JP2004269944A - Thermal spraying gun device - Google Patents

Thermal spraying gun device Download PDF

Info

Publication number
JP2004269944A
JP2004269944A JP2003060582A JP2003060582A JP2004269944A JP 2004269944 A JP2004269944 A JP 2004269944A JP 2003060582 A JP2003060582 A JP 2003060582A JP 2003060582 A JP2003060582 A JP 2003060582A JP 2004269944 A JP2004269944 A JP 2004269944A
Authority
JP
Japan
Prior art keywords
spray gun
thermal spray
gun apparatus
wire
feed hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060582A
Other languages
Japanese (ja)
Other versions
JP4033000B2 (en
Inventor
Akira Shimizu
明 清水
Hidenobu Matsuyama
秀信 松山
Shinji Someno
真司 染野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003060582A priority Critical patent/JP4033000B2/en
Publication of JP2004269944A publication Critical patent/JP2004269944A/en
Application granted granted Critical
Publication of JP4033000B2 publication Critical patent/JP4033000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/224Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material having originally the shape of a wire, rod or the like

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal spraying gun device for uniformizing the film thickness of a sprayed coating, by inhibiting core deviation with a simple structure. <P>SOLUTION: The thermal spraying gun device has a main body provided with an aperture 17 for feeding a melting wire 7, and carries out thermal spraying while sequentially supplying the melting wire 7 and bleeder hole air into the inner peripheral side of the aperture 17, wherein the inner peripheral surface of the aperture 17 is constituted by a main body 72 of the inner peripheral surface for guiding and feeding the melting wire 7 while contacting with the melting wire 7, and a straight groove 71 for feeding the bleeder hole air without contacting with the melting wire 7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は溶射ガン装置に関し、更に詳しくは、溶射ガン装置の溶線送給孔の形状に関する。
【0002】
【従来の技術】
従来、溶線式の溶射ガン装置は、溶線であるワイヤが溶線供給孔内を送給され、周囲の燃焼熱によって熱せられて溶解して液滴となり、該液滴がアトマイズエアによってワイヤ供給方向に飛ばされる。また、被溶射体が円筒部材である場合は、前記液滴に横方向からアクセラレートエアを吹き付けることによって、液滴の噴射方向を約90°変えて円筒部材の内周面に溶射を行っている。
【0003】
また、ワイヤが熱せられてワイヤ表面にスラッジと呼ばれる酸化被膜が生成し、このスラッジが溶線送給孔とワイヤとの間に溜まってしまい、ワイヤの送給性に支障をきたすという不具合等を解消するため、前記溶線送給孔にはブリダーホールエアを供給しながら溶射を行うことがある(例えば、特許文献1,2参照)。
【0004】
【特許文献1】
特開2001−107216公報
【0005】
【特許文献2】
特開平6−240436号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来の溶射ガン装置においては、溶線送給孔にブリダーホールエアを流すために、溶線送給孔の内径を大きくしてワイヤと溶線送給孔の内周面との間のクリアランスを確保する必要があった。このため、ワイヤの軸心が溶線送給孔の中心からずれる、いわゆる芯ずれによって溶射被膜の膜厚が不均一になるおそれがあった。
【0007】
そこで、本発明は、簡単な構造で前記芯ずれを抑制し、溶射被膜の膜厚を均一にする溶射ガン装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明にあっては、溶射ガン装置の本体部に、溶接ワイヤを送給する溶線送給孔を設け、該溶線送給孔の内周側に、溶接ワイヤとブリダーホールエアを順次供給しながら溶射を行う溶射ガン装置において、前記溶線送給孔の内周面を、溶線に接触しながら溶接ワイヤの送給をガイドする溶線ガイド部と、前記溶接ワイヤには非接触でブリダーホールエアを送給するエア流路部とから構成したことを特徴としている。
【0009】
【発明の効果】
本発明によれば、前記溶線送給孔の内周面を、溶線に当接して溶線の送給を導く溶線ガイド部と、前記溶線には当接せずにブリダーホールエアを送給するエア流路部とから構成したため、溶線送給孔と溶線とのクリアランスを小さくすることができると共に、ブリダーホールエアのエア流路の断面積を確実に確保することができる。これによって、順次送給される溶線の芯ずれ量を低減でき、膜厚が均一の溶射被膜を形成することができる。特に、円筒部材の内周面に溶射を施す場合は、溶線の芯ずれが膜厚のバラツキ量が大きいという問題があったが、本発明によれば、円筒部材の内周面の溶射にも好適に用いることができる。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態を図面に基づき説明する。
【0011】
[第1の実施形態]
図1は、本発明の第1実施形態に用いられる溶射ガン装置の全体構成を示しており、図2は、図1の溶射ガン装置の先端部を拡大した断面図である。ここでの円筒内面は、自動車用エンジンにおけるアルミニウム合金製のシリンダブロック1のボア内面1aであり、このシリンダボア内に、ガス溶線式の溶射ガン装置3を挿入し、その溶射口3aから溶射用材料として溶融した鉄系金属材料の溶射粒子をボア内面1aに溶射して溶射皮膜32を形成する。
【0012】
溶射ガン装置3は、溶線送給機5から溶射用材料として鉄系金属材料の溶線7の送給を受けるとともに、アセチレンまたはプロパンあるいはエチレンなどの燃料を貯蔵した燃料ガスボンベ9と酸素を貯蔵した酸素ボンベ11とから、配管13,15を介して燃料ガスと酸素の供給をそれぞれ受ける。
【0013】
前記溶線7は、溶射ガン装置3の中央部の上下に貫通して設けられた溶射用材料送給部としての溶線送給孔17の上端から下方に向けて送給される。また、燃料および酸素は、図2に示すように、溶線送給孔17の外側の円筒部19に、上下方向に貫通して形成してあるガス案内流路21に供給する。この供給した燃料および酸素の混合ガスは、ガス案内流路21の下端開口部21aから流出し、点火されることによって燃焼炎23が形成される。
【0014】
前記円筒部19の外周側には、アトマイズエア流路25を設けてあり、該アトマイズエア流路25の外周側には、いずれも円筒形状の隔壁27と外壁29との間に形成したアクセラレータエア流路31が形成されている。
【0015】
アトマイズエア流路25を流れるアトマイズエアは、燃焼炎23の熱を前方(図2中で下方)へ送って周辺部に対する冷却を行うとともに、溶融した溶線7を同前方へ送る。一方、アクセラレータエア流路31を流れるアクセラレータエアは、前方へ送られ溶融した溶線7を、この送り方向と交差するように前記ボア内面1aに向けて溶射粒子65として吹きつけることによって、ボア内面1aに溶射皮膜32を形成する。
【0016】
アトマイズエア流路25には、図1に示すように、アトマイズエア供給源33から、減圧弁35を備えたエア供給管37を通してアトマイズエアを供給するように構成されている。一方、アクセラレータエア流路31には、アクセラレータエア供給源39から、減圧弁41およびマイクロミストフィルタ43をそれぞれ備えたエア供給管45を通してアクセラレータエアを供給するように構成されている。
