JP2004269758A - Apparatus for pyrolyzing waste product - Google Patents

Apparatus for pyrolyzing waste product Download PDF

Info

Publication number
JP2004269758A
JP2004269758A JP2003064317A JP2003064317A JP2004269758A JP 2004269758 A JP2004269758 A JP 2004269758A JP 2003064317 A JP2003064317 A JP 2003064317A JP 2003064317 A JP2003064317 A JP 2003064317A JP 2004269758 A JP2004269758 A JP 2004269758A
Authority
JP
Japan
Prior art keywords
pyrolysis
residue
pyrolysis residue
pipe
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003064317A
Other languages
Japanese (ja)
Other versions
JP3922193B2 (en
Inventor
Toshiaki Arato
利昭 荒戸
Yoshinobu Kobayashi
啓信 小林
Tsutomu Shibata
強 柴田
Teruyuki Okazaki
輝幸 岡崎
洋治 ▲高▼濱
Yoji Takahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003064317A priority Critical patent/JP3922193B2/en
Publication of JP2004269758A publication Critical patent/JP2004269758A/en
Application granted granted Critical
Publication of JP3922193B2 publication Critical patent/JP3922193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To prevent defect of conveyance causing clogging, etc., of a conveying pathway in a pyrolyzing apparatus for pyrolyzing waste products, separating a residue after pyrolysis from a pyrolyzed gas and conveying the residue after pyrolysis. <P>SOLUTION: The apparatus for pyrolyzing waste products is equipped with a pyrolyzing furnace 7 for pyrolyzing the waste products and the pyrolysis residue-discharging mechanism installed in an outlet of the pyrolyzing furnace 7 and separating the waste products into a pyrolyzed gas produced in the pyrolyzing furnace and a residue after pyrolysis and discharging the residue after pyrolysis. In the apparatus, an inert gas-introducing part for introducing an inert gas G2 from reverse direction from a direction in which the residue after pyrolysis is conveyed is installed in the pyrolysis residue-discharging mechanism. Compaction of the residue after pyrolysis is prevented and fluidity is improved and defect of conveyance is suppressed by introduction of the inert gas. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物を熱分解して搬送する廃棄物熱分解装置に係り、また廃棄物熱分解装置と燃焼溶融炉とを備えた廃棄物処理装置に関する。
【0002】
【従来の技術】
廃棄物を熱分解し、生成した熱分解ガスと熱分解残渣とを分離し、熱分解残渣を搬送して不燃成分と可燃成分とに分離し、可燃成分を燃焼溶融炉で燃焼することは周知である(例えば特許文献1参照。)。
【0003】
【特許文献1】
特開平10−122536号公報(特許請求の範囲、図1,図5)
【0004】
【発明が解決しようとする課題】
廃棄物処理では、熱分解炉で連続的に生成する熱分解残渣を下流側に速やかに搬送することが重要である。熱分解残渣が搬送管内で詰まったりすることは搬送不良に繋がるので避けなければならない。
【0005】
従来技術には、熱分解残渣の搬送過程で外部空気が侵入するのを防止するために、熱分解残渣排出系をマテリアルシール構造にすることは記載されているが、搬送不良防止に関しては記載されていない。
【0006】
本発明の目的は、熱分解残渣を搬送する搬送管内で、熱分解残渣の搬送不良が生じないようにした廃棄物熱分解装置及び廃棄物処理装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、廃棄物を熱分解する熱分解炉と、熱分解炉の出口に設けられ、熱分解炉で生成した熱分解残渣を熱分解ガスから分離して排出する熱分解残渣排出機構とを具備した熱分解装置において、熱分解残渣排出機構に、熱分解残渣が搬送される方向とは逆方向から不活性ガスを導入する不活性ガス導入部を設けたことにある。
【0008】
熱分解残渣を搬送する過程で、搬送管が詰まる等の搬送不良が生じるのは、主に搬送管内で熱分解残渣が圧密化してしまうことによる。熱分解残渣が移送される方向とは逆の方向から不活性ガスを導入することにより、熱分解残渣の流動性を高め、圧密化を抑制することができる。また、搬送中の熱分解残渣の温度をコントロールすることにより、熱分解残渣に同伴された熱分解ガス中のタール成分が凝縮して搬送管の内面に堆積するのを抑制し、この温度コントロールと不活性ガスの導入とによって、搬送不良防止効果を一層高めることができる。
【0009】
本発明の廃棄物熱分解装置は、家庭やオフィスから出される都市ごみ等の一般廃棄物,廃プラスチック,カーシュレッダダストなど可燃物を含む産業廃棄物を処理するのに好適である。
【0010】
【発明の実施の形態】
図1は、本発明に係る熱分解装置の一実施例を示す断面図である。
【0011】
本実施例の熱分解装置は、熱分解炉7と熱分解残渣排出機構とから構成されている。熱分解炉7は、入口から出口に向かって廃棄物が移動できるように矢印7a方向に回転する。熱分解炉の外壁には燃焼ガス11を流通する加熱ジャケット70が備えられ、廃棄物を間接的に加熱するようにしている。加熱ジャケット70に導入される燃焼ガスの温度は、通常800℃以上である。熱分解炉には、傾斜式或いは水平式のものがあるが、どちらも使用可能である。熱分解炉内で、廃棄物は、熱分解炉の回転と廃棄物の投入により出口側に向かって移動する。
【0012】
熱分解残渣排出機構は、熱分解炉の出口に設けられる。本実施例の熱分解残渣排出機構は、熱分解炉7で生成した熱分解ガスG1を上部排出口101から排出し、熱分解残渣Cを下部排出口から排出するようにした排出管10と、排出管10に接続され、熱分解残渣の流れを鉛直方向の流れから水平方向の流れに変えて搬送する搬送管20を有する。搬送管にはスクリューフィーダ21が設けられている。また、排出管10或いは搬送管20のどちらか一方で熱分解残渣が鉛直方向に流れる部分には熱分解残渣の流れを遮断するためのスライド弁22,23が二段に設けられている。スライド弁22,23は交互にスライドして開閉するようになっている。スライド弁23が開いたときには、スライド弁22は閉まっており、スライド弁22とスライド弁23の間に溜まっている熱分解残渣が下流側に落下する。スライド弁23が閉められ、スライド弁22が開いているときには、スライド弁23の上に熱分解残渣が貯まる。搬送管20は、熱分解残渣を鉛直方向に搬送する管24と熱分解残渣を水平方向に搬送する管25とを有する。管25の部分に前述のスクリューフィーダ21が備えられる。スクリューフィーダ21は、スクリュー軸26とらせん状をした羽根27を備えており、モータ9により回転速度を制御できるようになっている。
【0013】
