WO2023190823A1 - Powder cutting method, powder supply nozzle, and powder cutting nozzle - Google Patents

Powder cutting method, powder supply nozzle, and powder cutting nozzle Download PDF

Info

Publication number
WO2023190823A1
WO2023190823A1 PCT/JP2023/013076 JP2023013076W WO2023190823A1 WO 2023190823 A1 WO2023190823 A1 WO 2023190823A1 JP 2023013076 W JP2023013076 W JP 2023013076W WO 2023190823 A1 WO2023190823 A1 WO 2023190823A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
cutting
nozzle
gas
preheating
Prior art date
Application number
PCT/JP2023/013076
Other languages
French (fr)
Japanese (ja)
Inventor
宗夫 鈴置
隆志 武田
隆 加藤
Original Assignee
日酸Tanaka株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日酸Tanaka株式会社 filed Critical 日酸Tanaka株式会社
Publication of WO2023190823A1 publication Critical patent/WO2023190823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/08Cutting, scarfing, or desurfacing by applying flames by applying additional compounds or means favouring the cutting, scarfing, or desurfacing procedure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/10Auxiliary devices, e.g. for guiding or supporting the torch

Definitions

  • the present invention relates to a powder cutting method, a powder supply nozzle, and a powder cutting nozzle.
  • Patent Document 1 when cutting a workpiece made of general mild steel using a gas cutting nozzle, as shown in Patent Document 1, the workpiece is generally cut for a long time, for example, 1 to 5 minutes. Piercing is performed after preheating.
  • the conventional method for cutting a workpiece made of general mild steel has the problem that the piercing operation requires a lot of preheating time, which increases the total cutting time.
  • the ferrous material when cutting non-ferrous metals, the ferrous material is fed into a preheated flame stream ejected from a gas cutting nozzle to burn the powder made of iron powder, thereby strengthening the oxidation reaction and raising the temperature to a high temperature, which melts the base material.
  • a method of cutting is known. When such a method of supplying iron material to a preheating flame stream is adopted for cutting general mild steel, fumes are generated. Furthermore, in this case, cutting costs also increase, so it is currently difficult to apply this method to cutting general mild steel.
  • iron wire such as a steel wire is used as the iron material supplied to the preheating flame air flow.
  • the present invention has been made in consideration of these circumstances, and is a powder cutting method that can significantly shorten the cutting time of general mild steel, thereby increasing work efficiency and improving safety.
  • a method, a powder feeding nozzle, and a powder cutting nozzle are provided.
  • Embodiment 1 of the powder cutting method according to the present invention is a powder cutting method in which a material to be cut made of general mild steel is supplied with powder made of iron powder and cut using a gas cutting nozzle.
  • the gas cutting nozzle is provided so as to be able to eject cutting oxygen, preheating gas containing a mixture of preheating oxygen and combustible gas toward the material to be cut.
  • the gas cutting nozzle supplies the powder toward a preheated flame air stream made of the preheated gas ejected from the gas cutting nozzle.
  • Aspect 2 of the present invention is the powder cutting method of Aspect 1, in which the powder is supplied from the outer periphery of the jet port of the gas cutting nozzle toward the preheating flame airflow, and is supplied so as to surround the preheating flame airflow. Forms a powder stream.
  • the powder flow formed by the powder extends in a slit shape in the direction in which the powder is ejected, and forms a non-supply area where the powder is not supplied.
  • Aspect 3 of the present invention is the powder cutting method of Aspect 1 or Aspect 2, in which the preheated gas is ejected from the gas cutting nozzle, and the preheated flame airflow is made of the preheated gas ejected from the gas cutting nozzle.
  • Red-hot powder is generated in the preheating flame air stream by supplying powder toward the preheating flame, and the red-hot powder is placed around the jetting fixed point of the cutting oxygen air flow, and the red-hot powder around the jetting fixed point is The cutting oxygen is supplied to the powder, and the material to be cut is pierced.
  • Aspect 4 of the present invention is the powder cutting method of Aspect 3, by continuing from the step of performing the piercing with the through hole processed by the piercing as a cutting start point and moving the gas cutting nozzle.
  • the method includes a gas cutting step of cutting the material to be cut. Before the gas cutting step, the powder is continued to be supplied until it passes through the blow-up slag attached to the upper surface of the workpiece due to the piercing, and after passing the powder, the supply of the powder is stopped, and then the gas cutting step is performed. Start.
  • Aspect 5 of the powder supply nozzle according to the present invention is configured to be able to spray cutting oxygen, preheating gas containing a mixture of preheating oxygen and combustible gas toward a workpiece made of general mild steel.
  • the cutter is installed in a gas cutting nozzle to perform powder cutting on the material to be cut.
  • the powder supply nozzle is directed toward a powder supply path extending circumferentially along the outer periphery of the gas cutting nozzle and supplying powder made of iron powder, and a preheating flame air stream consisting of the preheated gas ejected from the gas cutting nozzle. and a powder spout for spouting the powder.
  • Aspect 6 of the present invention is the powder supply nozzle of Aspect 5, which includes an inner cylinder that fits onto the gas cutting nozzle, and an outer cylinder that is disposed on the outer peripheral side of the inner cylinder, and The jet nozzle is disposed between the inner cylinder and the outer cylinder, and is formed in a ring shape when viewed from the nozzle axial direction.
  • Aspect 7 of the present invention is the powder supply nozzle according to aspect 6, wherein the powder jetting port includes a partition portion that circumferentially partitions the powder jetting port around the nozzle axis, and the partition portion is arranged around the outer circumference of the inner cylinder. The surface and the inner circumferential surface of the outer cylinder are connected.
  • Aspect 8 of the present invention is the powder supply nozzle according to aspect 7, in which the circumferential width dimension of the partition portion is smaller than the distance between the circumferentially adjacent partition portions.
  • a ninth aspect of the present invention is the powder supply nozzle according to the seventh aspect, wherein the partition portions are provided at four locations at intervals of 90 degrees in the circumferential direction.
  • Aspect 10 of the present invention is the powder supply nozzle of Aspect 5, which includes a first control for controlling start and stop of the supply of the cutting oxygen and the preheating gas ejected from the gas cutting nozzle, and the powder supply nozzle.
  • the second control for controlling the start and stop of the supply of the powder spouted from the powder is controlled separately.
  • Aspect 11 of the powder cutting nozzle according to the present invention includes the powder supply nozzle according to any one of aspects 5 to 10, and the gas cutting nozzle to which the powder supply nozzle can be attached.
  • powder cutting method powder supply nozzle, and powder cutting nozzle according to the present invention, it is possible to significantly shorten the cutting time for general mild steel, thereby increasing work efficiency and improving safety. .
  • FIG. 1 is a half-longitudinal cross-sectional view showing the overall configuration of a cutting nozzle according to an embodiment of the present invention.
  • FIG. 2 is a view taken along the line X1-X1 shown in FIG. 1, and is a front view of the cutting nozzle seen from the tip side.
  • FIG. 3 is a view taken along the line X2-X2 shown in FIG. 1, and is a rear view of the cutting nozzle seen from behind.
  • FIG. 4 is a diagram showing a state of piercing using a cutting nozzle.
  • FIG. 5 is a cross-sectional view taken along the line X3-X3 shown in FIG. 4, showing a powder flow region.
  • FIG. 6A is an explanatory diagram of powder piercing operation.
  • FIG. 6A is an explanatory diagram of powder piercing operation.
  • FIG. 6B is an explanatory diagram of powder piercing operation.
  • FIG. 6C is an explanatory diagram of powder piercing operation.
  • FIG. 6D is an explanatory diagram of powder piercing operation.
  • FIG. 7A is a schematic diagram showing a test method according to an example, and is a diagram of a case in which no powder is supplied in a comparative example.
  • FIG. 7B is a schematic diagram showing a test method according to an example, and is a diagram of a case with powder supply in the example.
  • FIG. 7 is a front view of a cutting nozzle according to a modified example, viewed from the tip side.
  • FIGS. 1 to 6 An embodiment of the present invention will be described with reference to FIGS. 1 to 6. Note that the dimensions of each component have been adjusted as appropriate to make the drawings easier to read.
  • FIG. 1 is a half-longitudinal cross-sectional view showing the overall configuration of a cutting nozzle 1 of this embodiment.
  • FIG. 2 is a view along the line X1-X1 shown in FIG. 1, and is a front view of the cutting nozzle 1 viewed from the tip side.
  • FIG. 3 is a view taken along the line X2-X2 shown in FIG. 1, and is a rear view of the cutting nozzle 1 seen from the rear.
  • FIG. 4 is a diagram showing a state of piercing using the cutting nozzle 1.
  • FIG. 5 is a cross-sectional view taken along the line X3-X3 shown in FIG. 4, and is a diagram showing a region of powder flow Ta.
  • FIG. 6 is an explanatory diagram of the powder piercing operation. In FIGS. 1 and 3, the gas cutting nozzle 2 is omitted for clarity.
  • the gas cutting method according to the present embodiment uses a powder cutting method performed using the cutting nozzle 1 (powder cutting nozzle) shown in FIG.
  • the cutting nozzle 1 of the present embodiment for example, a workpiece to be cut W placed on a mounting table (not shown) on a substantially horizontal plane is pierced, and then, following the piercing, cutting is performed using the piercing as a cutting start point. show.
  • the cutting nozzle 1 includes a gas cutting nozzle 2 and a powder supply nozzle 3.
  • a powder supply nozzle 3 is removably attached to the outer peripheral side of the gas cutting nozzle 2.
  • the tip side the downstream side from which cutting oxygen and preheating gas are ejected along the nozzle axis O
  • the proximal side the side opposite to the tip side.
  • the gas cutting nozzle 2 is provided so that cutting oxygen, preheating gas in which preheating oxygen and combustible gas are mixed can be ejected toward the material W to be cut.
  • the gas cutting tip 2 is a tip used when cutting the material W to be cut.
  • the combustible gas includes LPG, acetylene, propylene, LNG, hydrogen, etc., and one type of these may be used, or a preheating gas that is a mixture of these and preheating oxygen may be used. is also possible.
  • the gas cutting nozzle 2 includes an internal core rod 2A having a cutting oxygen supply path 21, an external nozzle 2B into which the internal core rod 2A is inserted, and a cap (not shown).
  • the internal core rod 2A has an elongated cylindrical shape, and has a shape that becomes thinner toward the tip side.
  • the internal core rod 2A is screwed onto the above-mentioned cap at the base end side in the direction of the nozzle axis O. As a result, the internal core rods 2A are fitted into the base and are integral with each other.
  • the material of the internal core rod 2A is, for example, brass, which has high thermal conductivity and heat resistance, and is also highly economical in terms of manufacturing cost.
  • the internal core rod 2A has a cut oxygen supply path 21 extending along the nozzle axis O in the longitudinal direction.
  • the cut oxygen supply path 21 communicates with the external space at its tip.
  • a cutting oxygen spout 22 for spewing out cutting oxygen is formed at the tip of the cutting oxygen supply path 21 and on the tip end surface 2a of the internal core rod 2A.
  • the cutting oxygen that has passed through the cutting oxygen supply path 21 is ejected forward from the cutting oxygen outlet 22.
  • the internal core rod 2A has a preheated gas supply path 23 extending along the nozzle axis O outside the cutting oxygen supply path 21.
  • the preheating gas supply path 23 communicates with the external space at its tip.
  • a plurality of slit-shaped preheating gas outlets 24 are formed on the tip end surface 2a of the internal core rod 2A at the tip of the preheating gas supply path 23, extending radially from the cutting oxygen outlet 22 when viewed from the nozzle axis O direction. has been done.
  • the preheated gas that has passed through the preheated gas supply path 23 is ejected from the preheated gas outlet 24 toward the front.
  • the external nozzle 2B has an elongated cylindrical shape, and is fitted into the internal core rod 2A concentrically when viewed in the nozzle axial direction.
  • the external crater 2B forms a preheated gas supply path 23 through which preheated gas, which is a mixture of preheated oxygen and combustion gas, passes between the inner surface 2c of the external crater 2B and the outer surface 2b of the internal core rod 2A.
  • a powder supply nozzle 3 to be attached is arranged on the outer surface of the external nozzle 2B.
  • the powder supply nozzle 3 is provided separately from the gas cutting nozzle 2. As shown in FIGS. The powder supply nozzle 3 forms a powder supply path 31 for supplying the powder T to the outer circumference of the gas cutting nozzle 2, and has a powder spout 32 for spouting the powder T.
  • the powder supply nozzle 3 includes an inner cylinder 35 that fits over the gas cutting nozzle 2, an outer cylinder 36 (outer peripheral wall) arranged on the outer peripheral side of the inner cylinder 35, and a gas cutting nozzle that is inserted inside the inner cylinder 35. 2 is provided.
  • the spout stopper nut 34, the inner tube 35, and the outer tube 36 are each formed to have a circular cross section.
  • the inner surfaces 34a and 35b of the connecting portions of the nozzle stopper nut 34 and the inner cylinder 35 that are continuous in the nozzle axial direction are formed to be substantially flush with each other.
  • the gas cutting nozzle 2 is inserted and fitted into the inside of the nozzle stopper nut 34 and the inner cylinder 35 from the base end side.
  • a female screw portion 3a is formed at the tip of the nozzle stopper nut 34 and at the base end of the inner cylinder 35 and outer cylinder 36, which coaxially communicate with each other.
  • the spout stopper nut 34, the inner tube 35, and the outer tube 36 are integrally assembled by tightening the screw 3b shown in FIG. 3 into the female threaded portion 3a.
  • the shape of the inner surface 35b of the inner cylinder 35 matches the outer circumferential surface 2d of the gas cutting nozzle 2, and the diameter decreases toward the tip side.
  • a tip tapered portion 351 whose outer diameter decreases toward the tip is formed on the tip side of the outer circumferential surface 35a of the inner cylinder 35.
  • the outer cylinder 36 has the same length as the inner cylinder 35 in the nozzle axial direction.
  • the outer cylinder 36 has a cylindrical base end 361 arranged on the base end side and extending concentrically in the nozzle axis direction, and a conical taper part 362 connected to the distal end side of the base end 361.
  • the tapered portion 362 has a shape that becomes thinner toward the distal end side.
  • the above-mentioned powder supply path 31 through which the powder T is supplied is formed between the inner cylinder 35 and the outer cylinder 36.
  • a closing flange 35c that protrudes radially outward is provided on the base end side of the inner cylinder 35 over the entire circumference.
  • the closing flange 35c is in liquid-tight contact with the inner circumferential surface 36a of the outer cylinder 36 on the proximal end side.
  • a plurality of (here, two) powder introduction joints 37 communicating with the powder supply path 31 are attached to the base end portion 361 by screw fastening.
  • the powder introduction joint 37 is connected to a powder supply device (not shown), and powder is supplied into the powder supply path 31 from this powder supply device.
  • the mounting angle ⁇ between the two powder introduction joints 37 when viewed from the nozzle axis direction is set to 60°.
  • the mounting angle ⁇ of the powder introduction joint 37 is preferably arranged so that the powder is uniformly supplied to the powder supply path 31. Therefore, the best mounting angle ⁇ is, for example, two locations at a 180° pitch, or three locations at a 120° pitch.
  • the two locations may be placed closer to one side as in this embodiment.
  • the powder spout 32 is arranged between the outer circumferential surface 35a of the inner cylinder 35 and the inner circumferential surface 36a of the outer cylinder 36, and is formed in a ring shape when viewed from the nozzle axial direction. Further, the powder spout 32 includes a plurality of (four in this embodiment) partition ribs 33 (partition portions) that circumferentially circumferentially circulate around the nozzle axis. That is, the partition ribs 33 are provided at intervals of 90° in the circumferential direction.
  • a plurality of partition ribs 33 are arranged at regular intervals in the circumferential direction of the powder spout 32 and connect the outer circumferential surface 35 a of the inner cylinder 35 and the inner circumferential surface 36 a of the outer cylinder 36 .
  • the partition ribs 33 are provided at four locations at intervals of 90° in the circumferential direction. As shown in FIG. 1, the partition rib 33 extends from the distal end of the inner tube 35 and the outer tube 36 toward the base end side.
  • the region where the partition rib 33 is arranged is a range that faces the tapered tip portion 351 of the inner cylinder 35 in the radial direction.
  • the width dimension of the partition rib 33 in the circumferential direction is smaller than the distance between the partition ribs 33 adjacent to each other in the circumferential direction.
  • the powder T ejected from the powder outlet 32 of the powder supply nozzle 3 is supplied from the outer periphery of the outlet of the gas cutting nozzle 2 toward the preheating flame stream R, forming a powder stream Ta surrounding the preheating flame stream R. do.
  • the partition rib 33 on the powder spout 32 as shown in FIG. A region Tb is formed.
  • the cutting nozzle 1 is used in a state in which a powder supply nozzle 3 is assembled and integrated with a gas cutting nozzle 2.
  • preheating gas in which preheating oxygen and combustible gas are mixed is supplied to the preheating gas supply path 23 of the gas cutting nozzle 2 of the cutting nozzle 1, and this preheating gas is supplied to the preheating gas outlet. 24 to the outside to generate a preheating flame.
  • cutting oxygen is supplied to the cutting oxygen supply path 21 and ejected from the cutting oxygen outlet 22.
  • the powder T is supplied to the powder supply path 31 and ejected from the powder spout 32.
  • the powder T ejected from the powder ejection port 32 is supplied toward the preheated flame stream R consisting of the preheated gas.
  • the powder T (powder flow Ta) is shown to be ejected along the outer periphery of the preheating flame flow R for ease of viewing, but it is shown that the powder T (powder flow Ta) is ejected along the outer periphery of the preheating flame flow R. Powder T is supplied.
  • the powder jet nozzle 32 is arranged on the outer peripheral side of the cutting oxygen jet nozzle 22 and the preheating gas jet nozzle 24 of the gas cutting nozzle 2, so that the powder T jetted from the powder jet nozzle 32 flows into the preheated flame air stream. It is supplied along the outer circumferential side of R. That is, the preheating flame flow R is covered with the powder flow Ta of the powder T. Note that, as described above, the non-supply area Tb is formed in the powder flow Ta. The preheating flame flow R is not completely covered by the powder flow Ta, but a part of the powder flow Ta is opened in the form of a slit.
  • the ejected powder T is supplied to the preheated flame flow R inside the powder flow Ta, is sufficiently heated and melted, and is ejected toward the workpiece W made of general mild steel. Moreover, most of the powder T can be efficiently burned without causing the powder T to be scattered outward and lost.
  • preheated gas is ejected from the gas cutting nozzle 2, and powder T is supplied toward the preheated flame stream R made of the preheated gas ejected from the gas cutting nozzle 2.
  • red-hot powder T3 is generated in the preheating flame air flow R.
  • the symbol T1 indicates the powder immediately after being ejected
  • the symbol T2 indicates the powder that is in the process of becoming red-hot
  • the symbol T3 indicates the powder that has become red-hot.
  • the red-hot powder T3 is placed around the ejection fixed point Va of the cutting oxygen stream V.
  • the powder cutting method it is possible to apply the powder cutting method to the workpiece W of general mild steel, and it is possible to improve work efficiency by significantly shortening the cutting time, and to improve safety. It is possible to improve sexual performance. Therefore, the combustion ratio of powder T becomes high, the exothermic reaction becomes strong, and the combustion efficiency increases. Then, at the same time as melting the base material of the workpiece W, the combustion products are blown away by the mechanical energy of the preheated flame stream R, and the workpiece W can be easily pierced or cut.
  • the material to be cut W is pierced to form the through hole P. Further, in this embodiment, only piercing can be started immediately. Therefore, there is no need to perform preheating for a long time, for example, for 1 to 5 minutes, before piercing as in the conventional case. Furthermore, as described above, by supplying the powder T to the preheating flame stream R during piercing, the combustion efficiency increases. Therefore, piercing can be performed in a short time (for example, about 10 seconds or less), and the operation time can be significantly shortened.
  • the preheating process, the piercing process, the peeling process of the blow-up slag G, a preheating process, and a cutting process can be omitted.
  • the powder T can be automatically ejected by the cutting nozzle 1. Therefore, it is no longer necessary to manually supply the iron wire to the preheating flame stream R as in the past. That is, it is possible to eliminate the work performed by the worker on the material W to be cut, and it is possible to improve the safety of the work. Moreover, since the cutting nozzle 1 of this embodiment can be incorporated into a cutting device and automated, work efficiency and quality are improved.
  • the cutting nozzle 1 used at this time also includes a cutting oxygen outlet 22 that forms a cutting oxygen supply path 21 and blows out cutting oxygen, and a preheating gas blowout 24 that forms a preheating gas supply path 23 and blows out preheating gas.
  • the present invention includes a gas cutting nozzle 2 having a gas cutting nozzle 2 and a powder supply nozzle 3.
  • the powder supply nozzle 3 has a powder supply path 31 that extends in the circumferential direction along the outer periphery of the gas cutting nozzle 2 and supplies the powder T, and a preheating flame flow R that is made up of preheated gas ejected from the gas cutting nozzle 2.
  • a powder spout 32 that spouts powder T is provided.
  • the powder spout 32 is arranged between the inner cylinder 35 and the outer cylinder 36, and is formed in a ring shape when viewed from the nozzle axial direction.
  • the powder spout 32 of the powder supply nozzle 3 has a concentric ring shape, so that the supply of the powder T is stabilized.
  • incisions can be made continuously after piercing. Therefore, there is no need to temporarily stop the cutter, it is possible to prevent damage to the cut portion, and it is possible to reduce the number of places where the material to be cut W is discarded.
  • the cutting nozzle 1 may be connected to a control section (not shown).
  • the control section includes a first control for controlling the start and stop of the supply of cutting oxygen and preheating gas ejected from the gas cutting nozzle 2, and a first control for controlling the start and stop of the supply of the powder T ejected from the powder ejection port 32. and a second control for controlling are separately controlled.
  • the timing and supply time of supplying the powder T can be adjusted as appropriate in accordance with conditions such as the cutting method and the thickness and material of the material W to be cut.
  • the preheating flame flow R is covered with the supplied powder T in the form of a film. Therefore, the powder T can be supplied from the outer periphery of the preheating flame flow R in a state in which it is evenly contacted in the circumferential direction, and when viewed in cross section, there is no unevenness in the combustion area of the powder T, and the powder T can be burned evenly over the entire cross section. I can do it.
  • the powder flow Ta of the powder T extends like a slit in the jetting direction of the powder T, and forms a non-supply region Tb where the powder T is not supplied.
  • the entire preheating flame flow R is not completely covered from the outside by the powder flow Ta of the powder T, and a gap of the non-supply region Tb is formed in a part of the powder flow Ta. That is, as shown in FIG. 4, the blow-up slag G that scatters toward the cutting nozzle 1 side during piercing is diffused to the outside of the powder flow Ta from the slit-shaped gap in the non-supply area Tb. Therefore, it is possible to suppress the blow-up slag G from adhering to the gas cutting nozzle 2 of the cutting nozzle 1, and it is possible to prevent the gas cutting nozzle 2 from backfiring.
  • the powder spout 32 is equipped with a partition rib 33 that circumferentially circumferentially circumferentially surrounds the nozzle axis.
  • the partition rib 33 connects the outer peripheral surface 35a of the inner cylinder 35 and the inner peripheral surface 36a of the outer cylinder 36.
  • the blow-up slag G that scatters toward the cutting nozzle 1 side during piercing is diffused to the outside of the powder flow Ta from the gap in the non-supply area Tb. Therefore, it is possible to suppress the blow-up slag G from adhering to the gas cutting nozzle 2 of the cutting nozzle 1, to prevent the gas cutting nozzle 2 from backfiring, and to maintain the stability of piercing.
  • the cutting nozzle 1 of this embodiment is arranged such that the circumferential width dimension of the partition ribs 33 is smaller than the distance between the partition ribs 33 adjacent to each other in the circumferential direction. In this case, a sufficient amount of powder T can be supplied toward the preheating flame flow R.
  • partition ribs 33 are provided at four locations at intervals of 90 degrees in the circumferential direction. Therefore, the blown-up slag G can be uniformly diffused from the gap in the non-supply area Tb toward the outer four directions of the powder flow Ta.
  • the cutting nozzle 1 of the present embodiment has a first control for controlling the start and stop of the supply of cutting oxygen and preheating gas ejected from the gas cutting nozzle 2, and a start control for controlling the supply of the powder T ejected from the powder ejection port 32. and a second control that controls stopping are separately controlled. Therefore, by stopping only the spouting of the powder T by the second control after piercing, the preheating flame flow R can continue to be jetted out as it is, and an operation can be performed to create a cut of a predetermined shape in the workpiece W. .
  • FIG. 7A is a schematic diagram showing the test method, and shows a comparative example without powder supply.
  • FIG. 7B is a schematic diagram showing the test method, and shows a case with powder supply in the example. Table 1 shows the test conditions and test results.
  • hydrocarbon gas (LPG) and hydrogen mixed gas Two types of fuel gas (combustible gas) were used in the test: hydrocarbon gas (LPG) and hydrogen mixed gas. Hydrocarbon gas (LPG) and hydrogen mixed gas were used to perform piercing on general mild steel workpieces W with plate thicknesses of 25 mm and 50 mm, respectively, in an example with powder supply and a comparative example without powder supply. The preheating time (seconds) and the diameter of the through hole formed by piercing (piercing hole diameter (mm)) were confirmed.
  • the symbol P2 (P) in FIG. 7A indicates the pierced hole according to the comparative example (without powder supply)
  • the symbol P1 (P) in FIG. 7B indicates the pierced hole according to the example (with powder supply).
  • the test conditions which are powder supply amount (g/min), aperture ratio (powder supply port (corresponding to the powder spout described above)), and crater height H (mm), are as shown in Table 1.
  • the crater height H from the top surface of the workpiece W to the crater is 100 mm in the example (with powder supply) and 10 mm in the comparative example (without powder supply).
  • the test results showed that the piercing preheating time (seconds) in the example (with powder supply) was 4 to 8 seconds for a plate thickness of 25 mm and 10 seconds for a plate thickness of 50 mm.
  • the piercing preheating time (seconds) in the comparative example (no powder supply) is 40 to 60 seconds (hydrocarbon gas) for a plate thickness of 25 mm, 20 to 30 seconds (hydrogen preheating gas), and 70 seconds for a plate thickness of 50 mm. -90 seconds (hydrocarbon-based hydrogen gas) and 60-80 seconds (hydrogen preheating gas).
  • the piercing preheating time can be significantly shortened compared to the comparative example. Further, in the embodiment, even if the thickness of the material to be cut W is increased, the piercing preheating time increases slightly by several seconds. On the other hand, in the comparative example, as the thickness of the material to be cut W increases, the piercing time also increases nearly twice.
  • the diameter of the piercing hole in the example (with powder supply) is smaller than that in the comparative example (without powder supply).
  • the thickness in the example is 12 mm, whereas in the comparative example, the thickness is doubled to 24 mm. From this, it was found that by supplying powder, the diameter of the pierced hole can be reduced and it is efficient.
  • the powder cutting method using the cutting nozzle 1 including the gas cutting nozzle 2 and the powder supply nozzle 3 was exemplified, but the powder cutting method using the cutting nozzle 1 to supply powder It is not limited to one thing.
  • a powder supply means having the same function as the powder supply nozzle 3 may be provided separately from the gas cutting nozzle 2, and the preheating flame air flow R ejected from the gas cutting nozzle 2 may be provided. It is also possible to supply the powder from the powder supply means.
  • the powder spout 32 of the powder supply nozzle 3 is provided with a partition rib 33 (partition portion), but the partition rib 33 may be omitted.
  • a partition rib 33 (partition portion) is provided like a powder spout 32A between the outer peripheral surface 35a of the inner cylinder 35 and the inner peripheral surface 36a of the outer cylinder 36 of the modified powder supply nozzle 3A shown in FIG. It is also possible to have a ring-shaped opening over the entire circumference.
  • each component of the gas cutting nozzle 2 (the cutting oxygen supply path 21, the cutting oxygen outlet 22, the preheating gas supply path 23, the preheating gas outlet 24, etc.) are not limited to the above embodiments.
  • powder cutting method powder supply nozzle, and powder cutting nozzle according to the present invention, it is possible to significantly shorten the cutting time for general mild steel, thereby increasing work efficiency and improving safety. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a piercing method which is for performing piercing, by using a gas cutting torch, with respect to a cutting workpiece composed of general mild steel, the method having: a step for ejecting cutting oxygen and preheating gas from the gas cutting torch; and a step for supplying powder toward a preheating flame gas flow composed of the cutting oxygen and preheating gas which have been ejected from the gas cutting torch, wherein the powder is supplied in the direction along the preheating flame gas flow.