【0017】
アトマイズエア流路25とアクセラレータエア流路31との間に設けられた隔壁27には、図2に示すように、図中で下部側の先端に回転筒部49が取り付けられている。該回転筒部49は、溶射ガン装置本体部を構成する外壁29に対しベアリング47を介して回転自在に構成されており、回転筒部49の上部外周には、アクセラレータエア流路31内に位置する回転翼51を取り付けている。この回転翼51に、アクセラレータエア流路31を流れるアクセラレータエアが作用することによって、回転筒部49、隔壁27及び後述する先端部材53が回転するように構成されている。
【0018】
回転筒部49の先端面(下端面)49aには、回転筒部49と一体となって回転する先端部材53を固定しており、前記回転筒部49の先端部の内面(下端内面)49bは傾斜した先細り形状となって、先端部材53の傾斜面53aに連続するように対応して設けられている。先端部材53の周縁の一部には、前述したアクセラレータエア流路31にベアリング47を介して連通する噴出流路55を備えた突出部57を設けてある。
【0019】
噴出流路55は、アクセラレータエア流路31とほぼ同一直線状に連続する基部流路55aと、基部流路55aの下端から斜め下方に屈曲してボア内面1aに斜めに向けて開口する先端流路55bとを備えている。この先端流路55bの先端開口が、溶射ガン装置3の前記溶射口3aとなる。
【0020】
先端部材53の突出部57を除く周縁部は、板状部59となってアクセラレータエア流路31の先端開口を覆っている。
【0021】
さらに、溶射ガン装置3の本体部は、詳細には図示しないが、外壁29と該外壁29を支持する基体を備えており、この外壁29が駆動装置によって基体に対して回転可能に構成されている。
【0022】
図3は、図2の溶線送給孔17の近傍を示す拡大断面図である。前述したように、溶線7は溶線送給孔17の内周側に挿通され、同図の下方に向けて送給されており、この溶線7と溶線送給孔17との間にブリダーホールエア70が矢印の方向に流通している。この図3のA−A線による断面図を図4に、図4のB−B線による断面図を図5に示す。
【0023】
これらの図に示すように、溶線送給孔17の内周面は、溶射ガン装置3の軸方向に沿って直線状に延びるストレート型溝71と、このストレート型溝71以外の部位である内周面本体72とから構成されている。このストレート型溝71は、図4に示すように、断面略半円状の凹部であり、溶線送給孔17の周方向に沿ってほぼ同一間隔をもって4本形成されている。ストレート型溝71においては、前記内周面本体72が溶線ガイド部として機能し、前記ストレート型溝71がエア流路部として機能している。即ち、溶線7の外周が内周面本体72に当接してガイドされながら溶線送給孔17の内部を送給され、ブリダーホールエア70はストレート型溝71の内部を送給される。従って、溶線7の外径を大きくして溶線送給孔17の内径に近づけることができる。これによって、溶線7の芯ずれが大幅に低減するとともに、ブリダホールエア70の送給も確実に行うことができる。
【0024】
[第2の実施形態]
次いで、第2の実施形態による溶射ガン装置について説明するが、前記第1の実施形態による溶射ガン装置と同一部位については、同一符号を付して説明を省略する。図6と図7は、前記図4及び図5に対応する第2の実施形態による断面図である。
【0025】
これらの図に示すように、第2の実施形態による溶射ガン装置においては、溶線送給孔73の内周面は、らせん状のスパイラル型溝74と、該スパイラル型溝74以外の内周面本体75とから構成されている。このスパイラル型溝74は、溶線送給孔73の内周面にその軸方向に対して一定角度で傾斜しながららせん状に上から下まで繋がって形成されている。同図では、2本のスパイラル型溝74,74を示したが、この本数が特に限定されずに1本でも3本以上でも良い。
【0026】
このスパイラル型溝74においては、前記内周面本体75が溶線ガイド部として機能し、前記スパイラル型溝74がエア流路部として機能している。即ち、溶線7の外周が内周面本体75に当接してガイドされながら溶線送給孔73の内部を送給され、ブリダーホールエア70はスパイラル型溝74の内部を送給される。従って、溶線7の外径を大きくして溶線送給孔73の内径に近づけることができ溶線7の芯ずれが大幅に低減するとともに、ブリダホールエア70の送給も確実に行うことができる。
【0027】
[第3の実施形態]
次いで、第3の実施形態による溶射ガン装置について説明するが、前記第1及び第2の実施形態による溶射ガン装置と同一部位については、同一符号を付して説明を省略する。図8と図9は、前記図4及び図5に対応する第3の実施形態による断面図である。
【0028】
これらの図に示すように、第3の実施形態による溶射ガン装置においては、溶線送給孔76の内周面は、この溶線送給孔76の内周側に向けて突出する突起部77と、該突起部77以外の内周面本体78とから構成されている。この突起部77は、図9に示すように溶線送給孔76の内周面全体に亘ってほぼ同一ピッチを隔てて配置されており、図8に示すように、軸方向断面内では約4つずつ配置されるように構成されている。また、突起部77の断面形状は、図10に示すように、略半球状に形成されている。
【0029】
本実施形態においては、前記突起部77が溶線ガイド部として機能し、前記内周面本体78がエア流路部として機能している。即ち、溶線7の外周が突起部77に当接してガイドされながら溶線送給孔76の内部を送給され、ブリダーホールエア70は溶線7と突起部77と内周面本体78とで囲まれた空間を送給される。従って、溶線7の外径を大きくして突起部77同士の間隔の内径に近づけることができ溶線7の芯ずれが大幅に低減するとともに、ブリダホールエア70の送給も確実に行うことができる。さらに、前記突起部77の形状は、前述した半球状に限定されず、図11に示すように略円柱状の突起部79としても良い。
【0030】
そして、図12に示すように、溶線7である溶接ワイヤの芯ずれ量を小さくすると溶射被膜の膜厚のバラツキが大幅に低減する。このため、本実施形態による溶射ガン装置によれば、膜厚の均一化に大きく貢献することができる。
【0031】
なお、本発明においては、図2に示したように、溶射ガン装置3の先端部材53の突出部57が斜め下方に向けて傾斜している。よって、この溶射ガン装置3を同図の上方に進行させながら溶射を行えば、溶射ガン装置3の進行方向に直交する向きよりも後退する側の斜め方向に向けて液滴の溶射粒子65を噴射する。このように、溶射粒子65の噴射方向が溶線7の送給方向に交差する場合は、溶線7の芯ずれによって溶射被膜32の膜厚のバラツキが発生しやすいが、本発明によれば溶線7の芯ずれが低減するため、同図のような方向の溶射においても、安定した膜厚の溶射被膜32を形成することができる。
【0032】
以上述べたように、本発明の溶射ガン装置は、第1〜第3実施形態に例をとって説明したが、これらの各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で各種実施形態を採用することができる。
【図面の簡単な説明】
【図1】本発明の溶射ガン装置全体を示す概略図である。
【図2】図1の溶射ガン装置の先端部を拡大した断面図である。
【図3】図2の溶線送給孔近傍を示す拡大断面図である。
【図4】第1実施形態による溶線送給孔の断面を示す、図3のA−A線による断面図である。
【図5】図4のB−B線による断面図である。
【図6】第2実施形態による溶線送給孔の形状を示す断面図である。
【図7】図6のC−C線による断面図である。
【図8】第3実施形態による溶線送給孔の形状を示す断面図である。
【図9】図8のD−D線による断面図である。
【図10】第3実施形態による突起部の拡大断面図である。
【図11】突起部の別の変形例を示す拡大断面図である。
【図12】溶線の芯ずれと溶射被膜の膜厚のバラツキとの相関関係を示すグラフである。
【符号の説明】
3…溶射ガン装置
7…溶線
17…溶線送給孔
70…ブリダーホールエア
71…ストレート型溝(溝部、エア流路部)
72…内周面本体(溶線ガイド部)
73…溶線送給孔
74…スパイラル型溝(溝部、エア流路部)
76…溶線送給孔
77…突起部(溶線ガイド部)
78…内周面本体(エア流路部)
79…突起部(溶線ガイド部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal spray gun apparatus, and more particularly to the shape of a hot wire feed hole of the thermal spray gun apparatus.
[0002]
[Prior art]
Conventionally, in a hot wire type spray gun apparatus, a wire, which is a hot wire, is fed through a hot wire supply hole, heated by the surrounding combustion heat and melted into droplets, and the droplets are supplied in the direction of wire supply by atomizing air. To be skipped. Further, when the sprayed body is a cylindrical member, spraying accelerated air from the lateral direction to the droplets to change the droplet jetting direction by about 90 ° and spraying the inner peripheral surface of the cylindrical member. Yes.