本実施例では又、搬送管20の管25の部分に冷却ジャケット30が設けられている。この冷却ジャケット30は、冷却剤31を流して熱分解残渣を間接的に冷却するように構成されている。熱分解残渣は、ここで通常50℃以下好ましくは常温程度に冷却される。また、搬送管の鉛直方向の部分すなわち管24の部分には、ガスを流して管24を冷却することにより熱分解残渣の温度を間接的に調節するための温度調節器40が設けられている。この温度調節器40による温度調節は、スライド弁22,23よりも熱分解残渣の流れの上流側に設けられた温度測定器90とスライド弁22,23よりも熱分解残渣の流れの下流側に設けられた温度測定器93により測定された温度に基づいて、温度コントローラ91からの指示により行われる。具体的には、温度測定器の温度計測値が所定温度よりも低ければ熱分解残渣を加熱し、所定温度よりも高ければ熱分解残渣を加熱するように制御される。温度調節器40による熱分解残渣の加熱は、温度測定器93による温度計測値が所定の温度になるように行われる。このように熱分解残渣の温度をコントロールし所定温度に保持することにより、搬送管を流れる熱分解残渣に熱分解ガスの一部が同伴されたとしても、熱分解ガス中のタール成分が管の内部で凝集したりするのを防止できる。
【0014】
熱分解残渣は、搬送管20の水平部において、スクリューフィーダ21の回転により、下流側に押し出される。スクリューフィーダの回転により下流側に移送された熱分解残渣は、冷却ジャケット30で常温程度にまで冷却されたのち、外気に触れる。熱分解残渣には、可燃性の物質が含まれており、高温の状態で外気に接触すると発火の恐れがあるが、本実施例では、冷却ジャケット30で常温程度まで冷却されるので、外気に触れても発火の危険はない。
【0015】
熱分解残渣排出機構は、複数の管が接続された構造になり、またスライド弁などが設けられることから機密性に欠けやすい。また、熱分解は低酸素雰囲気で行われることから、外気が管内へ入り込みやすい。外気が管内に入ると、熱分解残渣が発火する危険がある。搬送管20の下端開口部から不活性ガスG2を管内に導入することにより、外気が搬送管内へ入り込むのを抑制できる。また、搬送管内を流れる熱分解残渣は流動状態であり、圧密化しやすいが、不活性ガスを導入することにより、圧密化するのを抑制できる。
【0016】
図2は、本発明に係る熱分解装置の他の実施例を示している。図2の装置の特徴は、熱分解残渣排出機構に差圧計P1とP2を備え、P1,P2の測定値に基づいてコントローラ88でスクリューフィーダ21を駆動するモータ9の回転数を制御していることである。差圧計P1,P2での計測により、熱分解残渣の密度を連続的に把握することができ、熱分解残渣の送り速度を変え、良好な搬送状態を維持することができる。また、図2では、酸素濃度検出器M1,M2を備え、これらの検出値を参考にして不活性ガスG2の量を制御するようにしている。
【0017】
なお、熱分解残渣の送出量制御は、搬送管20内に蓄積している熱分解残渣の高さをレベルセンサーにて検出し、そのレベルに応じてスクリューフィーダ駆動モータの回転数を制御することでも、効果的に達成可能である。
【0018】
図3は、熱分解炉と熱分解残渣排出機構とを具備する熱分解装置と、燃焼溶融炉とを備えた廃棄物処理装置の一実施例の形態を示す系統図である。
【0019】
本実施例の廃棄物処理装置において、都市ごみ等の廃棄物1は、たとえば二軸破砕機等で所定の大きさに切断,破砕され、コンベア等により乾燥炉2に投入される。乾燥炉2に投入された廃棄物1は約100℃の乾燥空気5によって水分が10%以下になるように乾燥され、必要に応じて乾燥廃棄物ホッパ3の廃棄物とともに熱分解炉7に供給される。乾燥炉2から出た乾燥空気5は乾燥廃棄物ホッパ3を通り、ファン4から空気加熱器62へ送られ、燃焼ガス11を加熱した後、後段へ送られる
熱分解炉の出口には熱分解残渣排出機構が設けられている。この熱分解残渣排出機構は、熱分解ガスと熱分解残渣とを分離して熱分解残渣を下方へ移送する排出管10と排出管10を流れてきた熱分解残渣を鉛直方向の流れから水平方向の流れに切り替える搬送管20を有し、又、鉛直方向の管の部分に二段にスライド弁22,23を備えている。その他に図1で述べたように温度調節器40及び冷却ジャケット30等を備えている。
【0020】
熱分解炉7で生成した熱分解ガスG1は、排出管10の上部排出口から排出されたのち、熱分解ガス燃焼器12に導入され、ここで補助燃料Fとともに燃焼される。熱分解ガス燃焼器12で生成した燃焼ガス11は、熱分解炉の加熱ジャケット70に導入され、廃棄物の加熱に利用されたのち、空気加熱器6,61で加熱され、後段側へ送られる。
【0021】
熱分解残渣は、図1に示したものと同様の構成を有する熱分解残渣排出機構により搬送される。このとき、不活性ガスG2が搬送管20内に導入される。熱分解残渣排出機構の搬送管20から排出された熱分解残渣は、粉砕機13によって所定の粒径にまで粉砕,整粒される。粉砕機13では、不燃物中のガレキは可燃物(炭化物)とともに粉砕されるが、不燃物中の金属類15はその展延性のゆえに粉砕されずに断面が粗大化する。そこで、分級器14により、金属類15と粉砕チャー16とに分離する。粉砕チャー16は主成分が可燃物(炭化物)で、これに粉砕されたガレキの一部が混入した粉体である。
【0022】
粉砕チャー16はホッパ17に貯留される。そして搬送空気32とともに燃焼溶融炉8に導入され、燃焼空気33で加熱し燃焼される。本実施例の燃焼溶融炉8は粉砕チャーを炉内に供給するための燃料ノズル41と、2次ノズル42と、3次ノズル43を有している。燃料ノズル41は、燃焼溶融炉8の最も下部に位置し、粉砕チャー燃料を搬送空気32によって燃焼溶融炉8に送りこむものである。2次ノズル42および3次ノズル43は粉砕チャー燃料を燃焼するための燃焼空気33を送り込むものである。
【0023】
燃焼溶融炉8では、搬送空気32と燃焼空気33の旋回流を形成させるのがよい。この旋回流は、例えば各ノズルを炉内面の接線方向に開口を有するように配置することで達成される。旋回流は燃料ノズルと2次ノズルの噴流によって形成された旋回流は高温還元燃焼域を形成し、3次ノズルの噴流によって形成された旋回流は完全燃焼域を形成する。粉砕チャー燃料は2次ノズル42から送気された燃焼空気33により、高温還元燃焼域で約1200℃以上で燃焼された後、3次ノズル43から送気された燃焼空気33によって完全燃焼域で理論空気量より多い空気量で燃焼する。粉砕チャー燃料中の可燃分が燃焼溶融炉8中で燃焼することによって、粉砕チャー燃料中の灰分が溶融スラグ化する。燃焼溶融炉8内に旋回流が存在するため、溶融スラグ化した成分は燃焼溶融炉8内の壁面に沿って流下し、スラグ排出口44から冷却水槽85中に滴下する。冷却水槽85内で溶融スラグ化した成分は直ちに冷却され、冷却水槽85中に設置されているコンベア86上に堆積し、冷却水槽85外に排出される。
【0024】
一方、燃焼溶融炉8から煙突84に至る煙道には、排熱蒸気発生装置50,空気加熱器60,バグフィルター80,煙道ガス浄化装置82,排気ファン83が設けられ、排熱蒸気発生装置50の蒸気により蒸気タービン発電機501にて発電が行われる。なお、熱分解炉において、廃棄物を加熱するために使用された燃焼ガス11は、燃焼溶融炉8から排出されたガスと混合され、排熱蒸気発生装置50へ導入され、蒸気タービン発電機での発電に利用される。
【0025】
図3に示す実施例によれば、本発明の熱分解装置を含む廃棄物処理装置、更には蒸気発電システムが実現する。
【0026】
【発明の効果】
本発明によれば、熱分解炉にて生成した熱分解残渣を、搬送不良を起こさずに搬送することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す熱分解装置の概略図。
【図2】本発明の他の実施例を示す熱分解装置の概略図。
【図3】本発明の一実施例を示す廃棄物処理装置の系統図。
【符号の説明】
1…廃棄物、7…熱分解炉、8…燃焼溶融炉、10…排出管、11…燃焼ガス、20…搬送管、21…スクリューフィーダ、22,23…スライド弁、24,25…管、30…冷却ジャケット、40…温度調節器、70…加熱ジャケット、91…温度コントローラ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waste pyrolysis apparatus for thermally decomposing and transporting waste, and also relates to a waste treatment apparatus provided with a waste pyrolysis apparatus and a combustion melting furnace.
[0002]
[Prior art]
It is well known that pyrolysis of waste, separation of generated pyrolysis gas and pyrolysis residue, transportation of the pyrolysis residue into non-combustible components and combustible components, and burning of combustible components in a combustion melting furnace (For example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-10-122536 (Claims, FIGS. 1 and 5)
[0004]
[Problems to be solved by the invention]
In waste treatment, it is important to quickly transport pyrolysis residues continuously generated in a pyrolysis furnace to the downstream side. Clogging of the thermal decomposition residue in the transport pipe leads to poor transport and must be avoided.
[0005]
In the prior art, it is described that the pyrolysis residue discharge system has a material seal structure in order to prevent external air from entering in the process of transporting the pyrolysis residue, but it is described as to prevent poor transport. Not.
[0006]
An object of the present invention is to provide a waste pyrolysis apparatus and a waste treatment apparatus in which a poor transport of a thermal decomposition residue is prevented from occurring in a transport pipe for transporting the thermal decomposition residue.
[0007]
[Means for Solving the Problems]
The present invention provides a pyrolysis furnace that pyrolyzes waste, and a pyrolysis residue discharge mechanism that is provided at an outlet of the pyrolysis furnace and separates and discharges pyrolysis residues generated in the pyrolysis furnace from pyrolysis gas. In the provided pyrolysis apparatus, the pyrolysis residue discharge mechanism is provided with an inert gas introduction section for introducing an inert gas from a direction opposite to a direction in which the pyrolysis residue is transported.
[0008]
In the process of transporting the thermal decomposition residue, the transport failure such as clogging of the transport pipe occurs mainly because the thermal decomposition residue is compacted in the transport pipe. By introducing the inert gas from the direction opposite to the direction in which the pyrolysis residue is transferred, the fluidity of the pyrolysis residue can be increased, and consolidation can be suppressed. In addition, by controlling the temperature of the pyrolysis residue during transport, it is possible to prevent the tar component in the pyrolysis gas accompanying the pyrolysis residue from condensing and accumulating on the inner surface of the transport pipe. By introducing the inert gas, the effect of preventing the conveyance failure can be further enhanced.
[0009]
INDUSTRIAL APPLICABILITY The waste pyrolysis apparatus of the present invention is suitable for treating general waste such as municipal waste from homes and offices, and industrial waste including combustibles such as waste plastic and car shredder dust.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view showing one embodiment of the thermal decomposition apparatus according to the present invention.
[0011]
The pyrolysis apparatus of this embodiment includes a pyrolysis furnace 7 and a pyrolysis residue discharge mechanism. The pyrolysis furnace 7 rotates in the direction of arrow 7a so that the waste can move from the inlet to the outlet. A heating jacket 70 for flowing the combustion gas 11 is provided on the outer wall of the pyrolysis furnace to indirectly heat the waste. The temperature of the combustion gas introduced into the heating jacket 70 is usually 800 ° C. or higher. As the pyrolysis furnace, there is an inclined type or a horizontal type, and both types can be used. In the pyrolysis furnace, the waste moves toward the outlet side by the rotation of the pyrolysis furnace and the input of the waste.
[0012]
The pyrolysis residue discharge mechanism is provided at the outlet of the pyrolysis furnace. The pyrolysis residue discharging mechanism of the present embodiment includes a discharge pipe 10 configured to discharge the pyrolysis gas G1 generated in the pyrolysis furnace 7 from the upper discharge port 101 and discharge the pyrolysis residue C from the lower discharge port. It has a transfer pipe 20 connected to the discharge pipe 10 for transferring the pyrolysis residue from a vertical flow to a horizontal flow. A screw feeder 21 is provided in the transport pipe. Further, slide valves 22 and 23 for shutting off the flow of the pyrolysis residue are provided in two stages at a portion where the pyrolysis residue flows in the vertical direction in either the discharge pipe 10 or the transport pipe 20. The slide valves 22, 23 slide alternately to open and close. When the slide valve 23 is opened, the slide valve 22 is closed, and the pyrolysis residue accumulated between the slide valve 22 and the slide valve 23 falls to the downstream side. When the slide valve 23 is closed and the slide valve 22 is open, pyrolysis residues accumulate on the slide valve 23. The transport pipe 20 has a pipe 24 for transporting the pyrolysis residue in the vertical direction and a pipe 25 for transporting the pyrolysis residue in the horizontal direction. The above-described screw feeder 21 is provided in a portion of the tube 25. The screw feeder 21 includes a screw shaft 26 and a spiral blade 27, and the rotation speed can be controlled by the motor 9.
[0013]
In the present embodiment, a cooling jacket 30 is provided at the pipe 25 of the transfer pipe 20. The cooling jacket 30 is configured to flow the coolant 31 to indirectly cool the pyrolysis residue. Here, the pyrolysis residue is usually cooled to 50 ° C. or lower, preferably to about room temperature. Further, a temperature controller 40 for indirectly adjusting the temperature of the pyrolysis residue by flowing gas and cooling the tube 24 is provided in a vertical portion of the transfer tube, that is, a portion of the tube 24. . The temperature control by the temperature controller 40 is performed by a temperature measuring device 90 provided on the upstream side of the flow of the pyrolysis residue from the slide valves 22 and 23 and on the downstream side of the flow of the pyrolysis residue by the slide valves 22 and 23. This is performed according to an instruction from the temperature controller 91 based on the temperature measured by the provided temperature measuring device 93. Specifically, control is performed so that the pyrolysis residue is heated if the temperature measurement value of the thermometer is lower than the predetermined temperature, and the pyrolysis residue is heated if the temperature measurement value is higher than the predetermined temperature. The heating of the pyrolysis residue by the temperature controller 40 is performed so that the temperature measured by the temperature measuring device 93 becomes a predetermined temperature. In this way, by controlling the temperature of the pyrolysis residue and maintaining it at a predetermined temperature, even if a portion of the pyrolysis gas is entrained in the pyrolysis residue flowing through the conveying pipe, the tar component in the pyrolysis gas is removed from the pipe. Aggregation inside can be prevented.
[0014]
The pyrolysis residue is pushed to the downstream side by the rotation of the screw feeder 21 in the horizontal portion of the transport pipe 20. The pyrolysis residue transferred to the downstream side by the rotation of the screw feeder is cooled to about room temperature by the cooling jacket 30, and then contacts the outside air. The pyrolysis residue contains a flammable substance, and there is a risk of ignition if it comes into contact with outside air at a high temperature. However, in this embodiment, since it is cooled to about room temperature by the cooling jacket 30, There is no risk of fire if touched.
[0015]
The pyrolysis residue discharging mechanism has a structure in which a plurality of pipes are connected, and is liable to lack confidentiality because a slide valve or the like is provided. In addition, since the thermal decomposition is performed in a low oxygen atmosphere, outside air easily enters the pipe. When outside air enters the pipe, there is a risk that the pyrolysis residue may ignite. By introducing the inert gas G <b> 2 into the transfer pipe 20 from the lower end opening, it is possible to suppress the outside air from entering the transfer pipe. In addition, the pyrolysis residue flowing in the transport pipe is in a fluid state and is easily compacted. However, by introducing an inert gas, compaction can be suppressed.
[0016]
FIG. 2 shows another embodiment of the thermal decomposition apparatus according to the present invention. A feature of the apparatus shown in FIG. 2 is that the pyrolysis residue discharge mechanism includes differential pressure gauges P1 and P2, and the controller 88 controls the rotation speed of the motor 9 that drives the screw feeder 21 based on the measured values of P1 and P2. That is. By the measurement with the differential pressure gauges P1 and P2, the density of the pyrolysis residue can be continuously grasped, the feed rate of the pyrolysis residue can be changed, and a favorable transport state can be maintained. In FIG. 2, oxygen concentration detectors M1 and M2 are provided, and the amount of the inert gas G2 is controlled with reference to these detected values.
[0017]
In addition, the control of the delivery amount of the pyrolysis residue is performed by detecting the height of the pyrolysis residue accumulated in the transport pipe 20 with a level sensor and controlling the rotation speed of the screw feeder driving motor according to the level. But it can be achieved effectively.
[0018]
FIG. 3 is a system diagram showing an embodiment of a waste treatment apparatus provided with a pyrolysis apparatus having a pyrolysis furnace and a pyrolysis residue discharge mechanism, and a combustion melting furnace.
[0019]
In the waste treatment apparatus of the present embodiment, the waste 1 such as municipal waste is cut and crushed to a predetermined size by, for example, a twin-screw crusher or the like, and is introduced into the drying furnace 2 by a conveyor or the like. The waste 1 put into the drying furnace 2 is dried by the dry air 5 at about 100 ° C. so that the water content becomes 10% or less, and is supplied to the pyrolysis furnace 7 together with the waste from the dry waste hopper 3 as necessary. Is done. The drying air 5 coming out of the drying furnace 2 passes through the drying waste hopper 3 and is sent from the fan 4 to the air heater 62 to heat the combustion gas 11 and then sent to the subsequent stage at the outlet of the pyrolysis furnace to be pyrolyzed. A residue discharging mechanism is provided. The pyrolysis residue discharge mechanism separates the pyrolysis gas and the pyrolysis residue and transfers the pyrolysis residue downward. The discharge pipe 10 and the pyrolysis residue flowing through the discharge pipe 10 are horizontally separated from the vertical flow. And a slide valve 22 and 23 in two stages in a vertical pipe portion. In addition, as described with reference to FIG. 1, a temperature controller 40 and a cooling jacket 30 are provided.
[0020]
The pyrolysis gas G1 generated in the pyrolysis furnace 7 is discharged from the upper discharge port of the discharge pipe 10 and then introduced into the pyrolysis gas combustor 12, where it is burned together with the auxiliary fuel F. The combustion gas 11 generated in the pyrolysis gas combustor 12 is introduced into the heating jacket 70 of the pyrolysis furnace, and is used for heating the waste. Then, the combustion gas 11 is heated by the air heaters 6 and 61 and sent to the subsequent stage. .
[0021]
The pyrolysis residue is conveyed by a pyrolysis residue discharge mechanism having a configuration similar to that shown in FIG. At this time, the inert gas G2 is introduced into the transfer pipe 20. The pyrolysis residue discharged from the transport pipe 20 of the pyrolysis residue discharge mechanism is crushed and sized by a crusher 13 to a predetermined particle size. In the crusher 13, the rubble in the incombustibles is pulverized together with the combustibles (carbides), but the metal 15 in the incombustibles is not pulverized due to its extensibility, and the cross section becomes coarse. Then, the metal 14 and the crushed char 16 are separated by the classifier 14. The pulverized char 16 is a powder in which a main component is a combustible substance (carbide) and a part of the pulverized rubble is mixed therein.
[0022]
The crushing char 16 is stored in a hopper 17. Then, it is introduced into the combustion melting furnace 8 together with the carrier air 32, and is heated and burned by the combustion air 33. The combustion melting furnace 8 of this embodiment has a fuel nozzle 41 for supplying the pulverizing char into the furnace, a secondary nozzle 42, and a tertiary nozzle 43. The fuel nozzle 41 is located at the lowermost part of the combustion melting furnace 8, and sends the pulverized char fuel to the combustion melting furnace 8 by the carrier air 32. The secondary nozzle 42 and the tertiary nozzle 43 feed the combustion air 33 for burning the pulverized char fuel.
[0023]
In the combustion melting furnace 8, a swirling flow of the carrier air 32 and the combustion air 33 is preferably formed. This swirling flow is achieved, for example, by arranging the nozzles so as to have openings in the tangential direction of the inner surface of the furnace. The swirl flow formed by the jets of the fuel nozzle and the secondary nozzle forms a high-temperature reduction combustion zone, and the swirl flow formed by the jet of the tertiary nozzle forms a complete combustion zone. The pulverized char fuel is burned at about 1200 ° C. or more in the high-temperature reduction combustion zone by the combustion air 33 sent from the secondary nozzle 42, and then in the complete combustion zone by the combustion air 33 sent from the tertiary nozzle 43. Combustion with an air volume greater than the theoretical air volume. As the combustibles in the pulverized char fuel burn in the combustion and melting furnace 8, the ash in the pulverized char becomes molten slag. Since the swirling flow exists in the combustion melting furnace 8, the molten slag component flows down along the wall surface in the combustion melting furnace 8, and drops from the slag discharge port 44 into the cooling water tank 85. The component that has been melted and slagged in the cooling water tank 85 is immediately cooled, deposited on a conveyor 86 installed in the cooling water tank 85, and discharged out of the cooling water tank 85.
[0024]
On the other hand, an exhaust heat steam generator 50, an air heater 60, a bag filter 80, a flue gas purifier 82, and an exhaust fan 83 are provided in a flue from the combustion melting furnace 8 to the chimney 84 to generate exhaust heat steam. Electric power is generated in the steam turbine generator 501 by the steam of the device 50. In the pyrolysis furnace, the combustion gas 11 used for heating the waste is mixed with the gas discharged from the combustion melting furnace 8 and introduced into the waste heat steam generator 50, where the combustion gas 11 is used by the steam turbine generator. Used for power generation.
[0025]
According to the embodiment shown in FIG. 3, a waste treatment device including the thermal decomposition device of the present invention, and further a steam power generation system are realized.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the pyrolysis residue produced | generated in the pyrolysis furnace can be conveyed without causing conveyance failure.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a thermal decomposition apparatus showing one embodiment of the present invention.
FIG. 2 is a schematic view of a pyrolysis apparatus showing another embodiment of the present invention.
FIG. 3 is a system diagram of a waste treatment apparatus showing one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Waste, 7 ... Pyrolysis furnace, 8 ... Combustion melting furnace, 10 ... Discharge pipe, 11 ... Combustion gas, 20 ... Conveyance pipe, 21 ... Screw feeder, 22, 23 ... Slide valve, 24, 25 ... Pipe, 30: cooling jacket, 40: temperature controller, 70: heating jacket, 91: temperature controller.

Claims (6)

廃棄物を熱分解する熱分解炉と、前記熱分解炉の出口に設けられ熱分解ガスと熱分解残渣とを分離して熱分解残渣を排出する熱分解残渣排出機構とを具備した熱分解装置において、
前記熱分解残渣排出機構に、熱分解残渣が搬送される方向とは逆方向から不活性ガスを導入する不活性ガス導入部を設けたことを特徴とする廃棄物の熱分解装置。
A pyrolysis apparatus comprising: a pyrolysis furnace for pyrolyzing waste; and a pyrolysis residue discharge mechanism provided at an outlet of the pyrolysis furnace and separating a pyrolysis gas and a pyrolysis residue and discharging the pyrolysis residue. At
A pyrolysis apparatus for wastes, wherein the pyrolysis residue discharge mechanism is provided with an inert gas introduction unit for introducing an inert gas from a direction opposite to a direction in which the pyrolysis residue is transported.
請求項1において、前記排出機構は、前記熱分解炉で生成した熱分解ガスを上部排出口から排出し熱分解残渣を下部排出口から排出するように構成した排出管と、前記排出管に接続され、熱分解残渣の流れを鉛直方向の流れから水平方向の流れに変えて搬送する搬送管とを有し、前記搬送管にはスクリューフィーダが設けられ、前記排出管或いは前記搬送管のどちらか一方で熱分解残渣が鉛直方向に流れる部分に熱分解残渣の流れを遮断するためのスライド弁が二段に設けられていることを特徴とする廃棄物の熱分解装置。The discharge pipe according to claim 1, wherein the discharge mechanism is configured to discharge a pyrolysis gas generated in the pyrolysis furnace from an upper discharge port and discharge a pyrolysis residue from a lower discharge port, and connect the discharge pipe to the discharge pipe. A conveying pipe for changing the flow of the pyrolysis residue from a vertical flow to a horizontal flow and conveying the same, wherein the conveying pipe is provided with a screw feeder, and either the discharge pipe or the conveying pipe is provided. On the other hand, a waste pyrolysis apparatus characterized in that a slide valve for blocking the flow of the pyrolysis residue is provided in two stages at a portion where the pyrolysis residue flows in the vertical direction. 請求項1において、前記搬送管のうち前記スライド弁の位置よりも下流側に、熱媒体の循環によって前記搬送管を加熱或いは冷却する温度調節器を備え、前記温度調節器による温度調節は前記スライド弁の上流における熱分解残渣の温度計測値に基づいて行われ、前記スライド弁の下流における熱分解残渣の温度計測値により調節すべき温度が管理されるようにしたことを特徴とする廃棄物の熱分解装置。2. The temperature control device according to claim 1, further comprising a temperature controller that heats or cools the transport tube by circulating a heat medium, at a position downstream of the slide valve in the transport tube. It is performed based on the temperature measurement value of the pyrolysis residue upstream of the valve, and the temperature to be adjusted is controlled by the temperature measurement value of the pyrolysis residue downstream of the slide valve. Pyrolysis equipment. 請求項1において、前記排出管及び前記搬送管のうち少なくとも一方に酸素濃度測定器を備え、前記酸素濃度検出器で測定された酸素濃度に基づいて前記不活性ガス導入部から導入される不活性ガスの量が制御されるようにしたことを特徴とする廃棄物の熱分解装置。The inert gas introduced from the inert gas introduction unit according to claim 1, further comprising an oxygen concentration measuring device provided in at least one of the discharge pipe and the transport pipe, based on the oxygen concentration measured by the oxygen concentration detector. A waste pyrolysis apparatus characterized in that the amount of gas is controlled. 請求項2において、前記搬送管のうち前記スクリューフィーダが設置されている部分の下流側に、冷却媒体を循環させ搬送管を外部から冷却することで熱分解残渣の冷却を行う冷却ジャケットを備えたことを特徴とする廃棄物の熱分解装置。In claim 2, a cooling jacket is provided downstream of a portion of the transfer pipe where the screw feeder is installed, to cool a pyrolysis residue by circulating a cooling medium and cooling the transfer pipe from the outside. A pyrolysis apparatus for wastes, characterized in that: 廃棄物の熱分解炉と前記熱分解炉で生成された熱分解残渣を熱分解ガスから分離して搬送する熱分解残渣排出機構とを具備する熱分解装置と、前記熱分解装置にて搬送された熱分解残渣に含まれる燃焼成分を燃焼する燃焼溶融炉とを有する廃棄物処理装置において、前記熱分解装置にける熱分解残渣排出機構に、熱分解残渣が搬送される方向とは逆方向から不活性ガスを導入する不活性ガス導入部を設けたことを特徴とする廃棄物処理装置。A pyrolysis apparatus having a pyrolysis furnace for waste and a pyrolysis residue discharge mechanism for transporting the pyrolysis residue generated in the pyrolysis furnace separated from the pyrolysis gas, and transported by the pyrolysis apparatus In a waste treatment apparatus having a combustion and melting furnace that burns the combustion components contained in the pyrolysis residue, the pyrolysis residue discharge mechanism in the pyrolysis apparatus, from the direction opposite to the direction in which the pyrolysis residue is transported. A waste treatment apparatus provided with an inert gas introduction section for introducing an inert gas.
JP2003064317A 2003-03-11 2003-03-11 Waste pyrolysis equipment Expired - Fee Related JP3922193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064317A JP3922193B2 (en) 2003-03-11 2003-03-11 Waste pyrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064317A JP3922193B2 (en) 2003-03-11 2003-03-11 Waste pyrolysis equipment

Publications (2)

Publication Number Publication Date
JP2004269758A true JP2004269758A (en) 2004-09-30
JP3922193B2 JP3922193B2 (en) 2007-05-30

Family

ID=33125635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064317A Expired - Fee Related JP3922193B2 (en) 2003-03-11 2003-03-11 Waste pyrolysis equipment

Country Status (1)

Country Link
JP (1) JP3922193B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155231A (en) * 2005-12-06 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd Cooling method and device for waste thermal decomposition char
JP2008039330A (en) * 2006-08-09 2008-02-21 Mitsubishi Materials Techno Corp Processing system for discarded automobile
JP2008151480A (en) * 2006-12-20 2008-07-03 Chugoku Electric Power Co Inc:The Boiler facility and control method of feeder for conveying ash to ash treating facility side
JP2009041785A (en) * 2007-08-06 2009-02-26 Nikko Kinzoku Kk Device and method of extracting and conveying waste oil including sludge
JP2011153176A (en) * 2010-01-26 2011-08-11 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for producing biomass fuel, biomass fuel and biomass carbonization system
JP2014132245A (en) * 2013-01-07 2014-07-17 Jdc Corp Volume reduction treatment apparatus and heat treatment device
CN114231303A (en) * 2021-12-17 2022-03-25 宁夏环保集团有限责任公司 Industrial waste treatment device
KR20230065650A (en) * 2021-11-05 2023-05-12 김용진 Low-temperature catalytic carbonizer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190687A (en) * 2014-07-31 2014-12-10 三零一(深圳)环保科技有限公司 High-temperature-resisting box capable of continuously discharging slag and gas and rotary gasification decomposing device thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155231A (en) * 2005-12-06 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd Cooling method and device for waste thermal decomposition char
JP2008039330A (en) * 2006-08-09 2008-02-21 Mitsubishi Materials Techno Corp Processing system for discarded automobile
JP2008151480A (en) * 2006-12-20 2008-07-03 Chugoku Electric Power Co Inc:The Boiler facility and control method of feeder for conveying ash to ash treating facility side
JP2009041785A (en) * 2007-08-06 2009-02-26 Nikko Kinzoku Kk Device and method of extracting and conveying waste oil including sludge
JP4558018B2 (en) * 2007-08-06 2010-10-06 日鉱金属株式会社 Extracting and conveying apparatus for waste oil containing sludge and extracting and conveying method
JP2011153176A (en) * 2010-01-26 2011-08-11 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for producing biomass fuel, biomass fuel and biomass carbonization system
JP2014132245A (en) * 2013-01-07 2014-07-17 Jdc Corp Volume reduction treatment apparatus and heat treatment device
KR20230065650A (en) * 2021-11-05 2023-05-12 김용진 Low-temperature catalytic carbonizer
KR102623303B1 (en) * 2021-11-05 2024-01-09 김용진 Low-temperature catalytic carbonizer
CN114231303A (en) * 2021-12-17 2022-03-25 宁夏环保集团有限责任公司 Industrial waste treatment device

Also Published As

Publication number Publication date
JP3922193B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP5789669B2 (en) Waste treatment facilities including sludge
JP4889176B2 (en) Method and apparatus for burning solid fuel, especially solid waste
JP2007247962A (en) Combustible material treatment apparatus
JP3922193B2 (en) Waste pyrolysis equipment
KR101224032B1 (en) Combustion apparatus
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP2008209041A (en) Combustion control method for gasification melting system and its system
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JP3377359B2 (en) Waste treatment equipment
JPH11344213A (en) Pyrolysis reactor and its controller and controlling method
JP2003042419A (en) Operation method of gasifying/melting furnace equipment, and the gasifying/melting furnace equipment
JP3762726B2 (en) Incineration ash molten exhaust gas treatment method
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JPH1054519A (en) Discharge device for thermal decomposition reactor
JP2004169931A (en) Waste treatment apparatus
JP3729654B2 (en) Slag discharge method and apparatus for gasified ash melting furnace
JP3819615B2 (en) Waste carbonization pyrolysis melting combustion equipment
JPH09196337A (en) Waste pylorysis drum and pyrocysis method
JP2004271039A (en) Thermal decomposition gasifying melting system
JPH10141620A (en) Method for discharging pyrolysis residue, and waste treatment equipment
JP3916759B2 (en) Heat medium pressure control device for pyrolysis reactor
JP4392137B2 (en) Method and apparatus for treating combustible dust in waste melting furnace
JP3893200B2 (en) Method for preventing closure of slag outlet in combustion melting furnace of waste treatment equipment
JPH1099812A (en) Pyrolyzed residue separator in waste treatment apparatus
JP3891754B2 (en) Waste incineration ash melting system using fine combustion of waste plastics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

R151 Written notification of patent or utility model registration

Ref document number: 3922193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees