより、濾過や遠心分離などの試料ロスがある前処理なしで注入することが出来る。又、上記試料を10分の1に希釈し、粘性を低くした試料ならば、弾力のある樹脂を被せるため、充分シールされ、金属針などを用いる前処理ロボットにも使用できた。
【0026】
本発明カップフィルターGを前処理ロボットの細管5に被せて、自動濾過を行い、そのまま注入しても、上記実施例と同じように本カラムの劣化を抑えることが出来た(図13)。
本実施例では、タンパクを対象としたため、メタルフリーのパットフィルターを使用しているが、金属影響のない試料ならば、金属製フィルターでもよく、又針径に合せてカップフィルター内径は自由に選択できる。
【0027】
〔実施例13〕 シリンジニードル部分の管内部にモノリス構造物が形成されている場合を例にとって以下に説明する。
200μLシリンジを用い、ニードル部分を外した状態で農薬を添加した水試料を吸引する。次いで、このシリンジに内径200μL、長さ50mm、オクタデシル基で化学修飾されたモノリス構造シリカチューブを取付ける。プランジャーを押下げてモノリス構造部分に通液し、目的成分を保持させる。
全ての試料を抽出後、吸引操作を行い、モノリス構造部分に残った水を除去する。次いで、ニードル部分をシリンジから取外す。別のシリンジで農薬を抽出する有機溶媒(ヘキサン:酢酸エチル=3:1)を20μL計り取る。そのシリンジの先端にモノリス構造部分の形成されたニードルを取付け、ガスクロマトグラフの注入口に差込む。プランジャーを押下げ、溶媒で目的とする農薬成分を溶出し、ガスクロマトグラフに導入する。
【0028】
注入口:40℃〜250℃ 1秒間に1℃昇温(オンカラム注入)
ガスクロマトグラフ温度:40℃(1分)〜250℃(5分) 1分間に15度昇温
カラム:ジメチルポリシロキサンを化学修飾したキャピラリーカラム 内径0.25mm、長さ15m、膜圧0.25mm
検出器:FPD 200℃
この試料分析のクロマトグラムを図15に示す。
1:ダイアジノン 2:イプロベンホス 3:フェニトロチオン 4:イソキサチオン 5:EPN
【0029】
この分析を10回連続分析した。10回注入後には試料の汚れによりプランジャーが詰まり動かなくなった。又、モノリス構造部分には肉眼でも汚れが見られた。
シリンジの先端にカップフィルターAを被せ、同様の操作を行った結果、10回注入後にも動きのもたつきは見られず、1回目と同じピークが得られた。
尚、モノリス構造部分の汚れも見られなかった。
【0030】
〔実施例14〕 本発明フィルターを用いたHPLCカラムについて実施例を図16、図17を用いて示す。
内径0.1mm、外径0.375、長さ150mmのフューズドシリカチューブカラム2に、HPLC用充填剤イナートシル(登録商標)ODS−3 70を35Mpaで、メタノール溶媒で充填した。
カラム2上流側入口に、カップフィルターDを隙間なく取付け、フェラル71、オシネ72を用いて共締めした。フェラル71とオシネ72が一体型のものでも良い。ジョイントの共締め位置(パイプ先端からフェラル71までの長さ73)は、インジェクションジョイントの奥行きに当てて合せ、デッドボリュームが出来ないような位置とした。
キャピラリー保護のため、外側には内径0.5mmのピークチューブ74を被せた。
カラム2下流側出口は、本発明ミッドフィルターFを隙間なく取付けた。ミッドフィルターF以後に圧力がかかる場合では、入り口側のようにジョイントにて共締めしてもよいが、本実施例では、ミッドフイルターF挿通のみとした。
以上のようにHPLCカラムを構成した。
ピークチューブ74等は樹脂製パイプのため、力を加えない限り、外れたりすることはないが、カラム後の抵抗により圧力が掛かる場合や、より取り扱いを行い易くするため、保護管をしっかり固定したい場合などには、図17の例のようにジョイント75を設けることにより、使い易くすることが出来る。
【0031】
従来タイプのカラムでは、フィルターを止めるためのジョイント部分が必ず必要となり、インジェクターには余分な配管を介して接続することになってしまう。
その例を以下に説明する。
内径0.1mm、外径0.375、長さ150mmのフューズドシリカチューブカラム2に、HPLC用充填剤イナートシル(登録商標)ODS−3 70を35Mpaで、メタノール溶媒で充填した。
ジョイント75にフィルター4を打ち込み、充填したキャピラリー2を差込み、フェラル71及びオシネ72にてジョイント75に締め込んだ。出口側も同じようにジョイントを接続し、従来タイプカラムを作成した(図18)。
入口側は、ジョイント75に配管76を奥まで入れ、フェラル71とオシネ72で締付けた。
インジェクター側は、インジェクター91におけるフェラルからの奥行き76に合せて、配管76をフェラル71とオシネ72にて接続した。配管76はオシネ72,72やフェラル71,71が接続できる限り短い長さのものを使用した。
従来カラムに於いては、ジョイント内部にフィルター4が埋め込められ、カラム2内の充填剤70の溶出を防ぐ構造になっている。特に入口側では、別途配管で接続する必要性が生じてしまい、充填剤フィルター入口がその配管の下流側になるため、配管部分は出来るだけ短くしてもまるまるデッドボリュームとなってしまう。
【0032】
本発明カップフィルターを用いたHPLCカラムでは、インジェクションジョイントの奥先までフィルターが入り込むため、配管によるデッドボリュームをなくすことができる。
更に、従来カラムでは、フィルターは充填カラム本体に入れられるか又は、ジョイントに組み込まれてしまうため、フィルターが詰まった場合には、高価なカラム全体の取替えやジョイント部分の取替えが必要となる。
本フィルターのチューブ部分は、弾力性のある樹脂であるため、カップフィルター交換のみでフィルターの目詰まりを直すことができる。
又、従来のフィルター部の打ち込みはジョイント内なので、状態を目視で確かめることができず、打ち込み具合によっては、充填剤の漏れが生じることもある。
本発明フィルターDでは、外側にフィルターが露出するため、目視確認が可能である。ミッドフィルターFにおいても、テフロン(登録商標)などの透過性の樹脂を用いれば、目視確認ができる。又、目視確認ができなくても、取外しが可能なため、カップフィルター単独での漏れ試験が可能である。