[0003]
In addition, the wire is heated, and an oxide film called sludge is generated on the wire surface. This sludge accumulates between the melt feed hole and the wire, eliminating the problem of hindering the wire feedability. Therefore, thermal spraying may be performed while supplying blister hole air to the wire feed hole (see, for example, Patent Documents 1 and 2).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-107216
[Patent Document 2]
Japanese Patent Application Laid-Open No. 6-240436
[Problems to be solved by the invention]
However, in the conventional thermal spray gun apparatus, in order to allow the blister hole air to flow through the molten wire feeding hole, the inner diameter of the molten wire feeding hole is increased to provide a clearance between the wire and the inner peripheral surface of the molten wire feeding hole. It was necessary to secure. For this reason, there has been a possibility that the film thickness of the sprayed coating becomes non-uniform due to so-called misalignment in which the axis of the wire deviates from the center of the hot wire feed hole.
[0007]
Accordingly, an object of the present invention is to provide a thermal spray gun apparatus that suppresses the misalignment with a simple structure and makes the film thickness of the thermal spray coating uniform.
[0008]
[Means for Solving the Problems]
In the present invention, the main body of the thermal spray gun apparatus is provided with a hot wire feeding hole for feeding a welding wire, and while sequentially supplying the welding wire and the blister hole air to the inner peripheral side of the hot wire feeding hole, In a thermal spray gun apparatus for performing thermal spraying, the inner peripheral surface of the hot wire feed hole is in contact with the hot wire and guides the feeding of the welding wire, and the welding wire is not contacted with the blister hole air. It is characterized by comprising an air flow path section to be supplied.
[0009]
【The invention's effect】
According to the present invention, the inner peripheral surface of the molten wire feeding hole is in contact with the molten wire and guides the feeding of the molten wire, and the air that feeds the blister hole air without contacting the molten wire Since it comprises the flow path portion, the clearance between the melt wire feed hole and the melt wire can be reduced, and the cross-sectional area of the air flow path of the blister hole air can be ensured reliably. As a result, the amount of misalignment of the melt wire fed sequentially can be reduced, and a sprayed coating with a uniform film thickness can be formed. In particular, when spraying the inner peripheral surface of the cylindrical member, there has been a problem that the misalignment of the molten wire has a large amount of film thickness variation, but according to the present invention, the inner peripheral surface of the cylindrical member is also sprayed. It can be used suitably.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0011]
[First Embodiment]
FIG. 1 shows the overall configuration of the thermal spray gun apparatus used in the first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the tip of the thermal spray gun apparatus of FIG. The cylindrical inner surface here is a bore inner surface 1a of a cylinder block 1 made of an aluminum alloy in an automobile engine, and a gas spray type spray gun device 3 is inserted into the cylinder bore, and a material for thermal spraying is applied from the spray port 3a. The thermal spray coating 32 is formed by spraying the sprayed particles of the iron-based metal material molten on the bore inner surface 1a.
[0012]
The thermal spray gun apparatus 3 is supplied with a molten metal 7 of a ferrous metal material as a thermal spray material from a thermal feeder 5, and a fuel gas cylinder 9 storing a fuel such as acetylene, propane or ethylene, and an oxygen storing oxygen. Fuel gas and oxygen are respectively supplied from the cylinder 11 through the pipes 13 and 15.
[0013]