Description

パウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルPowder cutting method, powder supply nozzle, and powder cutting nozzle
 本発明は、パウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルに関する。
 本願は、2022年3月31日に日本に出願された特願2022-060392号について優先権を主張し、その内容をここに援用する。
The present invention relates to a powder cutting method, a powder supply nozzle, and a powder cutting nozzle.
This application claims priority to Japanese Patent Application No. 2022-060392 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
 従来、例えば特許文献1に示すようにガス切断火口を使用して一般軟鋼からなる被切断材を切断する際には、一般的に、被切断材に対して例えば1~5分といった長時間の予熱をかけた後にピアシングを行っている。 Conventionally, when cutting a workpiece made of general mild steel using a gas cutting nozzle, as shown in Patent Document 1, the workpiece is generally cut for a long time, for example, 1 to 5 minutes. Piercing is performed after preheating.
特開昭48-41957号公報Japanese Unexamined Patent Publication No. 48-41957
 しかしながら、従来の一般軟鋼からなる被切断材の切断方法では、ピアシングの作業において多くの予熱時間を要することから、切断にかかる総時間が長くなるという問題があった。 However, the conventional method for cutting a workpiece made of general mild steel has the problem that the piercing operation requires a lot of preheating time, which increases the total cutting time.
 ところで、非鉄金属の切断において、鉄材をガス切断火口から噴出される予熱炎気流に供給して鉄粉からなるパウダーを燃焼させることで酸化反応を強化して高温とし、その熱で母材を溶かして切断する方法が知られている。このような鉄材を予熱炎気流に供給する方法を一般軟鋼の切断に採用した場合には、ヒュームが発生する。また、この場合には、切断コストも増加することから、一般軟鋼の切断には適用しにくい現状がある。
 さらに、従来は、予熱炎気流に供給する鉄材として、番線等の鉄線を使用している。この場合には、鉄材の供給のタイミング等、作業者の熟練した技術が必要であり、かつ品質が安定しない。しかも、作業者が被切断材の上で予熱炎気流中に噴出されている切断酸素気流に番線を供給する作業では、1500℃を超える高温のスラグが作業者の近傍で飛散する。そのため、作業性の点でより安全性を向上させることが求められていた。
By the way, when cutting non-ferrous metals, the ferrous material is fed into a preheated flame stream ejected from a gas cutting nozzle to burn the powder made of iron powder, thereby strengthening the oxidation reaction and raising the temperature to a high temperature, which melts the base material. A method of cutting is known. When such a method of supplying iron material to a preheating flame stream is adopted for cutting general mild steel, fumes are generated. Furthermore, in this case, cutting costs also increase, so it is currently difficult to apply this method to cutting general mild steel.
Furthermore, conventionally, iron wire such as a steel wire is used as the iron material supplied to the preheating flame air flow. In this case, a skilled worker is required to determine the timing of supplying the iron material, and the quality is not stable. Moreover, when the worker supplies the wire to the cutting oxygen stream being blown out into the preheating flame stream over the material to be cut, slag with a high temperature of over 1500° C. is scattered near the worker. Therefore, there has been a need to further improve safety in terms of workability.
 本発明は、このような事情を考慮してなされたものであり、一般軟鋼の切断時間を大幅に短縮することで作業効率を高めることができ、かつ安全性の向上を図ることができるパウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルを提供することを目的としている。 The present invention has been made in consideration of these circumstances, and is a powder cutting method that can significantly shorten the cutting time of general mild steel, thereby increasing work efficiency and improving safety. A method, a powder feeding nozzle, and a powder cutting nozzle are provided.
 上記課題を解決するために、この発明は以下の手段を提案している。
(1)本発明に係るパウダー切断方法の態様1は、ガス切断火口を使用して一般軟鋼からなる被切断材に対して鉄粉からなるパウダーを供給して切断するパウダー切断方法である。前記ガス切断火口は、切断酸素と、予熱用酸素及び可燃性ガスを混合させた予熱ガスと、を前記被切断材に向けて噴出可能に設けられる。前記ガス切断火口は、前記ガス切断火口から噴出した前記予熱ガスからなる予熱炎気流に向けて前記パウダーを供給する。
In order to solve the above problems, the present invention proposes the following means.
(1) Embodiment 1 of the powder cutting method according to the present invention is a powder cutting method in which a material to be cut made of general mild steel is supplied with powder made of iron powder and cut using a gas cutting nozzle. The gas cutting nozzle is provided so as to be able to eject cutting oxygen, preheating gas containing a mixture of preheating oxygen and combustible gas toward the material to be cut. The gas cutting nozzle supplies the powder toward a preheated flame air stream made of the preheated gas ejected from the gas cutting nozzle.
(2)本発明の態様2は、態様1のパウダー切断方法において、前記パウダーは、前記ガス切断火口の噴出口の外周から前記予熱炎気流に向けて供給され、前記予熱炎気流を囲むように粉流を形成する。前記パウダーによる前記粉流は、前記パウダーの噴出方向にスリット状に延在し前記パウダーが供給されない非供給領域を形成する。 (2) Aspect 2 of the present invention is the powder cutting method of Aspect 1, in which the powder is supplied from the outer periphery of the jet port of the gas cutting nozzle toward the preheating flame airflow, and is supplied so as to surround the preheating flame airflow. Forms a powder stream. The powder flow formed by the powder extends in a slit shape in the direction in which the powder is ejected, and forms a non-supply area where the powder is not supplied.
(3)本発明の態様3は、態様1又は態様2のパウダー切断方法において、前記ガス切断火口から前記予熱ガスを噴出させるとともに、前記ガス切断火口から噴出した前記予熱ガスからなる前記予熱炎気流に向けてパウダーを供給することで前記予熱炎気流中に赤熱化されたパウダーが発生し、前記赤熱化されたパウダーが切断酸素気流の噴出定点周囲に配置され、前記噴出定点周囲の前記赤熱化されたパウダーに前記切断酸素を供給し前記被切断材に対してピアシングを行う。 (3) Aspect 3 of the present invention is the powder cutting method of Aspect 1 or Aspect 2, in which the preheated gas is ejected from the gas cutting nozzle, and the preheated flame airflow is made of the preheated gas ejected from the gas cutting nozzle. Red-hot powder is generated in the preheating flame air stream by supplying powder toward the preheating flame, and the red-hot powder is placed around the jetting fixed point of the cutting oxygen air flow, and the red-hot powder around the jetting fixed point is The cutting oxygen is supplied to the powder, and the material to be cut is pierced.
(4)本発明の態様4は、態様3のパウダー切断方法において、前記ピアシングによって加工された貫通穴を切断開始点として、前記ピアシングを行う工程から継続し、前記ガス切断火口を移動させることにより前記被切断材を切断するガス切断工程を有する。前記ガス切断工程の前に、前記ピアシングによって前記被切断材の上面に付着した吹上げノロを通過するまで前記パウダーを供給し続け、通過後に前記パウダーの供給を停止した後に、前記ガス切断工程を開始する。 (4) Aspect 4 of the present invention is the powder cutting method of Aspect 3, by continuing from the step of performing the piercing with the through hole processed by the piercing as a cutting start point and moving the gas cutting nozzle. The method includes a gas cutting step of cutting the material to be cut. Before the gas cutting step, the powder is continued to be supplied until it passes through the blow-up slag attached to the upper surface of the workpiece due to the piercing, and after passing the powder, the supply of the powder is stopped, and then the gas cutting step is performed. Start.
(5)本発明に係るパウダー供給ノズルの態様5は、切断酸素と、予熱用酸素及び可燃性ガスを混合させた予熱ガスとを、一般軟鋼からなる被切断材に向けて噴出可能に設けられたガス切断火口に装着して、前記被切断材に対してパウダー切断を行うために設けられている。パウダー供給ノズルは、前記ガス切断火口の外周に沿って周方向に延在し鉄粉からなるパウダーを供給するパウダー供給路と、前記ガス切断火口から噴出した前記予熱ガスからなる予熱炎気流に向けて前記パウダーを噴出するパウダー噴出口と、を備える。 (5) Aspect 5 of the powder supply nozzle according to the present invention is configured to be able to spray cutting oxygen, preheating gas containing a mixture of preheating oxygen and combustible gas toward a workpiece made of general mild steel. The cutter is installed in a gas cutting nozzle to perform powder cutting on the material to be cut. The powder supply nozzle is directed toward a powder supply path extending circumferentially along the outer periphery of the gas cutting nozzle and supplying powder made of iron powder, and a preheating flame air stream consisting of the preheated gas ejected from the gas cutting nozzle. and a powder spout for spouting the powder.
(6)本発明の態様6は、態様5のパウダー供給ノズルにおいて、前記ガス切断火口に外嵌する内筒と、前記内筒の外周側に配置される外筒と、を有し、前記パウダー噴出口は、前記内筒と前記外筒との間に配置され、ノズル軸方向から見てリング状に形成されている。 (6) Aspect 6 of the present invention is the powder supply nozzle of Aspect 5, which includes an inner cylinder that fits onto the gas cutting nozzle, and an outer cylinder that is disposed on the outer peripheral side of the inner cylinder, and The jet nozzle is disposed between the inner cylinder and the outer cylinder, and is formed in a ring shape when viewed from the nozzle axial direction.
(7)本発明の態様7は、態様6のパウダー供給ノズルにおいて、前記パウダー噴出口は、ノズル軸回りに周回する周方向に区画する仕切り部を備え、前記仕切り部は、前記内筒の外周面と前記外筒の内周面とを接続する。 (7) Aspect 7 of the present invention is the powder supply nozzle according to aspect 6, wherein the powder jetting port includes a partition portion that circumferentially partitions the powder jetting port around the nozzle axis, and the partition portion is arranged around the outer circumference of the inner cylinder. The surface and the inner circumferential surface of the outer cylinder are connected.
(8)本発明の態様8は、態様7のパウダー供給ノズルにおいて、前記仕切り部の周方向の幅寸法は、周方向に隣り合う前記仕切り部同士の間の距離より小さい。 (8) Aspect 8 of the present invention is the powder supply nozzle according to aspect 7, in which the circumferential width dimension of the partition portion is smaller than the distance between the circumferentially adjacent partition portions.
(9)本発明の態様9は、態様7のパウダー供給ノズルにおいて、前記仕切り部は、前記周方向に90度の間隔をあけて4箇所に設けられている。 (9) A ninth aspect of the present invention is the powder supply nozzle according to the seventh aspect, wherein the partition portions are provided at four locations at intervals of 90 degrees in the circumferential direction.
(10)本発明の態様10は、態様5のパウダー供給ノズルにおいて、前記ガス切断火口から噴出する前記切断酸素及び前記予熱ガスの供給における開始及び停止を制御する第1制御と、前記パウダー噴出口から噴出する前記パウダーの供給における開始及び停止を制御する第2制御と、は別々に制御される。 (10) Aspect 10 of the present invention is the powder supply nozzle of Aspect 5, which includes a first control for controlling start and stop of the supply of the cutting oxygen and the preheating gas ejected from the gas cutting nozzle, and the powder supply nozzle. The second control for controlling the start and stop of the supply of the powder spouted from the powder is controlled separately.
(11)本発明に係るパウダー切断ノズルの態様11は、態様5から態様10のいずれか一つのパウダー供給ノズルと、前記パウダー供給ノズルを装着可能に設けられる前記ガス切断火口と、を備える。 (11) Aspect 11 of the powder cutting nozzle according to the present invention includes the powder supply nozzle according to any one of aspects 5 to 10, and the gas cutting nozzle to which the powder supply nozzle can be attached.
 本発明に係るパウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルによれば、一般軟鋼の切断時間を大幅に短縮することで作業効率を高めることができ、かつ安全性の向上を図ることができる。 According to the powder cutting method, powder supply nozzle, and powder cutting nozzle according to the present invention, it is possible to significantly shorten the cutting time for general mild steel, thereby increasing work efficiency and improving safety. .
図1は、本発明の実施形態による切断ノズルの全体構成を示す半縦断面図。FIG. 1 is a half-longitudinal cross-sectional view showing the overall configuration of a cutting nozzle according to an embodiment of the present invention. 図2は、図1に示すX1-X1線矢視図であって、切断ノズルを先端側から見た正面図。FIG. 2 is a view taken along the line X1-X1 shown in FIG. 1, and is a front view of the cutting nozzle seen from the tip side. 図3は、図1に示すX2-X2線矢視図であって、切断ノズルを後方から見た背面図。FIG. 3 is a view taken along the line X2-X2 shown in FIG. 1, and is a rear view of the cutting nozzle seen from behind. 図4は、切断ノズルを使用したピアシングの状態を示す図。FIG. 4 is a diagram showing a state of piercing using a cutting nozzle. 図5は、図4に示すX3-X3線断面図であって、粉流領域を示した図。FIG. 5 is a cross-sectional view taken along the line X3-X3 shown in FIG. 4, showing a powder flow region. 図6Aは、パウダーピアシングの動作説明図。FIG. 6A is an explanatory diagram of powder piercing operation. 図6Bは、パウダーピアシングの動作説明図。FIG. 6B is an explanatory diagram of powder piercing operation. 図6Cは、パウダーピアシングの動作説明図。FIG. 6C is an explanatory diagram of powder piercing operation. 図6Dは、パウダーピアシングの動作説明図。FIG. 6D is an explanatory diagram of powder piercing operation. 図7Aは、実施例による試験方法を示す概略図であり、比較例でパウダー供給無しのケースの図。FIG. 7A is a schematic diagram showing a test method according to an example, and is a diagram of a case in which no powder is supplied in a comparative example. 図7Bは、実施例による試験方法を示す概略図であり、実施例でパウダー供給有りのケースの図。FIG. 7B is a schematic diagram showing a test method according to an example, and is a diagram of a case with powder supply in the example. 変形例による切断ノズルを先端側から見た正面図である。FIG. 7 is a front view of a cutting nozzle according to a modified example, viewed from the tip side.
 本発明の一実施形態について、図1から図6を参照して説明する。なお、図面を見やすくするため、各構成要素の寸法等は適宜調整されている。 An embodiment of the present invention will be described with reference to FIGS. 1 to 6. Note that the dimensions of each component have been adjusted as appropriate to make the drawings easier to read.
 図1は、本実施形態の切断ノズル1の全体構成を示す半縦断面図である。図2は、図1に示すX1-X1線矢視図であって、切断ノズル1を先端側から見た正面図である。図3は、図1に示すX2-X2線矢視図であって、切断ノズル1を後方から見た背面図である。図4は、切断ノズル1を使用したピアシングの状態を示す図である。図5は、図4に示すX3-X3線断面図であって、粉流Taの領域を示した図である。図6は、パウダーピアシングの動作説明図である。そして、図1及び図3では、見やすくするためにガス切断火口2が省略されている。 FIG. 1 is a half-longitudinal cross-sectional view showing the overall configuration of a cutting nozzle 1 of this embodiment. FIG. 2 is a view along the line X1-X1 shown in FIG. 1, and is a front view of the cutting nozzle 1 viewed from the tip side. FIG. 3 is a view taken along the line X2-X2 shown in FIG. 1, and is a rear view of the cutting nozzle 1 seen from the rear. FIG. 4 is a diagram showing a state of piercing using the cutting nozzle 1. FIG. 5 is a cross-sectional view taken along the line X3-X3 shown in FIG. 4, and is a diagram showing a region of powder flow Ta. FIG. 6 is an explanatory diagram of the powder piercing operation. In FIGS. 1 and 3, the gas cutting nozzle 2 is omitted for clarity.
 本実施形態によるガス切断方法は、図1に示す切断ノズル1(パウダー切断ノズル)を使用して行われるパウダー切断方法を使用して一般軟鋼からなる被切断材W(図4、図7参照)を切断するための方法である。すなわち、切断ノズル1は、被切断材Wに対してピアシングや被切断材Wの端部からの切り込みを行う際に使用できる。本実施形態の切断ノズル1では、例えば不図示の載置テーブルへ略水平面に載置された被切断材Wに対してピアシングを行い、ピアシングに続いてピアシングを切断開始点として切断を行う一例を示す。 The gas cutting method according to the present embodiment uses a powder cutting method performed using the cutting nozzle 1 (powder cutting nozzle) shown in FIG. This is a method for cutting. That is, the cutting nozzle 1 can be used when piercing the material W to be cut or making a cut from the end of the material W to be cut. In the cutting nozzle 1 of the present embodiment, for example, a workpiece to be cut W placed on a mounting table (not shown) on a substantially horizontal plane is pierced, and then, following the piercing, cutting is performed using the piercing as a cutting start point. show.
 図1~図3に示すように、切断ノズル1は、ガス切断火口2と、パウダー供給ノズル3と、を備える。切断ノズル1は、ガス切断火口2の外周側にパウダー供給ノズル3が着脱可能な状態で装着される。
 ここで、切断ノズル1において、ノズル軸Oに沿って切断酸素、予熱ガスが噴出する下流側を先端側、先端側と反対側を基端側という。
As shown in FIGS. 1 to 3, the cutting nozzle 1 includes a gas cutting nozzle 2 and a powder supply nozzle 3. In the cutting nozzle 1, a powder supply nozzle 3 is removably attached to the outer peripheral side of the gas cutting nozzle 2.
Here, in the cutting nozzle 1, the downstream side from which cutting oxygen and preheating gas are ejected along the nozzle axis O is called the tip side, and the side opposite to the tip side is called the proximal side.
 ガス切断火口2は、切断酸素と、予熱用酸素及び可燃性ガスを混合させた予熱ガスと、が被切断材Wに向けて噴出可能に設けられる。ガス切断火口2は、被切断材Wを切断する際に用いる火口である。
 ここで、可燃性ガスとしては、LPG、アセチレン、プロピレン、LNG、水素などであり、これらのうち1種類を採用してもよいし、これらと予熱用酸素とを混合した予熱ガスを採用することも可能である。
The gas cutting nozzle 2 is provided so that cutting oxygen, preheating gas in which preheating oxygen and combustible gas are mixed can be ejected toward the material W to be cut. The gas cutting tip 2 is a tip used when cutting the material W to be cut.
Here, the combustible gas includes LPG, acetylene, propylene, LNG, hydrogen, etc., and one type of these may be used, or a preheating gas that is a mixture of these and preheating oxygen may be used. is also possible.
 ガス切断火口2は、切断酸素供給路21を有する内部芯棒2Aと、内部芯棒2Aを挿通させた外部火口2Bと、口金(図示省略)と、を備える。
 内部芯棒2Aは、長尺の円筒形状であり、先端側に向かうに従い細くなる形状を有している。内部芯棒2Aは、ノズル軸O方向の基端側において、上記の口金に螺着されている。これにより内部芯棒2Aは、口金に嵌合されて互いに一体とされている。内部芯棒2Aの材料は、例えば熱伝導性および耐熱性が高く、かつ製造コスト等の経済性も高い黄銅が採用される。
The gas cutting nozzle 2 includes an internal core rod 2A having a cutting oxygen supply path 21, an external nozzle 2B into which the internal core rod 2A is inserted, and a cap (not shown).
The internal core rod 2A has an elongated cylindrical shape, and has a shape that becomes thinner toward the tip side. The internal core rod 2A is screwed onto the above-mentioned cap at the base end side in the direction of the nozzle axis O. As a result, the internal core rods 2A are fitted into the base and are integral with each other. The material of the internal core rod 2A is, for example, brass, which has high thermal conductivity and heat resistance, and is also highly economical in terms of manufacturing cost.
 内部芯棒2Aは、長手方向のノズル軸Oに沿って延びる切断酸素供給路21を有する。切断酸素供給路21は、先端において外部空間に連通している。切断酸素供給路21の先端で内部芯棒2Aの先端面2aには、切断酸素を噴出する切断酸素噴出口22が形成されている。切断酸素供給路21を通過した切断酸素は、切断酸素噴出口22から先方に向けて噴出される。 The internal core rod 2A has a cut oxygen supply path 21 extending along the nozzle axis O in the longitudinal direction. The cut oxygen supply path 21 communicates with the external space at its tip. At the tip of the cutting oxygen supply path 21 and on the tip end surface 2a of the internal core rod 2A, a cutting oxygen spout 22 for spewing out cutting oxygen is formed. The cutting oxygen that has passed through the cutting oxygen supply path 21 is ejected forward from the cutting oxygen outlet 22.
 また、内部芯棒2Aは、切断酸素供給路21の外側でノズル軸Oに沿って延びる予熱ガス供給路23を有する。予熱ガス供給路23は、先端において外部空間に連通している。予熱ガス供給路23の先端で内部芯棒2Aの先端面2aには、ノズル軸O方向から見て切断酸素噴出口22から半径方向に放射状に延びる複数のスリット形状の予熱ガス噴出口24が形成されている。予熱ガス供給路23を通過した予熱ガスは、予熱ガス噴出口24から先方に向けて噴出される。 Furthermore, the internal core rod 2A has a preheated gas supply path 23 extending along the nozzle axis O outside the cutting oxygen supply path 21. The preheating gas supply path 23 communicates with the external space at its tip. A plurality of slit-shaped preheating gas outlets 24 are formed on the tip end surface 2a of the internal core rod 2A at the tip of the preheating gas supply path 23, extending radially from the cutting oxygen outlet 22 when viewed from the nozzle axis O direction. has been done. The preheated gas that has passed through the preheated gas supply path 23 is ejected from the preheated gas outlet 24 toward the front.
 外部火口2Bは、長尺の円筒形状であり、ノズル軸方向に見て同心円状に内部芯棒2Aに嵌合している。外部火口2Bは、外部火口2Bの内面2cと内部芯棒2Aの外面2bとの間に予熱酸素と燃焼ガスを混合した予熱ガスを通過させる予熱ガス供給路23を形成している。外部火口2Bの外面には、装着されるパウダー供給ノズル3が配置される。 The external nozzle 2B has an elongated cylindrical shape, and is fitted into the internal core rod 2A concentrically when viewed in the nozzle axial direction. The external crater 2B forms a preheated gas supply path 23 through which preheated gas, which is a mixture of preheated oxygen and combustion gas, passes between the inner surface 2c of the external crater 2B and the outer surface 2b of the internal core rod 2A. A powder supply nozzle 3 to be attached is arranged on the outer surface of the external nozzle 2B.
 次に、パウダー供給ノズル3の構成について詳細に説明する。図1~図3に示すように、パウダー供給ノズル3は、ガス切断火口2とは別体で設けられている。パウダー供給ノズル3は、ガス切断火口2の外周部にパウダーTを供給するパウダー供給路31を形成し、パウダーTを噴出するパウダー噴出口32を有する。 Next, the configuration of the powder supply nozzle 3 will be explained in detail. As shown in FIGS. 1 to 3, the powder supply nozzle 3 is provided separately from the gas cutting nozzle 2. As shown in FIGS. The powder supply nozzle 3 forms a powder supply path 31 for supplying the powder T to the outer circumference of the gas cutting nozzle 2, and has a powder spout 32 for spouting the powder T.
 パウダー供給ノズル3は、ガス切断火口2に外嵌する内筒35と、内筒35の外周側に配置される外筒36(外周壁)と、内筒35の内側に挿通させたガス切断火口2を係止するための火口止めナット34と、を備える。火口止めナット34、内筒35及び外筒36は、それぞれ円形断面に形成されている。火口止めナット34と内筒35のノズル軸方向に連設する接続部分の内面34a、35b同士は、ほぼ面一に形成されている。火口止めナット34と内筒35との内側には、ガス切断火口2が基端側から挿入されて嵌合される。火口止めナット34の先端部、内筒35及び外筒36の基端部には、それぞれを同軸に連通する雌ねじ部3aが形成されている。火口止めナット34、内筒35及び外筒36は、雌ねじ部3aに図3に示すねじ3bを締め付けることにより一体的に組み付けられる。 The powder supply nozzle 3 includes an inner cylinder 35 that fits over the gas cutting nozzle 2, an outer cylinder 36 (outer peripheral wall) arranged on the outer peripheral side of the inner cylinder 35, and a gas cutting nozzle that is inserted inside the inner cylinder 35. 2 is provided. The spout stopper nut 34, the inner tube 35, and the outer tube 36 are each formed to have a circular cross section. The inner surfaces 34a and 35b of the connecting portions of the nozzle stopper nut 34 and the inner cylinder 35 that are continuous in the nozzle axial direction are formed to be substantially flush with each other. The gas cutting nozzle 2 is inserted and fitted into the inside of the nozzle stopper nut 34 and the inner cylinder 35 from the base end side. A female screw portion 3a is formed at the tip of the nozzle stopper nut 34 and at the base end of the inner cylinder 35 and outer cylinder 36, which coaxially communicate with each other. The spout stopper nut 34, the inner tube 35, and the outer tube 36 are integrally assembled by tightening the screw 3b shown in FIG. 3 into the female threaded portion 3a.
 図1に示すように、内筒35の内面35bの形状は、ガス切断火口2の外周面2dに一致し、先端側に向かうに従い縮径している。内筒35の外周面35aの先端側には、先端に向けて外径が小さくなる先端テーパ部351が形成されている。 As shown in FIG. 1, the shape of the inner surface 35b of the inner cylinder 35 matches the outer circumferential surface 2d of the gas cutting nozzle 2, and the diameter decreases toward the tip side. A tip tapered portion 351 whose outer diameter decreases toward the tip is formed on the tip side of the outer circumferential surface 35a of the inner cylinder 35.
 外筒36は、内筒35とノズル軸方向の長さが同じである。外筒36は、基端側に配置されノズル軸方向に同心円上に延びる円筒状の基端部361と、基端部361の先端側に連設する円錐状のテーパ部362と、を有する。テーパ部362は、先端側に向かうに従い細くなる形状となっている。 The outer cylinder 36 has the same length as the inner cylinder 35 in the nozzle axial direction. The outer cylinder 36 has a cylindrical base end 361 arranged on the base end side and extending concentrically in the nozzle axis direction, and a conical taper part 362 connected to the distal end side of the base end 361. The tapered portion 362 has a shape that becomes thinner toward the distal end side.
 内筒35と外筒36との間には、パウダーTが供給される上記のパウダー供給路31が形成されている。内筒35の基端側には、径方向外側に突出する閉止フランジ35cが全周にわたって設けられている。閉止フランジ35cは、外筒36の基端側の内周面36aに対して液密に接触している。これにより、パウダー供給路31内に供給されるパウダーTは先端側のパウダー噴出口32から噴出される。 The above-mentioned powder supply path 31 through which the powder T is supplied is formed between the inner cylinder 35 and the outer cylinder 36. A closing flange 35c that protrudes radially outward is provided on the base end side of the inner cylinder 35 over the entire circumference. The closing flange 35c is in liquid-tight contact with the inner circumferential surface 36a of the outer cylinder 36 on the proximal end side. Thereby, the powder T supplied into the powder supply path 31 is ejected from the powder ejection port 32 on the tip side.
 基端部361には、パウダー供給路31に連通する複数(ここでは2つ)のパウダー導入継手37がねじ締結によって取り付けられている。パウダー導入継手37は、不図示のパウダー供給装置に接続され、このパウダー供給装置からパウダーがパウダー供給路31内に供給される。図3に示すように、2つのパウダー導入継手37同士のノズル軸方向から見た取付け角度θは、60°に設定されている。
 なお、パウダー導入継手37の取付け角度θは、パウダーがパウダー供給路31に均一に供給されるように配置されることが好ましい。そのため、最良の取付け角度θとしては、例えば180°ピッチで2箇所、あるいは120°ピッチで3箇所などがよい。ただし、パウダー導入継手37と上記パウダー供給装置とを繋ぐ配管(図示省略)の取り合いを考慮して、本実施形態のように2箇所を片側に寄せた配置としてもよい。
A plurality of (here, two) powder introduction joints 37 communicating with the powder supply path 31 are attached to the base end portion 361 by screw fastening. The powder introduction joint 37 is connected to a powder supply device (not shown), and powder is supplied into the powder supply path 31 from this powder supply device. As shown in FIG. 3, the mounting angle θ between the two powder introduction joints 37 when viewed from the nozzle axis direction is set to 60°.
Note that the mounting angle θ of the powder introduction joint 37 is preferably arranged so that the powder is uniformly supplied to the powder supply path 31. Therefore, the best mounting angle θ is, for example, two locations at a 180° pitch, or three locations at a 120° pitch. However, in consideration of the arrangement of the piping (not shown) connecting the powder introduction joint 37 and the powder supply device, the two locations may be placed closer to one side as in this embodiment.
 図2に示すように、パウダー噴出口32は、内筒35の外周面35aと外筒36の内周面36aとの間に配置され、ノズル軸方向から見てリング状に形成されている。さらにパウダー噴出口32は、ノズル軸回りに周回する周方向に区画する複数(本実施形態では4つ)の仕切りリブ33(仕切り部)を備えている。すなわち、仕切りリブ33は、周方向に90°ピッチで間隔をあけて設けられている。 As shown in FIG. 2, the powder spout 32 is arranged between the outer circumferential surface 35a of the inner cylinder 35 and the inner circumferential surface 36a of the outer cylinder 36, and is formed in a ring shape when viewed from the nozzle axial direction. Further, the powder spout 32 includes a plurality of (four in this embodiment) partition ribs 33 (partition portions) that circumferentially circumferentially circulate around the nozzle axis. That is, the partition ribs 33 are provided at intervals of 90° in the circumferential direction.
 仕切りリブ33は、パウダー噴出口32の周方向に一定の間隔をあけて複数配置され、内筒35の外周面35aと外筒36の内周面36aとを接続する。仕切りリブ33は、周方向に90°の間隔をあけて4箇所に設けられている。仕切りリブ33は、図1に示すように、内筒35及び外筒36の先端から基端側に延びている。仕切りリブ33が配置される領域は、内筒35の先端テーパ部351に対して径方向に対向する範囲である。ここで、仕切りリブ33の周方向の幅寸法は、周方向に隣り合う仕切りリブ33同士の間の距離より小さくなっている。 A plurality of partition ribs 33 are arranged at regular intervals in the circumferential direction of the powder spout 32 and connect the outer circumferential surface 35 a of the inner cylinder 35 and the inner circumferential surface 36 a of the outer cylinder 36 . The partition ribs 33 are provided at four locations at intervals of 90° in the circumferential direction. As shown in FIG. 1, the partition rib 33 extends from the distal end of the inner tube 35 and the outer tube 36 toward the base end side. The region where the partition rib 33 is arranged is a range that faces the tapered tip portion 351 of the inner cylinder 35 in the radial direction. Here, the width dimension of the partition rib 33 in the circumferential direction is smaller than the distance between the partition ribs 33 adjacent to each other in the circumferential direction.
 パウダー供給ノズル3のパウダー噴出口32から噴出されるパウダーTは、ガス切断火口2の噴出口の外周から予熱炎気流Rに向けて供給され、予熱炎気流Rを囲むように粉流Taを形成する。そして、パウダー噴出口32に仕切りリブ33を設けることにより、図5に示すように、このパウダーTによる粉流Taは、パウダーTの噴出方向にスリット状に延在しパウダーTが供給されない非供給領域Tbを形成する。 The powder T ejected from the powder outlet 32 of the powder supply nozzle 3 is supplied from the outer periphery of the outlet of the gas cutting nozzle 2 toward the preheating flame stream R, forming a powder stream Ta surrounding the preheating flame stream R. do. By providing the partition rib 33 on the powder spout 32, as shown in FIG. A region Tb is formed.
 次に、切断ノズル1を使用して一般軟鋼からなる被切断材Wに対してピアシングを行うためのピアシング方法と、このピアシング方法を使用して被切断材Wを切断するガス切断方法と、を実施する際の動作、および上述した本実施形態のパウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルの作用について説明する。 Next, a piercing method for piercing a workpiece W made of general mild steel using the cutting nozzle 1, and a gas cutting method for cutting the workpiece W using this piercing method. The operation during implementation and the functions of the powder cutting method, powder supply nozzle, and powder cutting nozzle of the present embodiment described above will be described.
 先ず、図2に示すように、使用する切断ノズル1は、ガス切断火口2にパウダー供給ノズル3を組み付けて一体化した状態で使用する。
 図2及び図4に示すように、予熱用酸素及び可燃性ガスを混合させた予熱ガスが切断ノズル1のガス切断火口2の予熱ガス供給路23に供給され、この予熱ガスが予熱ガス噴出口24から外部に噴出されて予熱炎を発生させる。これと同時に、切断酸素が切断酸素供給路21に供給されて切断酸素噴出口22から噴出される。さらに、パウダー供給ノズル3において、パウダーTがパウダー供給路31に供給されてパウダー噴出口32から噴出される。このときパウダー噴出口32から噴出されるパウダーTは、予熱ガスからなる予熱炎気流Rに向けて供給される。
 なお、図4では、見やすくするためにパウダーT(粉流Ta)が予熱炎気流Rの外周に沿うように噴出した図になっているが、予熱炎気流Rの流通方向に対して交差する向きでパウダーTが供給される。
First, as shown in FIG. 2, the cutting nozzle 1 is used in a state in which a powder supply nozzle 3 is assembled and integrated with a gas cutting nozzle 2.
As shown in FIGS. 2 and 4, preheating gas in which preheating oxygen and combustible gas are mixed is supplied to the preheating gas supply path 23 of the gas cutting nozzle 2 of the cutting nozzle 1, and this preheating gas is supplied to the preheating gas outlet. 24 to the outside to generate a preheating flame. At the same time, cutting oxygen is supplied to the cutting oxygen supply path 21 and ejected from the cutting oxygen outlet 22. Further, in the powder supply nozzle 3, the powder T is supplied to the powder supply path 31 and ejected from the powder spout 32. At this time, the powder T ejected from the powder ejection port 32 is supplied toward the preheated flame stream R consisting of the preheated gas.
In addition, in FIG. 4, the powder T (powder flow Ta) is shown to be ejected along the outer periphery of the preheating flame flow R for ease of viewing, but it is shown that the powder T (powder flow Ta) is ejected along the outer periphery of the preheating flame flow R. Powder T is supplied.
 本実施形態では、パウダー噴出口32がガス切断火口2の切断酸素噴出口22及び予熱ガス噴出口24の外周側に配置されているので、パウダー噴出口32から噴出されるパウダーTは予熱炎気流Rの外周側に沿って供給される。すなわち、予熱炎気流Rは、パウダーTの粉流Taによって覆われた状態となる。
 なお、上述したように粉流Taには、非供給領域Tbが形成される。そして、予熱炎気流Rが粉流Taによって全周にわたって覆われている状態ではなく、粉流Taの一部がスリット状に開放されている。
In this embodiment, the powder jet nozzle 32 is arranged on the outer peripheral side of the cutting oxygen jet nozzle 22 and the preheating gas jet nozzle 24 of the gas cutting nozzle 2, so that the powder T jetted from the powder jet nozzle 32 flows into the preheated flame air stream. It is supplied along the outer circumferential side of R. That is, the preheating flame flow R is covered with the powder flow Ta of the powder T.
Note that, as described above, the non-supply area Tb is formed in the powder flow Ta. The preheating flame flow R is not completely covered by the powder flow Ta, but a part of the powder flow Ta is opened in the form of a slit.
 噴出されるパウダーTは、粉流Taの内側の予熱炎気流Rに供給され、十分に加熱・溶融されて一般軟鋼からなる被切断材Wに向けて噴出される。しかも、パウダーTが外方に飛散して損失することがなく、ほとんどのパウダーTを効率よく燃焼させることができる。 The ejected powder T is supplied to the preheated flame flow R inside the powder flow Ta, is sufficiently heated and melted, and is ejected toward the workpiece W made of general mild steel. Moreover, most of the powder T can be efficiently burned without causing the powder T to be scattered outward and lost.
 より具体的には、図6A~図6Dに示すように、ガス切断火口2から予熱ガスを噴出させるとともに、ガス切断火口2から噴出した予熱ガスからなる予熱炎気流Rに向けてパウダーTを供給することで、予熱炎気流R中に赤熱化されたパウダーT3が発生する。ここで、図6A~図6Dにおいて符号T1は噴出直後のパウダーを示し、符号T2は赤熱化する途中のパウダーを示し、符号T3は赤熱化したパウダーを示している。そして、赤熱化されたパウダーT3は、切断酸素気流Vの噴出定点Va周囲に配置される。その噴出定点Va周囲の赤熱化されたパウダーT3に切断酸素を供給することで、一気に酸化反応を起こし、極めて短い予熱時間で被切断材Wに対してピアシング、あるいは切断を行うことができる。 More specifically, as shown in FIGS. 6A to 6D, preheated gas is ejected from the gas cutting nozzle 2, and powder T is supplied toward the preheated flame stream R made of the preheated gas ejected from the gas cutting nozzle 2. As a result, red-hot powder T3 is generated in the preheating flame air flow R. Here, in FIGS. 6A to 6D, the symbol T1 indicates the powder immediately after being ejected, the symbol T2 indicates the powder that is in the process of becoming red-hot, and the symbol T3 indicates the powder that has become red-hot. Then, the red-hot powder T3 is placed around the ejection fixed point Va of the cutting oxygen stream V. By supplying cutting oxygen to the red-hot powder T3 around the ejection fixed point Va, an oxidation reaction is caused at once, and the workpiece W can be pierced or cut in an extremely short preheating time.
 このように、本実施形態では、一般軟鋼の被切断材Wに対してもパウダー切断方法を適用することが可能となり、切断時間を大幅に短縮することで作業効率を高めることができ、かつ安全性の向上を図ることができる。
 従って、パウダーTの燃焼比率は高くなり、発熱反応が強力となって燃焼効率が上昇する。そして、被切断材Wの母材を溶融させると同時に、燃焼生成物を予熱炎気流Rの機械的エネルギーで吹き飛ばし、被切断材Wをピアシングしたり切り込む動作を容易に行うことができる。
In this way, in this embodiment, it is possible to apply the powder cutting method to the workpiece W of general mild steel, and it is possible to improve work efficiency by significantly shortening the cutting time, and to improve safety. It is possible to improve sexual performance.
Therefore, the combustion ratio of powder T becomes high, the exothermic reaction becomes strong, and the combustion efficiency increases. Then, at the same time as melting the base material of the workpiece W, the combustion products are blown away by the mechanical energy of the preheated flame stream R, and the workpiece W can be easily pierced or cut.
 このように予熱用酸素及び可燃性ガスを混合させた予熱ガスからなる予熱炎気流RにパウダーTを供給することにより被切断材Wをピアシングして貫通穴Pを形成する。
 また、本実施形態では、即、ピアシングのみを開始できる。そのため、従来のようなピアシング前に例えば1~5分に及ぶ長時間の予熱を行う必要が無い。しかも、上述したようにピアシングにおいてパウダーTを予熱炎気流Rに供給することにより、燃焼効率が上昇する。そのため、短時間(例えば10秒以下程度)でピアシングを行うことができ、動作時間を大幅に短縮することができる。
By supplying the powder T to the preheating flame flow R made of the preheating gas in which preheating oxygen and combustible gas are mixed in this way, the material to be cut W is pierced to form the through hole P.
Further, in this embodiment, only piercing can be started immediately. Therefore, there is no need to perform preheating for a long time, for example, for 1 to 5 minutes, before piercing as in the conventional case. Furthermore, as described above, by supplying the powder T to the preheating flame stream R during piercing, the combustion efficiency increases. Therefore, piercing can be performed in a short time (for example, about 10 seconds or less), and the operation time can be significantly shortened.
 続いて、予熱炎気流RにパウダーTを供給することにより被切断材Wをピアシングして貫通穴Pを形成した後で、かつガス切断工程の前には、ピアシングによって被切断材Wの上面に付着した吹上げノロGを通過するまでパウダーTを供給し続ける。そして、吹上げノロGをパウダーTにより吹き飛ばして剥離させて除去した後に、パウダーの供給を停止し、ガス切断工程を開始する。
 このように、本実施形態では、吹上げノロGの剥離工程をピアシング工程の中で同時に行うことができる。そのため、通常の工程では、予熱工程、ピアシング工程、吹上げノロGの剥離工程、予熱工程、切断工程となるところを、本実施形態では予熱工程、ピアシング工程(吹上げノロGの剥離工程を含む)、切断工程となって工程を省略することが可能となる。
Subsequently, after piercing the workpiece W by supplying powder T to the preheating flame flow R and forming the through hole P, and before the gas cutting step, the upper surface of the workpiece W is pierced by piercing. Continue to supply the powder T until it passes through the attached blow-up slag G. Then, after the blow-up slag G is blown off and removed by the powder T, the supply of the powder is stopped and the gas cutting process is started.
In this manner, in this embodiment, the process of peeling off the blow-up slag G can be performed simultaneously during the piercing process. Therefore, in a normal process, there is a preheating process, a piercing process, a peeling process of the blow-up slag G, a preheating process, and a cutting process, but in this embodiment, the preheating process, the piercing process (including the process of peeling the blow-up slag G) ), the cutting process can be omitted.
 さらに、本実施形態では、切断ノズル1により自動的にパウダーTを噴出することが可能となる。そのため、従来のように鉄線を人力で予熱炎気流Rに供給するといった作業が不要となる。すなわち、被切断材W上で作業員が行う作業をなくすことができ、作業にかかる安全性を高めることができる。しかも、本実施形態の切断ノズル1は切断装置に組み込み、自動化できるので、作業効率や品質が向上する。 Furthermore, in this embodiment, the powder T can be automatically ejected by the cutting nozzle 1. Therefore, it is no longer necessary to manually supply the iron wire to the preheating flame stream R as in the past. That is, it is possible to eliminate the work performed by the worker on the material W to be cut, and it is possible to improve the safety of the work. Moreover, since the cutting nozzle 1 of this embodiment can be incorporated into a cutting device and automated, work efficiency and quality are improved.
 また、このとき使用される切断ノズル1は、切断酸素供給路21を形成し切断酸素を噴出する切断酸素噴出口22、及び予熱ガス供給路23を形成し予熱ガスを噴出する予熱ガス噴出口24を有するガス切断火口2と、パウダー供給ノズル3と、を備える。パウダー供給ノズル3は、ガス切断火口2の外周に沿って周方向に延在しパウダーTを供給するパウダー供給路31と、ガス切断火口2から噴出した予熱ガスからなる予熱炎気流Rに向けてパウダーTを噴出するパウダー噴出口32と、を備える。ガス切断火口2に外嵌する内筒35と、内筒35の外周側に配置される外筒36と、を有する。パウダー噴出口32は、内筒35と外筒36との間に配置され、ノズル軸方向から見てリング状に形成されている。この場合、パウダー供給ノズル3のパウダー噴出口32が同芯のリング状となるので、パウダーTの供給が安定する。 The cutting nozzle 1 used at this time also includes a cutting oxygen outlet 22 that forms a cutting oxygen supply path 21 and blows out cutting oxygen, and a preheating gas blowout 24 that forms a preheating gas supply path 23 and blows out preheating gas. The present invention includes a gas cutting nozzle 2 having a gas cutting nozzle 2 and a powder supply nozzle 3. The powder supply nozzle 3 has a powder supply path 31 that extends in the circumferential direction along the outer periphery of the gas cutting nozzle 2 and supplies the powder T, and a preheating flame flow R that is made up of preheated gas ejected from the gas cutting nozzle 2. A powder spout 32 that spouts powder T is provided. It has an inner cylinder 35 that fits onto the gas cutting nozzle 2, and an outer cylinder 36 that is disposed on the outer peripheral side of the inner cylinder 35. The powder spout 32 is arranged between the inner cylinder 35 and the outer cylinder 36, and is formed in a ring shape when viewed from the nozzle axial direction. In this case, the powder spout 32 of the powder supply nozzle 3 has a concentric ring shape, so that the supply of the powder T is stabilized.
 そして、ピアシング完了後にパウダー供給ノズル3から噴出されるパウダーTの供給のみを停止する。
 その後、ピアシングによって加工された被切断材Wの貫通穴Pを切断開始点として、ピアシングを行う工程から継続して噴出される予熱炎気流Rによって被切断材Wに対してガス切断が行われる。このように、本実施形態では、ピアシング後にパウダーTの噴出を停止することのみで、予熱炎気流Rはそのまま継続して噴出して被切断材Wに対して所定形状の切り込みを設けることができる。つまり、ピアシングと切り込みの動作の切り換えによりガス切断火口2を停止する必要がなく、効率よく、かつ短時間で切り込み動作を行うことができる。
After piercing is completed, only the supply of powder T ejected from the powder supply nozzle 3 is stopped.
Thereafter, gas cutting is performed on the workpiece W using the through hole P of the workpiece W processed by piercing as a cutting start point using the preheated flame air flow R that is continuously ejected from the piercing process. In this way, in this embodiment, by simply stopping the ejection of the powder T after piercing, the preheating flame air flow R can continue to be ejected and a predetermined-shaped cut can be made in the workpiece W. . In other words, there is no need to stop the gas cutting tip 2 by switching between piercing and cutting operations, and the cutting operation can be performed efficiently and in a short time.
 このように、本実施形態ではピアシング後にそのまま連続的に切り込みを行うことができる。そのため、一旦停止させることがなく、切り込み箇所を損傷させることを防止でき、被切断材Wの廃棄箇所を低減できる。 In this way, in this embodiment, incisions can be made continuously after piercing. Therefore, there is no need to temporarily stop the cutter, it is possible to prevent damage to the cut portion, and it is possible to reduce the number of places where the material to be cut W is discarded.
 なお、本実施形態では、ピアシングによって形成した貫通穴Pを切断開始点として切断するパウダー切断方法の一例を示したが、ピアシングを行わずに被切断材Wの端面から直接切り込む切断方法に上述したパウダー切断方法を適用することができる。 In addition, in this embodiment, an example of the powder cutting method was shown in which cutting is performed using the through hole P formed by piercing as the cutting starting point, but the above-mentioned cutting method in which cutting is performed directly from the end surface of the workpiece W without piercing is shown. Powder cutting method can be applied.
 なお、切断ノズル1は制御部(図示省略)に接続されていてもよい。この場合の制御部では、ガス切断火口2から噴出される切断酸素及び予熱ガスの供給における開始及び停止を制御する第1制御と、パウダー噴出口32から噴出されるパウダーTの供給における開始及び停止を制御する第2制御と、が別々に制御される。これによりパウダーTの供給のタイミングや供給時間を、切断方法や被切断材Wの厚みや材質などの条件に合わせて適宜調整することができる。 Note that the cutting nozzle 1 may be connected to a control section (not shown). In this case, the control section includes a first control for controlling the start and stop of the supply of cutting oxygen and preheating gas ejected from the gas cutting nozzle 2, and a first control for controlling the start and stop of the supply of the powder T ejected from the powder ejection port 32. and a second control for controlling are separately controlled. Thereby, the timing and supply time of supplying the powder T can be adjusted as appropriate in accordance with conditions such as the cutting method and the thickness and material of the material W to be cut.
 また、本実施形態のピアシング方法では、予熱炎気流Rは、供給されるパウダーTによって膜状に覆われている。そのため、パウダーTが予熱炎気流Rの外周部から周方向に均等に接触させた状態で供給することができ、断面視でパウダーTの燃焼領域にムラが無く、断面全体に均等に燃焼させることができる。 Furthermore, in the piercing method of this embodiment, the preheating flame flow R is covered with the supplied powder T in the form of a film. Therefore, the powder T can be supplied from the outer periphery of the preheating flame flow R in a state in which it is evenly contacted in the circumferential direction, and when viewed in cross section, there is no unevenness in the combustion area of the powder T, and the powder T can be burned evenly over the entire cross section. I can do it.
 また、本実施形態のピアシング方法では、図5に示すように、パウダーTがガス切断火口2の噴出口の外周から予熱炎気流Rに向けて供給され、予熱炎気流Rを囲むように粉流Taを形成している。パウダーTによる粉流Taは、パウダーTの噴出方向にスリット状に延在しパウダーTが供給されない非供給領域Tbを形成している。これにより、予熱炎気流R全体がパウダーTの粉流Taによって外方から完全に覆われることがなく、粉流Taの一部に非供給領域Tbの隙間が形成される。すなわち、図4に示すように、ピアシングの際に切断ノズル1側に向かって飛散してくる吹上げノロGが、非供給領域Tbのスリット状の隙間から粉流Taの外方に拡散する。そのため、切断ノズル1のガス切断火口2の火口に吹上げノロGが付着することを抑制でき、ガス切断火口2が逆火することを防止できる。 In addition, in the piercing method of this embodiment, as shown in FIG. It forms Ta. The powder flow Ta of the powder T extends like a slit in the jetting direction of the powder T, and forms a non-supply region Tb where the powder T is not supplied. As a result, the entire preheating flame flow R is not completely covered from the outside by the powder flow Ta of the powder T, and a gap of the non-supply region Tb is formed in a part of the powder flow Ta. That is, as shown in FIG. 4, the blow-up slag G that scatters toward the cutting nozzle 1 side during piercing is diffused to the outside of the powder flow Ta from the slit-shaped gap in the non-supply area Tb. Therefore, it is possible to suppress the blow-up slag G from adhering to the gas cutting nozzle 2 of the cutting nozzle 1, and it is possible to prevent the gas cutting nozzle 2 from backfiring.
 また、本実施形態の切断ノズル1は、パウダー噴出口32は、ノズル軸回りに周回する周方向に区画する仕切りリブ33を備えている。仕切りリブ33は、内筒35の外周面35aと外筒36の内周面36aとを接続する。これにより、予熱炎気流R全体がパウダーTの粉流Taによって外方から完全に覆われることがなく、粉流Taの一部に非供給領域Tbの隙間が形成される。すなわち、図4に示すように、ピアシングの際に切断ノズル1側に向かって飛散してくる吹上げノロGが、非供給領域Tbの隙間から粉流Taの外方に拡散する。そのため、切断ノズル1のガス切断火口2の火口に吹上げノロGが付着することを抑制でき、ガス切断火口2が逆火することを防止でき、ピアシングの安定性を維持することができる。 Furthermore, in the cutting nozzle 1 of the present embodiment, the powder spout 32 is equipped with a partition rib 33 that circumferentially circumferentially circumferentially surrounds the nozzle axis. The partition rib 33 connects the outer peripheral surface 35a of the inner cylinder 35 and the inner peripheral surface 36a of the outer cylinder 36. As a result, the entire preheating flame flow R is not completely covered from the outside by the powder flow Ta of the powder T, and a gap of the non-supply region Tb is formed in a part of the powder flow Ta. That is, as shown in FIG. 4, the blow-up slag G that scatters toward the cutting nozzle 1 side during piercing is diffused to the outside of the powder flow Ta from the gap in the non-supply area Tb. Therefore, it is possible to suppress the blow-up slag G from adhering to the gas cutting nozzle 2 of the cutting nozzle 1, to prevent the gas cutting nozzle 2 from backfiring, and to maintain the stability of piercing.
 また、本実施形態の切断ノズル1は、仕切りリブ33の周方向の幅寸法が周方向に隣り合う仕切りリブ33同士の間の距離より小さくなるように配置されている。この場合、予熱炎気流Rに向けて十分な量のパウダーTを供給することができる。 Furthermore, the cutting nozzle 1 of this embodiment is arranged such that the circumferential width dimension of the partition ribs 33 is smaller than the distance between the partition ribs 33 adjacent to each other in the circumferential direction. In this case, a sufficient amount of powder T can be supplied toward the preheating flame flow R.
 また、本実施形態の切断ノズル1は、仕切りリブ33が周方向に90度の間隔をあけて4箇所に設けられている。そのため、吹上げノロGを、非供給領域Tbの隙間から粉流Taの外方4方向に向けて均一に拡散させることができる。 Further, in the cutting nozzle 1 of this embodiment, partition ribs 33 are provided at four locations at intervals of 90 degrees in the circumferential direction. Therefore, the blown-up slag G can be uniformly diffused from the gap in the non-supply area Tb toward the outer four directions of the powder flow Ta.
 また、本実施形態の切断ノズル1は、ガス切断火口2から噴出する切断酸素及び予熱ガスの供給における開始及び停止を制御する第1制御と、パウダー噴出口32から噴出するパウダーTの供給における開始及び停止を制御する第2制御と、が別々に制御される。そのため、ピアシング後に第2制御によりパウダーTの噴出のみを停止することで、予熱炎気流Rはそのまま継続して噴出して被切断材Wに対して所定形状の切り込みを設ける動作を行うことができる。 Further, the cutting nozzle 1 of the present embodiment has a first control for controlling the start and stop of the supply of cutting oxygen and preheating gas ejected from the gas cutting nozzle 2, and a start control for controlling the supply of the powder T ejected from the powder ejection port 32. and a second control that controls stopping are separately controlled. Therefore, by stopping only the spouting of the powder T by the second control after piercing, the preheating flame flow R can continue to be jetted out as it is, and an operation can be performed to create a cut of a predetermined shape in the workpiece W. .
 次に、上述した実施形態によるパウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルの効果を裏付けるために行った実施例について以下説明する。 Next, examples conducted to prove the effects of the powder cutting method, powder supply nozzle, and powder cutting nozzle according to the above-described embodiment will be described below.
(実施例)
 本実施例では、上記の実施形態の切断ノズル1を使用し、所定板厚の被切断材Wに対してピアシングによる試験を行い、パウダーの有無によるピアシング時間を評価した。図7Aは、試験方法を示す概略図であり、比較例でパウダー供給無しのケースを示す。図7Bは、試験方法を示す概略図であり、実施例でパウダー供給有りのケースを示す。表1は、試験の条件と試験結果を示す。
(Example)
In this example, using the cutting nozzle 1 of the above embodiment, a piercing test was conducted on a workpiece W having a predetermined thickness, and the piercing time was evaluated depending on the presence or absence of powder. FIG. 7A is a schematic diagram showing the test method, and shows a comparative example without powder supply. FIG. 7B is a schematic diagram showing the test method, and shows a case with powder supply in the example. Table 1 shows the test conditions and test results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験で使用する使用燃料ガス(可燃性ガス)は、炭化系水素ガス(LPG)と水素混合ガスの2種類を使用した。炭化系水素ガス(LPG)と水素混合ガスは、それぞれ板厚が25mm、50mmの一般軟鋼の被切断材Wに対してパウダー供給有りの実施例と、パウダー供給無しの比較例によりピアシングを行いピアシング予熱時間(秒)とピアシングによって形成される貫通穴径(ピアス穴径(mm))を確認した。
 ここで、図7Aの符号P2(P)は比較例(パウダー供給無し)によるピアス穴を示し、図7Bの符号P1(P)は実施例(パウダー供給有り)によるピアス穴を示している。
Two types of fuel gas (combustible gas) were used in the test: hydrocarbon gas (LPG) and hydrogen mixed gas. Hydrocarbon gas (LPG) and hydrogen mixed gas were used to perform piercing on general mild steel workpieces W with plate thicknesses of 25 mm and 50 mm, respectively, in an example with powder supply and a comparative example without powder supply. The preheating time (seconds) and the diameter of the through hole formed by piercing (piercing hole diameter (mm)) were confirmed.
Here, the symbol P2 (P) in FIG. 7A indicates the pierced hole according to the comparative example (without powder supply), and the symbol P1 (P) in FIG. 7B indicates the pierced hole according to the example (with powder supply).
 試験条件であるパウダー供給量(g/min)、開口率(パウダー供給口(上述したパウダー噴出口に相当))、火口高さH(mm)は、表1に示す通りである。被切断材Wの上面から火口までの火口高さHは、実施例(パウダー供給有り)の場合で100mmとし、比較例(パウダー供給無し)の場合で10mmとしている。 The test conditions, which are powder supply amount (g/min), aperture ratio (powder supply port (corresponding to the powder spout described above)), and crater height H (mm), are as shown in Table 1. The crater height H from the top surface of the workpiece W to the crater is 100 mm in the example (with powder supply) and 10 mm in the comparative example (without powder supply).
 表1に示すように、試験の結果、実施例(パウダー供給有り)の場合のピアシング予熱時間(秒)は、板厚25mmで4~8秒、板厚50mmで10秒となった。一方、比較例(パウダー供給無し)の場合のピアシング予熱時間(秒)は、板厚25mmで40~60秒(炭化系水素ガス)、20~30秒(水素予熱ガス)、板厚50mmで70~90秒(炭化系水素ガス)、60~80秒(水素予熱ガス)となった。このように実施例は、比較例に比べて大幅にピアシング予熱時間を短縮できることがわかる。また、実施例では、被切断材Wの板厚を大きくしてもピアシング予熱時間は数秒増える微増である。これに対して、比較例では、被切断材Wの板厚を大きくするほど、ピアシング時間も倍近く増加する。 As shown in Table 1, the test results showed that the piercing preheating time (seconds) in the example (with powder supply) was 4 to 8 seconds for a plate thickness of 25 mm and 10 seconds for a plate thickness of 50 mm. On the other hand, the piercing preheating time (seconds) in the comparative example (no powder supply) is 40 to 60 seconds (hydrocarbon gas) for a plate thickness of 25 mm, 20 to 30 seconds (hydrogen preheating gas), and 70 seconds for a plate thickness of 50 mm. -90 seconds (hydrocarbon-based hydrogen gas) and 60-80 seconds (hydrogen preheating gas). As described above, it can be seen that in the example, the piercing preheating time can be significantly shortened compared to the comparative example. Further, in the embodiment, even if the thickness of the material to be cut W is increased, the piercing preheating time increases slightly by several seconds. On the other hand, in the comparative example, as the thickness of the material to be cut W increases, the piercing time also increases nearly twice.
 また、ピアス穴径は、実施例(パウダー供給有り)が比較例(パウダー供給無し)よりも小径になっている。被切断材Wの板厚が25mmの場合には、実施例で8mmであるのに対して比較例では12mmとなった。また、被切断材Wの板厚が50mmの場合には、実施例で12mmであるのに対して比較例では2倍で24mmとなった。このことから、パウダー供給を行うことにより、ピアス穴径を小さくでき効率的であることがわかった。 Furthermore, the diameter of the piercing hole in the example (with powder supply) is smaller than that in the comparative example (without powder supply). When the plate thickness of the material to be cut W was 25 mm, the thickness was 8 mm in the example, whereas it was 12 mm in the comparative example. Further, when the plate thickness of the material to be cut W is 50 mm, the thickness in the example is 12 mm, whereas in the comparative example, the thickness is doubled to 24 mm. From this, it was found that by supplying powder, the diameter of the pierced hole can be reduced and it is efficient.
 さらに、実施例の場合には、ピアシング予熱時間、ピアス穴径ともに、ガスの種類による変動がみられなかった。そのため、例えば低コストのガスを使用しても同様の効果が得られる。 Furthermore, in the case of the example, no variation was observed depending on the type of gas in both the piercing preheating time and the piercing hole diameter. Therefore, the same effect can be obtained even if a low-cost gas is used, for example.
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、上述した実施形態及び以下で示す変形例において示した構成要素は適宜に組み合わせて構成することが可能である。 Although the embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like may be made without departing from the gist of the present invention. Furthermore, the components shown in the embodiments described above and the modified examples shown below can be configured by appropriately combining them.
 例えば、上述した実施形態では、ガス切断火口2とパウダー供給ノズル3とを備えた切断ノズル1を使用したパウダー切断方法を例示したが、切断ノズル1を使用してパウダーを供給するパウダー切断方法であることに限定されることはない。例えば、本実施形態の切断ノズル1ではなく、例えばパウダー供給ノズル3と同様の機能を有するパウダー供給手段をガス切断火口2とは別体で設け、ガス切断火口2から噴出される予熱炎気流Rに対してパウダー供給手段からパウダーを供給する方法とすることも可能である。 For example, in the embodiment described above, the powder cutting method using the cutting nozzle 1 including the gas cutting nozzle 2 and the powder supply nozzle 3 was exemplified, but the powder cutting method using the cutting nozzle 1 to supply powder It is not limited to one thing. For example, instead of the cutting nozzle 1 of this embodiment, a powder supply means having the same function as the powder supply nozzle 3 may be provided separately from the gas cutting nozzle 2, and the preheating flame air flow R ejected from the gas cutting nozzle 2 may be provided. It is also possible to supply the powder from the powder supply means.
 また、本実施形態では、パウダー供給ノズル3のパウダー噴出口32に仕切りリブ33(仕切り部)を設ける構成としているが、この仕切りリブ33は省略することも可能である。あるいは、仕切りリブ33の数量や位置を変更することも可能である。
 例えば、図8に示す変形例のパウダー供給ノズル3Aの内筒35の外周面35aと外筒36の内周面36aとの間のパウダー噴出口32Aように、仕切りリブ33(仕切り部)が設けられず全周にわたってリング状に開口する構成であってもかまわない。
Further, in this embodiment, the powder spout 32 of the powder supply nozzle 3 is provided with a partition rib 33 (partition portion), but the partition rib 33 may be omitted. Alternatively, it is also possible to change the number and position of the partition ribs 33.
For example, a partition rib 33 (partition portion) is provided like a powder spout 32A between the outer peripheral surface 35a of the inner cylinder 35 and the inner peripheral surface 36a of the outer cylinder 36 of the modified powder supply nozzle 3A shown in FIG. It is also possible to have a ring-shaped opening over the entire circumference.
 また、ガス切断火口2の各構成(切断酸素供給路21、切断酸素噴出口22、予熱ガス供給路23、予熱ガス噴出口24など)の形状、数量についても、上記実施形態に限定されない。 Further, the shape and quantity of each component of the gas cutting nozzle 2 (the cutting oxygen supply path 21, the cutting oxygen outlet 22, the preheating gas supply path 23, the preheating gas outlet 24, etc.) are not limited to the above embodiments.
 本発明に係るパウダー切断方法、パウダー供給ノズル、及びパウダー切断ノズルによれば、一般軟鋼の切断時間を大幅に短縮することで作業効率を高めることができ、かつ安全性の向上を図ることができる。 According to the powder cutting method, powder supply nozzle, and powder cutting nozzle according to the present invention, it is possible to significantly shorten the cutting time for general mild steel, thereby increasing work efficiency and improving safety. .
1 切断ノズル
2 ガス切断火口
3、3A パウダー供給ノズル
21 切断酸素供給路
22 切断酸素噴出口
23 予熱ガス供給路
24 予熱ガス噴出口
31 パウダー供給路
32、32A パウダー噴出口
33 仕切りリブ(仕切り部)
34 ナット
35 内筒
35a 外周面
36 外筒(外周壁)
36a 内周面
O ノズル軸
P 貫通穴
R 予熱炎気流
T パウダー
T3 赤熱化されたパウダー
Ta 粉流
Tb 非供給領域
W 被切断材
1 Cutting nozzle 2 Gas cutting nozzle 3, 3A Powder supply nozzle 21 Cutting oxygen supply path 22 Cutting oxygen nozzle 23 Preheating gas supply path 24 Preheating gas nozzle 31 Powder supply path 32, 32A Powder nozzle 33 Partition rib (partition part)
34 Nut 35 Inner cylinder 35a Outer peripheral surface 36 Outer cylinder (outer peripheral wall)
36a Inner peripheral surface O Nozzle axis P Through hole R Preheating flame air flow T Powder T3 Red-hot powder Ta Powder flow Tb Non-supply area W Material to be cut

Claims (11)

  1.  ガス切断火口を使用して一般軟鋼からなる被切断材に対して鉄粉からなるパウダーを供給して切断するパウダー切断方法であって、
     前記ガス切断火口は、切断酸素と、予熱用酸素及び可燃性ガスを混合させた予熱ガスと、を前記被切断材に向けて噴出可能に設けられ、
     前記ガス切断火口から噴出した前記予熱ガスからなる予熱炎気流に向けて前記パウダーを供給する、パウダー切断方法。
    A powder cutting method for cutting a material made of general mild steel by supplying powder made of iron powder to the material to be cut using a gas cutting nozzle, the method comprising:
    The gas cutting nozzle is provided to be able to eject cutting oxygen, preheating gas containing a mixture of preheating oxygen and combustible gas toward the material to be cut,
    A powder cutting method, wherein the powder is supplied toward a preheated flame air stream made of the preheated gas ejected from the gas cutting nozzle.
  2.  前記パウダーは、前記ガス切断火口の噴出口の外周から前記予熱炎気流に向けて供給され、前記予熱炎気流を囲むように粉流を形成し、
     前記パウダーによる前記粉流は、前記パウダーの噴出方向にスリット状に延在し前記パウダーが供給されない非供給領域を形成する、
     請求項1に記載のパウダー切断方法。
    The powder is supplied from the outer periphery of the ejection port of the gas cutting nozzle toward the preheating flame stream to form a powder stream surrounding the preheating flame stream,
    The powder flow caused by the powder extends in a slit shape in the jetting direction of the powder, and forms a non-supply area where the powder is not supplied.
    The powder cutting method according to claim 1.
  3.  前記ガス切断火口から前記予熱ガスを噴出させるとともに、前記ガス切断火口から噴出した前記予熱ガスからなる前記予熱炎気流に向けてパウダーを供給することで前記予熱炎気流の中に赤熱化されたパウダーが発生し、前記赤熱化されたパウダーが切断酸素気流の噴出定点周囲に配置され、前記噴出定点周囲の前記赤熱化されたパウダーに前記切断酸素を供給し前記被切断材に対してピアシングを行う、
     請求項1又は2に記載のパウダー切断方法。
    The preheated gas is ejected from the gas cutting nozzle, and the powder is red-hot in the preheated flame airflow by supplying powder toward the preheated flame airflow made of the preheated gas ejected from the gas cutting nozzle. is generated, the red-hot powder is placed around a fixed jetting point of the cutting oxygen stream, and the cutting oxygen is supplied to the red-hot powder around the jetting fixed point to perform piercing on the material to be cut. ,
    The powder cutting method according to claim 1 or 2.
  4.  前記ピアシングによって加工された貫通穴を切断開始点として、前記ピアシングを行う工程から継続し、前記ガス切断火口を移動させることにより前記被切断材を切断するガス切断工程を有し、
     前記ガス切断工程の前に、前記ピアシングによって前記被切断材の上面に付着した吹上げノロを通過するまで前記パウダーを供給し続け、通過後に前記パウダーの供給を停止した後に、前記ガス切断工程を開始する、請求項3に記載のパウダー切断方法。
    Continuing from the step of performing piercing, using the through hole processed by the piercing as a cutting start point, a gas cutting step of cutting the material to be cut by moving the gas cutting nozzle,
    Before the gas cutting step, the powder is continued to be supplied until it passes through the blow-up slag attached to the upper surface of the workpiece due to the piercing, and after passing the powder, the supply of the powder is stopped, and then the gas cutting step is performed. 4. A powder cutting method according to claim 3, wherein the powder cutting method starts with:
  5.  切断酸素と、予熱用酸素及び可燃性ガスを混合させた予熱ガスとを、一般軟鋼からなる被切断材に向けて噴出可能に設けられたガス切断火口に装着して、前記被切断材に対してパウダー切断を行うためのパウダー供給ノズルであって、
     前記ガス切断火口の外周に沿って周方向に延在し鉄粉からなるパウダーを供給するパウダー供給路と、
     前記ガス切断火口から噴出した前記予熱ガスからなる予熱炎気流に向けて前記パウダーを噴出するパウダー噴出口と、を備える、パウダー供給ノズル。
    Cutting oxygen, preheating gas that is a mixture of preheating oxygen and combustible gas are attached to a gas cutting nozzle that is installed so that it can be ejected toward the workpiece made of general mild steel, and the workpiece is then heated. A powder supply nozzle for performing powder cutting,
    a powder supply path extending circumferentially along the outer periphery of the gas cutting nozzle and supplying powder made of iron powder;
    A powder supply nozzle comprising: a powder spouting port that spouts the powder toward a preheated flame air stream made of the preheated gas spouted from the gas cutting nozzle.
  6.  前記ガス切断火口に外嵌する内筒と、前記内筒の外周側に配置される外筒と、を有し、
     前記パウダー噴出口は、前記内筒と前記外筒との間に配置され、ノズル軸方向から見てリング状に形成されている、請求項5に記載のパウダー供給ノズル。
    an inner cylinder that fits over the gas cutting nozzle; and an outer cylinder that is disposed on the outer peripheral side of the inner cylinder,
    The powder supply nozzle according to claim 5, wherein the powder spout is arranged between the inner tube and the outer tube and has a ring shape when viewed from the nozzle axis direction.
  7.  前記パウダー噴出口は、ノズル軸回りに周回する周方向に区画する仕切り部を備え、
     前記仕切り部は、前記内筒の外周面と前記外筒の内周面とを接続する、
     請求項6に記載のパウダー供給ノズル。
    The powder spout includes a partition section that circumferentially circumferentially circulates around the nozzle axis,
    The partition portion connects the outer circumferential surface of the inner cylinder and the inner circumferential surface of the outer cylinder.
    The powder supply nozzle according to claim 6.
  8.  前記仕切り部の周方向の幅寸法は、周方向に隣り合う前記仕切り部同士の間の距離より小さい、
     請求項7に記載のパウダー供給ノズル。
    The circumferential width dimension of the partition portion is smaller than the distance between the circumferentially adjacent partition portions.
    The powder supply nozzle according to claim 7.
  9.  前記仕切り部は、前記周方向に90度の間隔をあけて4箇所に設けられている、
     請求項7に記載のパウダー供給ノズル。
    The partition portions are provided at four locations at intervals of 90 degrees in the circumferential direction,
    The powder supply nozzle according to claim 7.
  10.  前記ガス切断火口から噴出する前記切断酸素及び前記予熱ガスの供給における開始及び停止を制御する第1制御と、前記パウダー噴出口から噴出する前記パウダーの供給における開始及び停止を制御する第2制御と、は別々に制御される、
     請求項5に記載のパウダー供給ノズル。
    a first control for controlling start and stop of the supply of the cutting oxygen and the preheating gas ejected from the gas cutting nozzle; and a second control for controlling start and stop of the supply of the powder ejected from the powder ejection port. , are controlled separately,
    The powder supply nozzle according to claim 5.
  11.  請求項5乃至10のいずれか1項に記載のパウダー供給ノズルと、
     前記パウダー供給ノズルを装着可能に設けられる前記ガス切断火口と、
    を備える、パウダー切断ノズル。
    The powder supply nozzle according to any one of claims 5 to 10,
    the gas cutting nozzle to which the powder supply nozzle can be attached;
    Powder cutting nozzle.
PCT/JP2023/013076 2022-03-31 2023-03-30 Powder cutting method, powder supply nozzle, and powder cutting nozzle WO2023190823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022060392A JP2023151007A (en) 2022-03-31 2022-03-31 Powder cutting method, powder supply nozzle, and powder cutting nozzle
JP2022-060392 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190823A1 true WO2023190823A1 (en) 2023-10-05

Family

ID=88202749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013076 WO2023190823A1 (en) 2022-03-31 2023-03-30 Powder cutting method, powder supply nozzle, and powder cutting nozzle

Country Status (2)

Country Link
JP (1) JP2023151007A (en)
WO (1) WO2023190823A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841957A (en) * 1971-10-05 1973-06-19
JPS5478731U (en) * 1977-11-11 1979-06-04
JP2000141030A (en) * 1998-11-13 2000-05-23 Nippon Supingu Kk Powder cutting device
JP2008274347A (en) * 2007-04-27 2008-11-13 Nippon Yakin Kogyo Co Ltd Method for refining nickel-based alloy and continuous casting method therefor
JP2021146396A (en) * 2020-03-23 2021-09-27 日本製鉄株式会社 Cutting condition determination method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841957A (en) * 1971-10-05 1973-06-19
JPS5478731U (en) * 1977-11-11 1979-06-04
JP2000141030A (en) * 1998-11-13 2000-05-23 Nippon Supingu Kk Powder cutting device
JP2008274347A (en) * 2007-04-27 2008-11-13 Nippon Yakin Kogyo Co Ltd Method for refining nickel-based alloy and continuous casting method therefor
JP2021146396A (en) * 2020-03-23 2021-09-27 日本製鉄株式会社 Cutting condition determination method

Also Published As

Publication number Publication date
JP2023151007A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
JP3666789B2 (en) Plasma cutting method, apparatus, and gas supply system to plasma cutting torch
JP4863693B2 (en) Two-fluid injection nozzle and oil burner
US7067762B2 (en) Plasma cutting process and machine
KR101803762B1 (en) Injector device for blowing oxygen-rich gas on or in, in a metallurgical unit or melting vessel, and electric arc furnace
JPH05329635A (en) Method and device for melting and cutting
WO2023190823A1 (en) Powder cutting method, powder supply nozzle, and powder cutting nozzle
KR100960845B1 (en) Apparatus and method for cutting with plasma
US2659623A (en) Gun construction for gas blast spraying heat-fusible materials
JP6899683B2 (en) Gas cutting device
KR101837372B1 (en) welding torch diffuse
US2536201A (en) Thermochemical metal removal method and apparatus
JP2005002449A (en) Method and apparatus for thermal spraying on inner surface of cylinder
JP2000141030A (en) Powder cutting device
JP3304855B2 (en) High efficiency TIG welding method and TIG welding device
JP2018025341A (en) Tip nozzle for post mix hydrogen and hydrogen gas cutting method
KR101754919B1 (en) Nozzle for gas welding torch
JPH1043865A (en) Plasma torch
US2356048A (en) Preheating torch
JP2008001924A (en) Method and apparatus for forming thermal spray coating film
JP4033000B2 (en) Spray gun equipment
JP2019086174A (en) Acetylene burner
JP6084890B2 (en) Consumable electrode gas shield arc welding torch
JP7336131B2 (en) Gas cutting machine and gas cutting method
JP6875094B2 (en) Nozzle cover, gas cutting crater and gas cutting torch
KR102526125B1 (en) Nozzle cover, gas cutting crater and gas cutting torch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780831

Country of ref document: EP

Kind code of ref document: A1