【0033】
従来のような配管接続したカラムと本発明インジェクターに直結したカラムで、図6または実施例9の装置を用いて、アセトニトリル/水=65/35、流速0.4μL/min 254nm、注入量10nL、試料1.アセトフェノン、2.ベンゼン、3.トルエン、4.ナフタレンの分析を行い、比較した。
従来カラムでは、シャープなピークが得られなかった(図19)が、本発明カラムでは4番目のナフタレンに於いて、理論段数11000段ピーク対象性1.14と良好な結果が得られた(図20)。
又、カップフィルター交換後でもデータに変化は見られなかった。
【0034】
〔実施例15〕 本発明カップフィルターHにHPLC用充填剤イナートシル(登録商標)ODS−3を35Mpaでメタノール溶媒で充填した。カラム上流側入口にカップフィルターDを隙間なく取付け、ジョイントにて共締めした。ジョイントの共締め位置は、実施例14と同様インジェクションジョイントの奥行きに当てて合せ、デッドボリュームができないような位置とした。カラム下流側は、検出器などの接続ができるようにジョイントにフェラル71とオシネ72で締付け、HPLC用カラムとした(図21)。
更にもう1種HPLC用カラムを作成した。充填されたカップフィルターHのフィルター側の端部を、インジェクター91に取付け、カラム下流側出口は本発明カップフィルターDを隙間なく取付け、ジョイントにて共締めした(図22)。
2種のHPLCカラムとした。
【0035】
図11の装置を用いて、インジェクターの前にスプリットを設けて、アセトニトリル/水/=65/35、流速2μL/min(スプリット1/20)254nm、注入量1nL、試料1.アセトフェノン、2.ベンゼン、3.トルエン、4.ナフタレンを分析した。
実施例14と同じように、両カラムとも理論段数11000段、ピーク対称性1.14と良好な結果が得られた。
カップフィルターHに充填した充填カラムでは、フィルターが内面としっかりと結合しているため、高圧充填が可能で、充填方向と異なる方向で分析してもシャープなピークが得られた。
【0036】
【発明の効果】本発明の請求項1によれば、キャピラリーカラム、マイクロシリンジ等の細管が挿通可能であって、該細管に適合する外径3mm以下の適宜長のパイプにフィルターを固定又は形成したので、キャピラリーカラムやシリンジに挿通装着するだけで、液体試料中の浮遊物、沈殿物の濾過が行われ、試料としての使用可能状態にすることが出来る。然も、大掛かりな装置を必要とせず、操作は極めて容易に、その上簡単な装置で実施でき、又、試料ロスがなく、容器等の洗浄も必要としないので、更に生体試料等の取扱い困難な試料でも、キャピラリーカラム等の目詰まりが回避でき、分析工程も大幅に簡略化できる等実用効果著大である。
【0037】
又、請求項2によれば、フィルターの孔径は0.1〜50μmであるので、上記請求項1の効果に加えて浮遊物、沈殿物による抵抗管等の目詰まりを回避し、本願カップフィルター通過の液体試料はそのまま殆んど手を加えることなく試料として分析工程へ供給することが出来る。
【0038】
又、請求項3,4によれば、金属、ガラス、パットフィルター等の硬質フィルターを弾性を有する合成樹脂製パイプに嵌合し、或いは金属メッシュスクリーンを弾性を有する合成樹脂製パイプに嵌合固定させたので、請求項1の効果に加えて、弾性を有する合成樹脂製パイプに硬質のフィルターを装着するのに合成樹脂製パイプを加熱し、拡開でき、更に一部融着状態となり、製作に便利であり、且つその固定が確実に行われる効果がある。
【0039】
又、請求項5によれば、モノリス構造のフューズドシリカチューブを、弾性を有する合成樹脂製チューブに差込み、ミッドフィルターとしたので、請求項1の効果に加えて空間容量を小さくすることが出来、対称性の良いピークを得ることが出来る。
【0040】
又、請求項6によれば、パイプ端部にゾルゲル合成でフィルターを形成させたので、ゾルゲル合成でミクロフィルターを形成することにより、液体試料の性質に応じて所望の材質、口径等を選択でき、その濾過性能を高めることが出来る。
【0041】
更に、請求項7によれば、外径3mm以下の適宜のチューブ一端にフィルターを固定したチューブフィルターを、カラム一端に嵌合させたので、カラム先端にあらかじめカップフィルターが設置されていることになり、インジェクタージョイント等への接合部に直ちに挿通固定でき、使用に便利であり、且つ配管によるデッドボリュームをなくすことができ、カラムの使用効果を一層上げることが出来る。又、フィルターがチューブ内面と強固に結合しているので、高圧充填が可能で、更に充填方向を変えても分析でき、両側の使用ができ、使用上便利である。
【図面の簡単な説明】
【図1】本発明一実施例中央縦断面図
【図2】本発明他実施例中央縦断面図
【図3】本発明他実施例中央縦断面図
【図4】本発明他実施例中央縦断面図
【図5】本発明一使用例一部縦断側面説明図
【図6】本発明他使用例概略説明図
【図7】従来型フィルター使用による検出器を使用したUV吸収の変化を示す図
【図8】本発明フィルター使用による検出器を使用したUV吸収の変化を示す図
【図9】三方ジョイントを使用した従来型スプリット制御機構図
【図10】三方ジョイントを使用した本発明スプリット制御機構図
【図11】図10の本発明スプリット制御機構の一使用例説明図
【図12】本発明シリンジ針への使用状態説明図
【図13】本発明一実施例溶離液濾過状態説明図
【図14】本発明フィルター利用による図6の装置を用いて得たクロマトグラム
【図15】本発明一実施例を用いて得たクロマトグラム
【図16】本発明フィルターを用いた一実施例カラム説明図
【図17】本発明フィルターを用いた一実施例カラム説明図
【図18】従来タイプのカラムの一部縦断側面説明図
【図19】従来の装置を用いて得たクロマトグラム
【図20】本発明一実施例の装置使用により得られたクロマトグラム
【図21】本発明一実施例を用いて構成したカラムの一部縦断説明図
【図22】本発明他実施例を用いて構成したカラムの一部縦断説明図
【符号の説明】
1 チューブ
2 キャピラリーカラム
3 シリンジ針
4 フィルター
5 細管
6 容器
7 試料溶液
8 ポンプ

Claims (7)

  1. キャピラリーカラム、マイクロシリンジ等の細管が挿通可能であって、該細管に適合する外径3mm以下の適宜長のチューブにフィルターを固定又は形成したことを特徴とするクロマトグラフィー用チューブフィルター。
  2. フィルターの孔径は0.1〜50μmであることを特徴とする請求項1に記載のクロマトグラフィー用チューブフィルター。
  3. 金属、ガラス、パットフィルター等の硬質フィルターを弾性を有する合成樹脂製チューブに嵌合したことを特徴とする請求項1又は請求項2に記載のクロマトグラフィー用チューブフィルター。
  4. 金属メッシュスクリーンを弾性を有する合成樹脂製チューブに嵌合固定させたことを特徴とする請求項1又は請求項2に記載のクロマトグラフィー用チューブフィルター。
  5. モノリス構造のフューズドシリカチューブを、弾性を有する合成樹脂製チューブに差込み、ミッドフィルターとしたことを特徴とする請求項1又は請求項2に記載のクロマトグラフィー用チューブフィルター。
  6. チューブ端部にゾルゲル合成でフィルターを形成させたことを特徴とする請求項1又は請求項2に記載のクロマトグラフィー用チューブフィルター。
  7. 外径3mm以下の適宜のチューブ一端にフィルターを固定したチューブフィルターを、カラム端に嵌合させたことを特徴とするクロマトグラフィー用カラム。
JP2003061580A 2003-03-07 2003-03-07 クロマトグラフイー用チューブフィルター Expired - Fee Related JP4136725B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061580A JP4136725B2 (ja) 2003-03-07 2003-03-07 クロマトグラフイー用チューブフィルター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061580A JP4136725B2 (ja) 2003-03-07 2003-03-07 クロマトグラフイー用チューブフィルター