The hot wire 7 is fed downward from the upper end of the hot wire feed hole 17 serving as a thermal spray material feeding portion provided so as to penetrate the central portion of the thermal spray gun device 3. Further, as shown in FIG. 2, the fuel and oxygen are supplied to a gas guide channel 21 formed in a cylindrical portion 19 outside the melt feed hole 17 so as to penetrate in the vertical direction. The supplied mixed gas of fuel and oxygen flows out from the lower end opening 21a of the gas guide channel 21 and is ignited to form a combustion flame 23.
[0014]
An atomizing air flow path 25 is provided on the outer peripheral side of the cylindrical portion 19, and an accelerator air formed between the cylindrical partition wall 27 and the outer wall 29 is provided on the outer peripheral side of the atomizing air flow path 25. A flow path 31 is formed.
[0015]
The atomizing air flowing through the atomizing air flow path 25 sends the heat of the combustion flame 23 forward (downward in FIG. 2) to cool the peripheral portion, and sends the molten wire 7 forward. On the other hand, the accelerator air flowing through the accelerator air flow path 31 blows the molten wire 7 sent forward and melted as the sprayed particles 65 toward the bore inner surface 1a so as to intersect the feeding direction, whereby the bore inner surface 1a. A sprayed coating 32 is formed on the substrate.
[0016]
As shown in FIG. 1, the atomized air flow path 25 is configured to supply atomized air from an atomized air supply source 33 through an air supply pipe 37 provided with a pressure reducing valve 35. On the other hand, the accelerator air flow path 31 is configured to supply accelerator air from an accelerator air supply source 39 through an air supply pipe 45 provided with a pressure reducing valve 41 and a micro mist filter 43, respectively.
[0017]
As shown in FIG. 2, a rotating cylinder portion 49 is attached to the lower end of the partition wall 27 provided between the atomizing air flow path 25 and the accelerator air flow path 31 as shown in FIG. The rotary cylinder portion 49 is configured to be rotatable with respect to the outer wall 29 constituting the spray gun apparatus main body via a bearing 47, and is positioned in the accelerator air flow path 31 at the upper outer periphery of the rotary cylinder portion 49. A rotating blade 51 is attached. When the accelerator air flowing through the accelerator air flow path 31 acts on the rotary blade 51, the rotary cylinder portion 49, the partition wall 27, and a tip member 53 described later are configured to rotate.
[0018]
A distal end member 53 that rotates integrally with the rotating cylinder portion 49 is fixed to a distal end surface (lower end surface) 49a of the rotating cylinder portion 49, and an inner surface (lower end inner surface) 49b of the distal end portion of the rotating cylinder portion 49 is fixed. Is inclined and tapered, and is provided so as to be continuous with the inclined surface 53 a of the tip member 53. A part of the peripheral edge of the tip member 53 is provided with a protruding portion 57 provided with an ejection passage 55 communicating with the accelerator air passage 31 described above via a bearing 47.
[0019]
The ejection flow channel 55 includes a base flow channel 55a that is substantially collinear with the accelerator air flow channel 31, and a tip flow that is bent obliquely downward from the lower end of the base flow channel 55a and opens obliquely toward the bore inner surface 1a. And a path 55b. The tip opening of the tip channel 55 b becomes the spraying port 3 a of the spray gun device 3.
[0020]
The peripheral edge portion of the tip member 53 excluding the protruding portion 57 serves as a plate-like portion 59 and covers the tip opening of the accelerator air flow path 31.
[0021]
Further, although not shown in detail, the main body portion of the thermal spray gun apparatus 3 includes an outer wall 29 and a base body that supports the outer wall 29. The outer wall 29 is configured to be rotatable with respect to the base body by a driving device. Yes.
[0022]
FIG. 3 is an enlarged cross-sectional view showing the vicinity of the melt feed hole 17 of FIG. As described above, the molten wire 7 is inserted into the inner peripheral side of the molten wire feeding hole 17 and is fed downward in the figure, and a bridder hole air is interposed between the molten wire 7 and the molten wire feeding hole 17. 70 circulates in the direction of the arrow. 4 is a sectional view taken along line AA in FIG. 3, and FIG. 5 is a sectional view taken along line BB in FIG.
[0023]
As shown in these drawings, the inner peripheral surface of the hot wire feed hole 17 has a straight groove 71 extending linearly along the axial direction of the spray gun device 3 and an inner portion other than the straight groove 71. It is comprised from the surrounding surface main body 72. FIG. As shown in FIG. 4, the straight grooves 71 are concave portions having a substantially semicircular cross section, and four straight grooves 71 are formed at substantially the same interval along the circumferential direction of the melt feed hole 17. In the straight groove 71, the inner peripheral surface main body 72 functions as a melting wire guide part, and the straight groove 71 functions as an air flow path part. That is, the outer periphery of the melt wire 7 is fed into the melt feed hole 17 while being guided by contacting the inner peripheral surface main body 72, and the blister hole air 70 is fed into the straight groove 71. Accordingly, the outer diameter of the molten wire 7 can be increased to approach the inner diameter of the molten wire feeding hole 17. As a result, the misalignment of the molten wire 7 is greatly reduced, and the supply of the blister hole air 70 can be performed reliably.
[0024]
[Second Embodiment]
Next, the thermal spray gun apparatus according to the second embodiment will be described, but the same parts as those of the thermal spray gun apparatus according to the first embodiment are denoted by the same reference numerals and description thereof is omitted. 6 and 7 are sectional views according to a second embodiment corresponding to FIGS. 4 and 5.
[0025]
As shown in these drawings, in the thermal spray gun apparatus according to the second embodiment, the inner peripheral surface of the hot wire feed hole 73 includes a spiral spiral groove 74 and an inner peripheral surface other than the spiral groove 74. The main body 75 is comprised. The spiral groove 74 is formed on the inner peripheral surface of the melt feed hole 73 so as to be spirally connected from the top to the bottom while being inclined at a constant angle with respect to the axial direction. Although the two spiral grooves 74, 74 are shown in the figure, the number is not particularly limited, and may be one or three or more.
[0026]
In the spiral groove 74, the inner peripheral surface body 75 functions as a melt guide part, and the spiral groove 74 functions as an air flow path part. That is, the outer periphery of the melt wire 7 is fed into the melt feed hole 73 while being guided by being in contact with the inner peripheral surface body 75, and the blister hole air 70 is fed into the spiral groove 74. Accordingly, the outer diameter of the molten wire 7 can be increased to approach the inner diameter of the molten wire feeding hole 73, the misalignment of the molten wire 7 can be greatly reduced, and the supply of the blister hole air 70 can be performed reliably. .
[0027]
[Third Embodiment]
Next, the thermal spray gun apparatus according to the third embodiment will be described. The same parts as those of the thermal spray gun apparatus according to the first and second embodiments are denoted by the same reference numerals, and the description thereof is omitted. 8 and 9 are cross-sectional views according to a third embodiment corresponding to FIGS. 4 and 5 described above.
[0028]
As shown in these drawings, in the thermal spray gun apparatus according to the third embodiment, the inner peripheral surface of the hot wire feed hole 76 has a protruding portion 77 protruding toward the inner peripheral side of the hot wire feed hole 76. , And an inner peripheral surface body 78 other than the protruding portion 77. As shown in FIG. 9, the protrusions 77 are arranged at substantially the same pitch over the entire inner peripheral surface of the melt feed hole 76. As shown in FIG. It is configured to be arranged one by one. Further, as shown in FIG. 10, the cross-sectional shape of the protrusion 77 is formed in a substantially hemispherical shape.
[0029]
In the present embodiment, the protrusion 77 functions as a melt guide part, and the inner peripheral surface main body 78 functions as an air flow path part. In other words, the outer periphery of the melt wire 7 is fed into the melt feed hole 76 while being guided by being in contact with the projection 77, and the blister hole air 70 is surrounded by the melt wire 7, the projection 77, and the inner peripheral surface body 78. Sent through the space. Accordingly, the outer diameter of the molten wire 7 can be increased to approach the inner diameter of the interval between the protrusions 77, so that the misalignment of the molten wire 7 can be greatly reduced and the supply of the blister hole air 70 can be performed reliably. it can. Further, the shape of the protrusion 77 is not limited to the above-described hemisphere, and may be a substantially cylindrical protrusion 79 as shown in FIG.
[0030]
And as shown in FIG. 12, when the misalignment amount of the welding wire which is the molten wire 7 is made small, the dispersion | variation in the film thickness of a thermal spray coating will reduce significantly. For this reason, according to the thermal spray gun apparatus by this embodiment, it can contribute largely to equalization of a film thickness.
[0031]
In the present invention, as shown in FIG. 2, the protruding portion 57 of the tip member 53 of the thermal spray gun apparatus 3 is inclined obliquely downward. Therefore, if spraying is performed while the spray gun apparatus 3 is moving upward in the figure, the sprayed particles 65 of the droplets are directed in an oblique direction that is retreated from the direction orthogonal to the traveling direction of the spray gun apparatus 3. Spray. As described above, when the spraying direction of the sprayed particles 65 intersects the feeding direction of the melt wire 7, the film thickness of the spray coating 32 easily varies due to misalignment of the melt wire 7. Therefore, the thermal spray coating 32 having a stable film thickness can be formed even in the thermal spraying in the direction as shown in FIG.
[0032]
As described above, the thermal spray gun apparatus of the present invention has been described with reference to the first to third embodiments, but is not limited to these embodiments and does not depart from the gist of the present invention. Various embodiments can be adopted within a range.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the entire spray gun apparatus of the present invention.
FIG. 2 is an enlarged cross-sectional view of a tip portion of the thermal spray gun apparatus of FIG.
3 is an enlarged cross-sectional view showing the vicinity of a melt wire feed hole in FIG. 2;
4 is a cross-sectional view taken along line AA of FIG. 3, showing a cross section of the melt feed hole according to the first embodiment.
5 is a cross-sectional view taken along line BB in FIG.
FIG. 6 is a cross-sectional view showing the shape of a melt feed hole according to a second embodiment.
7 is a cross-sectional view taken along the line CC of FIG.
FIG. 8 is a cross-sectional view showing the shape of a melt feed hole according to a third embodiment.
9 is a cross-sectional view taken along line DD of FIG.
FIG. 10 is an enlarged cross-sectional view of a protrusion according to a third embodiment.
FIG. 11 is an enlarged cross-sectional view showing another modification of the protrusion.
FIG. 12 is a graph showing the correlation between misalignment of the melted wire and the variation in the thickness of the sprayed coating.
[Explanation of symbols]
3 ... Thermal spray gun device 7 ... Melting wire 17 ... Melting wire feed hole 70 ... Bridder hole air 71 ... Straight groove (groove part, air flow path part)
72 ... Inner peripheral surface body (melting wire guide)
73 ... Melting wire feed hole 74 ... Spiral type groove (groove part, air flow path part)
76 ... Melting wire feed hole 77 ... Projection (melting wire guide)
78 ... Inner peripheral surface main body (air flow path)
79 ... Projection (melting wire guide)

Claims (7)

溶射ガン装置の本体部に軸方向に沿って溶線送給孔を設け、該溶線送給孔の内方に、溶線とブリダーホールエアを順次供給しながら溶射を行う溶射ガン装置において、
前記溶線送給孔の内周面を、溶線に当接して溶線の送給を導く溶線ガイド部と、前記溶線とは非接触でブリダーホールエアを送給するエア流路部とから構成したことを特徴とする溶射ガン装置。
In the thermal spray gun apparatus that performs spraying while sequentially supplying the hot wire and the blister hole air to the inner side of the hot wire feed hole, the hot wire feed hole is provided in the body portion of the thermal spray gun apparatus along the axial direction.
The inner peripheral surface of the molten wire feeding hole is configured by a molten wire guide portion that contacts the molten wire and guides the feeding of the molten wire, and an air flow path portion that feeds the blister hole air without contact with the molten wire. Thermal spray gun device characterized by.
前記溶線送給孔の内周面に溝部を設け、該溝部を前記エア流路部とする一方、この溝部以外の内周面の部位を前記溶線ガイド部としたことを特徴とする請求項1に記載の溶射ガン装置。2. A groove portion is provided on the inner peripheral surface of the melt feed hole, and the groove portion is used as the air flow path portion, and a portion of the inner peripheral surface other than the groove portion is used as the melt guide portion. The spray gun apparatus described in 1. 前記溝部は、溶線送給孔の軸方向に直線状に繋がって延びるストレート型溝であることを特徴とする請求項1又は2に記載の溶射ガン装置。The thermal spray gun apparatus according to claim 1, wherein the groove portion is a straight-type groove extending linearly in the axial direction of the hot wire feed hole. 前記溝部は、溶線送給孔の軸方向に対して傾斜しながららせん状に続くスパイラル型溝であることを特徴とする請求項1〜3のいずれかに記載の溶射ガン装置。The thermal spray gun apparatus according to any one of claims 1 to 3, wherein the groove portion is a spiral groove that continues in a spiral shape while being inclined with respect to the axial direction of the hot wire feed hole. 前記溶線送給孔の内周面に、溶線送給孔の内方に突出した複数の突起部を設け、該突起部を前記溶線ガイド部とし、この突起部以外の内周面を前記エア流路部としたことを特徴とする請求項1に記載の溶射ガン装置。A plurality of projections projecting inward of the melt feed hole are provided on the inner circumferential surface of the melt feed hole, the projection is used as the melt guide portion, and the inner circumferential surface other than the projection is the air flow The thermal spray gun apparatus according to claim 1, wherein the thermal spray gun apparatus is a road portion. 前記溶射ガン装置の本体部の先端側に先端部材を設け、該先端部材から吹き出すアクセラレータエアの吹出方向を、溶線の送給方向に交差する向きに設定したことを特徴とする請求項1〜5のいずれかに記載の溶射ガン装置。A tip member is provided on the tip side of the main body of the thermal spray gun apparatus, and the blowing direction of the accelerator air blown from the tip member is set in a direction intersecting with the feeding direction of the molten wire. The thermal spray gun apparatus in any one of. 前記先端部材から吹き出すアクセラレータエアの吹出方向を、溶射ガン装置の進行方向に直交する向きよりも後退方向側に傾斜させたことを特徴とする請求項6に記載の溶射ガン装置。The thermal spray gun apparatus according to claim 6, wherein the blowing direction of the accelerator air blown from the tip member is inclined to the backward direction side rather than the direction orthogonal to the traveling direction of the thermal spray gun apparatus.
JP2003060582A 2003-03-06 2003-03-06 Spray gun equipment Expired - Lifetime JP4033000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060582A JP4033000B2 (en) 2003-03-06 2003-03-06 Spray gun equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060582A JP4033000B2 (en) 2003-03-06 2003-03-06 Spray gun equipment

Publications (2)

Publication Number Publication Date
JP2004269944A true JP2004269944A (en) 2004-09-30
JP4033000B2 JP4033000B2 (en) 2008-01-16

Family

ID=33123076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060582A Expired - Lifetime JP4033000B2 (en) 2003-03-06 2003-03-06 Spray gun equipment

Country Status (1)

Country Link
JP (1) JP4033000B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207709A (en) * 2009-03-10 2010-09-24 Nissan Motor Co Ltd Thermally sprayed coating forming apparatus and method of supplying power to wire
WO2017214184A1 (en) * 2016-06-06 2017-12-14 Comau Llc Wire guides for plasma transferred wire arc processes
CN108593939A (en) * 2018-07-18 2018-09-28 广州瑞博奥生物科技有限公司 A kind of full-automatic protein chip and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207709A (en) * 2009-03-10 2010-09-24 Nissan Motor Co Ltd Thermally sprayed coating forming apparatus and method of supplying power to wire
WO2017214184A1 (en) * 2016-06-06 2017-12-14 Comau Llc Wire guides for plasma transferred wire arc processes
US10604830B2 (en) 2016-06-06 2020-03-31 Comau Llc Wire guides for plasma transferred wire arc processes
CN108593939A (en) * 2018-07-18 2018-09-28 广州瑞博奥生物科技有限公司 A kind of full-automatic protein chip and its application
CN108593939B (en) * 2018-07-18 2023-11-14 瑞博奥(广州)生物科技股份有限公司 Full-automatic protein chip and application thereof

Also Published As

Publication number Publication date
JP4033000B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
US6863931B2 (en) Manufacturing method of product having sprayed coating film
CA2133199C (en) Welding assembly for feeding powdered filler material into a torch
JPH08339894A (en) Plasma arc torch with fountain nozzle assembly
JP2005351614A (en) Fuel atomizer, conical swirler for combustor dome, and manufacturing method thereof
US6634571B2 (en) Torch for thermal spraying
JP4033000B2 (en) Spray gun equipment
JP4111072B2 (en) Method and apparatus for thermal spraying of cylindrical inner surface
JP4617807B2 (en) Thermal spray pretreatment method
US20020130109A1 (en) Inner torch
JP3749356B2 (en) Laser nozzle machining nozzle
JP4039255B2 (en) Thermal spraying method and thermal spray gun apparatus
JP5898238B2 (en) Arc welding method and plasma torch
JP2010284666A (en) Arc welding torch
JP6287418B2 (en) Thermal spraying method and thermal spraying apparatus
WO2023190823A1 (en) Powder cutting method, powder supply nozzle, and powder cutting nozzle
JP2005154802A (en) Thermal spraying method onto inner surface of cylinder and thermal spraying apparatus
JP2022131927A (en) Nozzle for flame spray gun, and flame spraying method using nozzle for flame spray gun
JP2005139497A (en) Thermal spraying gun device
JP2005082861A (en) Thermal spraying gun device and thermal spraying method
JP2605322B2 (en) Combustor structure
JP2007093089A (en) Combustion device for heating furnace
JP4596642B2 (en) Arc spraying method and apparatus
JP2003042439A (en) Burner and combustion equipment
JP2019086174A (en) Acetylene burner
RU2201319C1 (en) Burner for cutting metallic material and for treating surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4033000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

EXPY Cancellation because of completion of term