Publications (2)

Publication Number Publication Date
JP2004271314A true JP2004271314A (ja) 2004-09-30
JP4136725B2 JP4136725B2 (ja) 2008-08-20

Family

ID=33123764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061580A Expired - Fee Related JP4136725B2 (ja) 2003-03-07 2003-03-07 クロマトグラフイー用チューブフィルター

Country Status (1)

Country Link
JP (1) JP4136725B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285943A (ja) * 2006-04-19 2007-11-01 Yokogawa Electric Corp 充填カラム
JP2011033434A (ja) * 2009-07-31 2011-02-17 Kao Corp 微量固体試料分析器具
JP2014148456A (ja) * 2013-01-13 2014-08-21 Kyoto Univ マクロ多孔性モノリスとその製造方法およびその応用
JPWO2014083729A1 (ja) * 2012-11-30 2017-01-05 国立大学法人京都大学 マクロ多孔性モノリスとその製造方法
CN117288553A (zh) * 2023-11-24 2023-12-26 烟台至公生物医药科技有限公司 一种用于便携式质谱仪的样品快速滤过型净化装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285943A (ja) * 2006-04-19 2007-11-01 Yokogawa Electric Corp 充填カラム
JP4711134B2 (ja) * 2006-04-19 2011-06-29 横河電機株式会社 充填カラム
JP2011033434A (ja) * 2009-07-31 2011-02-17 Kao Corp 微量固体試料分析器具
JPWO2014083729A1 (ja) * 2012-11-30 2017-01-05 国立大学法人京都大学 マクロ多孔性モノリスとその製造方法
JP2014148456A (ja) * 2013-01-13 2014-08-21 Kyoto Univ マクロ多孔性モノリスとその製造方法およびその応用
CN117288553A (zh) * 2023-11-24 2023-12-26 烟台至公生物医药科技有限公司 一种用于便携式质谱仪的样品快速滤过型净化装置
CN117288553B (zh) * 2023-11-24 2024-01-26 烟台至公生物医药科技有限公司 一种用于便携式质谱仪的样品快速滤过型净化装置

Also Published As

Publication number Publication date
JP4136725B2 (ja) 2008-08-20

Similar Documents

Publication Publication Date Title
US8192692B2 (en) Coated chromatograph injection port liner for performing surface sorbent
US6294087B1 (en) Chromatography column
EP0416326B1 (en) Apparatus for automated isolate extraction using solid phase sorbent
US5565622A (en) Reduced solvent solid phase extraction
AU2005259865B2 (en) Interface from a thermal desorption unit to a chromatographic column
AU2002327994B2 (en) Method and apparatus for sample preparation using solid phase microextraction
EP2469261A1 (en) Large-area solid phase extraction apparatus and methods
EP1382963B1 (en) Method and instrument for extracting trace component in solid phase
US20090218287A1 (en) Solid phase extraction apparatuses and methods
AU2002327994A1 (en) Method and apparatus for sample preparation using solid phase microextraction
Thurmann et al. A low pressure on-chip injection strategy for high-performance chip-based chromatography
US9146216B2 (en) Device for sample preparation
Arce et al. Liquid-phase microextraction techniques for simplifying sample treatment in capillary electrophoresis
WO2011085285A1 (en) Injection port needle support and washing
TW201531686A (zh) 檢體萃取及製備裝置
JP2022508984A (ja) 分子量濾過システムおよび装置
Zhang et al. In‐capillary solid‐phase extraction–capillary electrophoresis for the determination of chlorophenols in water
EP2939018B1 (en) Syringe assembly
JP2004271314A (ja) クロマトグラフイー用チューブフィルター
Staniewski et al. Programmed‐temperature injector for large‐volume sample introduction in capillary gas chromatography and for liquid chromatography‐gas chromatography interfacing
WO2003061805A1 (en) Sealed integral liquid chromatography system
US20160320354A1 (en) Device for extracting a volatile component
JP2007163252A (ja) 液体クロマトグラフ用測定カートリッジ及び液体クロマトグラフ装置
US20060180548A1 (en) Liquid depletion in solid phase separation processes
CN212757529U (zh) 一次性注射式液相色谱分析液过滤装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees