JP2004269723A - Phosphorus-free magnesium hydroxide-based flame retardant, production method and flame retardant resin composition - Google Patents

Phosphorus-free magnesium hydroxide-based flame retardant, production method and flame retardant resin composition Download PDF

Info

Publication number
JP2004269723A
JP2004269723A JP2003063182A JP2003063182A JP2004269723A JP 2004269723 A JP2004269723 A JP 2004269723A JP 2003063182 A JP2003063182 A JP 2003063182A JP 2003063182 A JP2003063182 A JP 2003063182A JP 2004269723 A JP2004269723 A JP 2004269723A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
flame retardant
phosphorus
fatty acid
saturated fatty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063182A
Other languages
Japanese (ja)
Other versions
JP3773247B2 (en
Inventor
Seiji Matsui
誠二 松井
Yuichi Yamamoto
裕一 山本
Akiko Matsumoto
明子 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2003063182A priority Critical patent/JP3773247B2/en
Publication of JP2004269723A publication Critical patent/JP2004269723A/en
Application granted granted Critical
Publication of JP3773247B2 publication Critical patent/JP3773247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fireproofing Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphorus-free magnesium hydroxide-based flame retardant; to provide a method for producing the flame retardant; and to provide a flame-retardant resin composition obtained by compounding the flame retardant and having excellent water resistance. <P>SOLUTION: The phosphorus-free magnesium hydroxide-based flame retardant is obtained by subjecting a magnesium hydroxide particle to a surface treatment with an alkali metal salt, ammonium salt or mono- to tri-alcoholamine salt of a ≥18C fatty acid to form the first layer coated film, and forming the second layer coated film with a silane coupling agent such as vinyltrimethoxysilane on the first layer coated film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の技術分野】
本発明は、リンフリーの水酸化マグネシウム系難燃剤、およびそれを配合した難燃性樹脂組成物に関する。更に詳しくは、水酸化マグネシウム粒子を、炭素数(炭素原子数)が18以上の飽和脂肪酸の、アルカリ金属塩、アンモニウム塩、モノ〜トリアルコールアミン塩で表面処理して第一層の被膜を形成し、更にシランカップリング剤で表面処理して第二層の被膜を形成した、リンフリーの水酸化マグネシウム系難燃剤や、その製造方法、および該難燃剤をリンフリーの樹脂に配合した耐水性に優れた難燃性樹脂組成物に関する。
【0002】
【従来の技術】
ダイオキシン等の環境問題によって、樹脂のハロゲンフリー難燃化のために、ポリオレフィン系樹脂やエポキシ系樹脂等のハロゲンフリー樹脂等に、ハロゲンフリーの難燃剤である水酸化マグネシウムを添加する方法が一般に実施されている。水酸化マグネシウム系難燃剤を配合した樹脂組成物は、家庭電気製品や自動車等の電線被覆材用途や、IC封止材、積層板等の電気・電子部品用途等に広く使用されている。しかしながら、雨水や湿気に曝されたり、海岸近くの場所等に置かれると、樹脂組成物の耐水性・耐食塩水性は貧弱で、電気抵抗が大幅に低下する等、絶縁材料としての特性が損なわれる。この原因としては、雨水、湿気、海風等から来る水分や塩分を、樹脂組成物中の水酸化マグネシウム系難燃剤が引き付ける為、樹脂組成物中の水分や塩分が多くなり、電気抵抗が低下することが考えられる。従って、耐水性に優れた水酸化マグネシウム系難燃剤が望まれている。
【0003】
【特許文献1】特公平6−2843号公報
水酸化マグネシウム系難燃剤の耐水性を改善するために、従来から種々の表面処理方法が提案されている。例えば、特公平6−2843号は、水酸化マグネシウムをアルコールリン酸エステルのジアルコールアミン塩またはアルカリ金属塩で表面処理する方法を提案し、これにより耐水性等はある程度改善される。しかし、リン酸エステル系の化合物は、燃焼時に有毒なホスフィンガスが発生すること、動物実験で強い生体有害性を示すこと、また焼却・埋立て処分後に、リン化合物が雨水によって河川へ流れるため、富栄養化等の環境汚染の原因となること等のため、人体や環境に優しい物質とは言い難い。このため、家電製品用の電線被覆材料などで、リンフリー化が迫られている。
【0004】
【発明が解決しようとする課題】
本発明は、リンフリー水酸化マグネシウム系難燃剤とその製造方法、および該難燃剤を配合した耐水性に優れた難燃性樹脂組成物の提供を目的とする。
【0005】
【課題を解決するための手段】
本発明のリンフリーの水酸化マグネシウム系難燃剤は、水酸化マグネシウム粒子を、炭素数が18以上の飽和脂肪酸の、アルカリ金属塩、アンモニウム塩、モノアルコールアミン塩、ジアルコールアミン塩、及びモノ〜トリアルコールアミン塩の少なくとも一員で表面処理して、第一層の被膜を形成した後に、更にシランカップリング剤で表面処理して第二層の被膜を形成したことを特徴とする。更に、リンフリーの樹脂100重量部に対し、上記難燃剤を5〜500重量部配合すると、耐水性に優れたリンフリー難燃性樹脂組成物が得られる。
【0006】
本発明で使用する水酸化マグネシウム粒子は、合成物あるいは天然物ブルーサイトのいずれでも良い。
【0007】
本発明で使用する第一層の被膜を形成するための脂肪酸塩は、炭素数が18以上の飽和脂肪酸の、アルカリ金属塩、アンモニウム塩、モノ〜トリのアルコールアミン塩である。その飽和脂肪酸としては、例えば、ステアリン酸(C1735COOH、陰イオンとしての式量284)、アラキン酸(C1939COOH)、ベヘニン酸(C2143COOH、陰イオンとしての式量340)、リグノセリン酸(C2347COOH)、セロチン酸(C2551COOH)、モンタン酸(C2857COOH)、メリシン酸(C2959COOH)等が挙げられる。炭素数が18よりも少ないと、表面処理剤自体の撥水性効果が低く、難燃剤を混練した樹脂組成物の体積固有抵抗や耐水性は不十分である。なお飽和脂肪酸のアルカリ金属塩のアルカリ金属としては、例えば、Li、Na、K、Rb等が用いられる。また、飽和脂肪酸のアルコールアミン塩でのアルコールアミンとしては、メタノールアミン、エタノールアミン、n−プロパノールアミン、n−ブタノールアミン、イソプロパノールアミン、イソブタノールアミン、sec−ブタノールアミン、tert−ブタノールアミン等が挙げられる。一方、炭素数が18以上ではあるが、分子内に不飽和を1個以上含有する脂肪酸では、混練した樹脂組成物の耐水性は極端に劣る。
【0008】
本発明で使用する第二層の被膜を形成するためのシランカップリング剤は、例えば、ジメチルジメトキシシラン、メチルトリメトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、ジビニルジメトキシシラン、ビニルトリメトキシシラン、ジビニルジエトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、β−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、等が挙げられる。
【0009】
第一層の被膜は難燃剤粒子単位表面積当りに使用する飽和脂肪酸モル数が3μmol/mが好ましく、より好ましくは3〜15μmol/m、特に好ましくは3〜10μmol/mとする。第二層の被膜は難燃剤粒子単位表面積当りに使用するシランカップリング剤モル数は2μmol/m以上が好ましく、より好ましくは2〜30μmol/m、特に好ましくは2〜15μmol/mとする。飽和脂肪酸が3μmol/m未満、あるいはシランカップリング剤が2μmol/m未満の場合は、粒子表面を完全に被覆するための表面処理剤が不足し、初期の体積固有抵抗や耐水性のレベルが低くなる。
【0010】
表面処理では例えば、水酸化マグネシウム水懸濁液に、第一層の被膜として調製した飽和脂肪酸塩水溶液を添加して1時間以上攪拌した後、第二層の被膜として調製したシランカップリング剤水溶液を添加して12時間以上攪拌する。その後、水洗、脱水、乾燥、粉砕して水酸化マグネシウム系難燃剤を得ることができる。添加の順番が逆であったり、脂肪酸とシランカップリング剤を混合した水溶液を用いたりした場合は、樹脂組成物の初期の体積固有抵抗や耐水性のレベルは低下する。
【0011】
水酸化マグネシウム系難燃剤を配合する樹脂は、ハロゲンフリー、且つリンフリーであれば制限はなく、熱可塑性樹脂でも熱硬化性樹脂でも良い。例えば、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体、エチレン−無水マレイン酸共重合体、ポリプロピレン、ポリスチレン、エポキシ樹脂、フェノール樹脂等が挙げられる。
【0012】
本発明の難燃性樹脂組成物では、上記の合成樹脂100重量部に対し、表面処理された水酸化マグネシウム5〜500重量部を配合する。混練方法では、樹脂と水酸化マグネシウム粒子が加熱溶融して均一に混練できれば良く、加圧式ニーダー、プラストミル、ロール、バンバリーミキサー、1軸あるいは2軸押出機等を使用することができる。
【0013】
本発明での試験方法を以下に示す。
・ BET比表面積の測定;水酸化マグネシウム粉末を窒素吸着法により測定した。
・ 平均粒子径はレーザー回折法により測定した。
・ 難燃剤粒子単位表面積当りに使用する処理剤モル数は式(4)を用いて求めた。
難燃剤粒子単位表面積当りに使用する処理剤モル数(mol/m
=[難燃剤1g当りに使用する脂肪酸モル数(mol/g)]÷[難燃剤粉末のBET比表面積(m/g)] (4)
・ 初期の体積固有抵抗の測定および耐水試験;初期の体積固有抵抗は、JIS K6911に準拠して混練物を150℃でプレス成形し、厚み1mm×縦130mm×横130 mmのシートを作成し、温度30℃、相対湿度50 %の雰囲気下で3時間放置してから、固有抵抗測定電極を用いて500Vの電圧をかけ、1分間充電した後の体積抵抗値を測定し、体積固有抵抗値に換算した。また、耐水性は、シートを80℃に加温した10wt%濃度の食塩水中に96時間浸せきした後、シート表面の水分を除去する目的で40℃、8時間シートを乾燥し、前記と同様にして浸せき後の体積固有抵抗値を求めた。
【0014】
【実施例】
【0015】
【実施例1】
BET比表面積9.6 m/g、平均粒子径0.9μmの合成水酸化マグネシウム1kgを含む水懸濁液5Lを撹拌下80℃に加温し、第一層の被膜としてのモル数が3.5μmol/mとなるように、ベヘニン酸ナトリウム水溶液(温度80℃、濃度1wt%)を添加して1時間撹拌した。その後、第二層の被膜としてのモル数が8.7μmol/mとなるように、酢酸でpHが約3に調整したビニルトリメトキシシラン水溶液(温度80℃、濃度1wt%)を添加して12時間攪拌した。その後、水洗、脱水、乾燥、粉砕して表面処理水酸化マグネシウム粉末を得た。次に、エチレン−酢酸ビニル共重合体100重量部と表面処理された水酸化マグネシウム200重量部をラボプラストミルにより150℃で5分間混練し、プレス成形して130×130×1mmのサンプルシートを作成し、これを用いて耐水試験を行った。加えたベヘニン酸ナトリウムやビニルトリメトキシシランは、ほぼ全量が水酸化マグネシウム粒子に吸着し、ベヘニン酸ナトリウムやビニルトリメトキシシラン等の添加量は、仕込量と水洗により失われた量の差を示し、仕込量ではない。この点は実施例や比較例を通じて共通とする。
【0016】
【実施例2】
第一層の被膜としてのモル数が5.5μmol/mとなるように、ステアリン酸ジエタノールアミン水溶液(温度80℃、濃度1wt%)を添加した以外は、実施例1と同様の操作を行った。
【0017】
【実施例3】
BET比表面積7.5 m/g、平均粒子径4.5μmの天然ブルーサイト1kgを含む水懸濁液5Lを撹拌下80℃に加温し、第一層の被膜としてのモル数が4.5μmol/mとなるように、ベヘニン酸アンモニウム水溶液(温度80℃、濃度1wt%)を添加して1時間撹拌した。その後、第二層の被膜としてのモル数が2.5μmol/mとなるように、酢酸でpHが約3に調整したビニルトリメトキシシラン水溶液(温度80℃、濃度1wt%)を添加して12時間攪拌した。その後、実施例1と同様の操作を行った。
【0018】
【比較例1】
第一層の被膜としてのモル数が2.0μmol/mとなるように、ベヘニン酸ナトリウム水溶液を添加した以外は、実施例1と同様の操作を行った。
【0019】
【比較例2】
モル数が3.5μmol/mとなるように、ベヘニン酸ナトリウム水溶液単独で表面処理した以外は、実施例1と同様の操作を行った。
【0020】
【比較例3】
モル数が8.7μmol/mとなるように、ビニルトリメトキシシラン水溶液単独で表面処理した以外は、実施例1と同様の操作を行った。
【0021】
【比較例4】
第二層の被膜としてのモル数が1.0μmol/mとなるように、ビニルトリメトキシシラン水溶液を添加した以外は、実施例3と同様の操作を行った。
【0022】
【比較例5】
BET比表面積9.6 m/g、平均粒子径0.9μmの合成水酸化マグネシウム1kgを含む水懸濁液5Lを撹拌下80℃に加温し、第一層の被膜としてのモル数が8.7μmol/mとなるように、酢酸でpHが約3に調整したビニルトリメトキシシラン水溶液(温度80℃、濃度1wt%)を添加して12時間攪拌した。その後、第二層の被膜としてのモル数が3.5μmol/mとなるように、ベヘニン酸ナトリウム水溶液(温度80℃、濃度1wt%)を添加して1時間撹拌した。その後、実施例1と同様の操作を行った。
【0023】
【比較例6】
ベヘニン酸ナトリウム水溶液(モル数3.5μmol/m、温度80℃、濃度1wt%)と、酢酸でpHが約3に調整したビニルトリメトキシシラン水溶液(モル数8.7μmol/m、温度80℃、濃度1wt%)を混合して調製水溶液を得た。その後、BET比表面積9.6 m/g、平均粒子径0.9μmの合成水酸化マグネシウム1kgを含む80℃に加温した水懸濁液5Lに、調製した表面処理剤の混合水溶液を撹拌下に添加し、12時間攪拌した。その後、実施例1と同様の操作を行った。
【0024】
【比較例7】
第一層の被膜としてラウリン酸ナトリウム水溶液を用いた以外は、実施例1と同様の操作を行った。
【0025】
【比較例8】
第一層の被膜としてオレイン酸ナトリウム水溶液を用いた以外は、実施例1と同様の操作を行った。
【0026】
【比較例9】
BET比表面積9.6 m/g、平均粒子径0.9μmの合成水酸化マグネシウム無処理品について、実施例1と同様にして耐水試験を行った。
【0027】
初期の体積固有抵抗値は、2.0×1015Ω・cm以上(○)、1.0×1015Ω・cm以上2.0×1015Ω・cm未満(△)、1.0×1015Ω・cm未満(×)とした。また、耐水後の体積固有抵抗値は2.0×1014Ω・cm以上(○)、1.0×1014Ω・cm以上2.0×1014Ω・cm未満(△)、1.0×1014Ω・cm未満(×)とした。
【0028】
【表1】

Figure 2004269723
【0029】
【表2】
Figure 2004269723
Figure 2004269723
Figure 2004269723
【0030】
【発明の効果】
本発明によれば、水酸化マグネシウムを炭素数が18以上の飽和脂肪酸のアルカリ金属塩および/またはアンモニウム塩で表面処理して第一層の被膜を形成し、更にシランカップリング剤で表面処理して第二層の被膜を形成することにより、耐水性に優れたリンフリー難燃剤が提供され、該水酸化マグネシウム系難燃剤を配合することで耐水性の優れた樹脂組成物が提供される。また、この水酸化マグネシウム系難燃剤および該難燃剤を混練した樹脂組成物は、ハロゲンフリー、且つ、リンフリーであり、該樹脂組成物を燃焼させても有害なガスを発生しない等、環境や人体等への負荷が少ない。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phosphorus-free magnesium hydroxide-based flame retardant and a flame-retardant resin composition containing the same. More specifically, magnesium hydroxide particles are surface-treated with an alkali metal salt, ammonium salt, or mono-to-trialcoholamine salt of a saturated fatty acid having 18 or more carbon atoms (carbon atoms) to form a first layer coating. And a phosphorus-free magnesium hydroxide-based flame retardant having a surface treated with a silane coupling agent to form a second layer coating, a method for producing the same, and a water-resistant resin prepared by blending the flame retardant with a phosphorus-free resin The present invention relates to a flame-retardant resin composition having excellent resistance.
[0002]
[Prior art]
Due to environmental problems such as dioxin, it is common practice to add halogen-free flame retardant magnesium hydroxide to halogen-free resins such as polyolefin resin and epoxy resin in order to make the resin halogen-free flame retardant. Have been. BACKGROUND ART A resin composition containing a magnesium hydroxide-based flame retardant has been widely used for electric wire covering materials for home electric appliances and automobiles, and for electric and electronic parts such as IC sealing materials and laminates. However, when exposed to rainwater or moisture, or placed near a coast, the water resistance and salt water resistance of the resin composition are poor, and the electrical resistance is greatly reduced, and the properties as an insulating material are impaired. It is. As a cause of this, since the magnesium hydroxide-based flame retardant in the resin composition attracts moisture and salt coming from rainwater, moisture, sea breeze, etc., the moisture and salt in the resin composition increase, and the electric resistance decreases. It is possible. Therefore, a magnesium hydroxide flame retardant having excellent water resistance has been desired.
[0003]
[Patent Document 1] Japanese Patent Publication No. 6-2843 In order to improve the water resistance of a magnesium hydroxide-based flame retardant, various surface treatment methods have been conventionally proposed. For example, Japanese Patent Publication No. 6-2843 proposes a method in which magnesium hydroxide is surface-treated with a dialcoholamine salt of an alcoholic phosphate or an alkali metal salt, whereby the water resistance and the like are improved to some extent. However, phosphate-based compounds generate toxic phosphine gas during combustion, exhibit strong biotoxicity in animal tests, and after incineration and landfill disposal, phosphorus compounds flow into rivers by rainwater. Since it causes environmental pollution such as eutrophication, it is hard to say that it is a substance that is friendly to the human body and the environment. For this reason, the use of phosphorus-free materials for electric wire coating materials for home appliances has been pressing.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a phosphorus-free magnesium hydroxide-based flame retardant, a method for producing the same, and a flame-retardant resin composition containing the flame retardant and having excellent water resistance.
[0005]
[Means for Solving the Problems]
The phosphorus-free magnesium hydroxide-based flame retardant of the present invention is characterized in that magnesium hydroxide particles are formed by adding a saturated fatty acid having 18 or more carbon atoms to an alkali metal salt, an ammonium salt, a monoalcoholamine salt, a dialcoholamine salt, and After a surface treatment with at least one member of a trialcoholamine salt to form a first layer film, the surface treatment is further performed with a silane coupling agent to form a second layer film. Furthermore, when 5 to 500 parts by weight of the above flame retardant is blended with respect to 100 parts by weight of the phosphorus-free resin, a phosphorus-free flame-retardant resin composition having excellent water resistance can be obtained.
[0006]
The magnesium hydroxide particles used in the present invention may be either synthetic or natural brucite.
[0007]
The fatty acid salt for forming the first layer film used in the present invention is an alkali metal salt, an ammonium salt or a mono to tri alcoholamine salt of a saturated fatty acid having 18 or more carbon atoms. Examples of the saturated fatty acids include stearic acid (C 17 H 35 COOH, formula weight 284 as an anion), arachiic acid (C 19 H 39 COOH), and behenic acid (C 21 H 43 COOH, a formula as an anion). the amount 340), lignoceric acid (C 23 H 47 COOH), cerotic acid (C 25 H 51 COOH), montanic acid (C 28 H 57 COOH), include melissic acid (C 29 H 59 COOH) and the like. When the number of carbon atoms is less than 18, the water repellency of the surface treatment agent itself is low, and the volume resistivity and the water resistance of the resin composition kneaded with the flame retardant are insufficient. As the alkali metal of the alkali metal salt of a saturated fatty acid, for example, Li, Na, K, Rb and the like are used. Examples of the alcoholamine in the alcoholamine salt of a saturated fatty acid include methanolamine, ethanolamine, n-propanolamine, n-butanolamine, isopropanolamine, isobutanolamine, sec-butanolamine, tert-butanolamine and the like. Can be On the other hand, with a fatty acid having 18 or more carbon atoms but containing one or more unsaturation in the molecule, the water resistance of the kneaded resin composition is extremely poor.
[0008]
The silane coupling agent for forming the second layer coating used in the present invention is, for example, dimethyldimethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, divinyldimethoxysilane, vinyltrimethoxysilane , Divinyldiethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryl Loxypropyltriethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-amino Propyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, etc. Is mentioned.
[0009]
The number of moles of saturated fatty acid used per unit surface area of the flame retardant particles is preferably 3 μmol / m 2 , more preferably 3 to 15 μmol / m 2 , and particularly preferably 3 to 10 μmol / m 2 . In the coating of the second layer, the number of moles of the silane coupling agent used per unit surface area of the flame retardant particles is preferably 2 μmol / m 2 or more, more preferably 2 to 30 μmol / m 2 , particularly preferably 2 to 15 μmol / m 2 . I do. If less than saturated fatty acids 3 [mu] mol / m 2, or a silane coupling agent is less than 2 [mu] mol / m 2, insufficient surface treatment agent for completely cover the particle surface, the initial volume resistivity and water resistance levels Becomes lower.
[0010]
In the surface treatment, for example, an aqueous solution of a saturated fatty acid salt prepared as a coating of the first layer is added to an aqueous suspension of magnesium hydroxide, and the mixture is stirred for 1 hour or more, and then an aqueous solution of a silane coupling agent prepared as a coating of the second layer. And stir for at least 12 hours. Thereafter, washing with water, dehydration, drying, and pulverization can provide a magnesium hydroxide-based flame retardant. When the order of addition is reversed or when an aqueous solution in which a fatty acid and a silane coupling agent are mixed is used, the initial volume resistivity and the level of water resistance of the resin composition decrease.
[0011]
The resin containing the magnesium hydroxide-based flame retardant is not limited as long as it is halogen-free and phosphorus-free, and may be a thermoplastic resin or a thermosetting resin. For example, polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-maleic anhydride copolymer, polypropylene, polystyrene, epoxy resin, phenol resin and the like can be mentioned.
[0012]
In the flame-retardant resin composition of the present invention, 5-500 parts by weight of surface-treated magnesium hydroxide is blended with 100 parts by weight of the above synthetic resin. In the kneading method, it is sufficient that the resin and the magnesium hydroxide particles can be heated and melted to be uniformly kneaded, and a pressure-type kneader, a plast mill, a roll, a Banbury mixer, a single-screw or twin-screw extruder can be used.
[0013]
The test method in the present invention is shown below.
-Measurement of BET specific surface area: Magnesium hydroxide powder was measured by a nitrogen adsorption method.
-The average particle diameter was measured by a laser diffraction method.
-The number of moles of the treating agent used per unit surface area of the flame retardant particles was determined by using the formula (4).
Number of moles of treating agent used per unit surface area of flame retardant particles (mol / m 2 )
= [Molar number of fatty acids used per 1 g of flame retardant (mol / g)] ÷ [BET specific surface area of flame retardant powder (m 2 / g)] (4)
-Initial volume resistivity measurement and water resistance test: The initial volume resistivity was determined by press-molding the kneaded material at 150 ° C in accordance with JIS K6911 to form a sheet having a thickness of 1 mm × length 130 mm × width 130 mm. After leaving for 3 hours in an atmosphere at a temperature of 30 ° C. and a relative humidity of 50%, a voltage of 500 V was applied using a specific resistance measuring electrode, and the volume resistance after charging for 1 minute was measured. Converted. The water resistance was determined by immersing the sheet in a 10 wt% saline solution heated to 80 ° C. for 96 hours, and then drying the sheet at 40 ° C. for 8 hours in order to remove moisture on the sheet surface. The volume resistivity after immersion was determined.
[0014]
【Example】
[0015]
Embodiment 1
5 L of an aqueous suspension containing 1 kg of synthetic magnesium hydroxide having a BET specific surface area of 9.6 m 2 / g and an average particle diameter of 0.9 μm was heated to 80 ° C. with stirring, and the number of moles as a coating of the first layer was increased. An aqueous solution of sodium behenate (temperature: 80 ° C., concentration: 1 wt%) was added so that the concentration became 3.5 μmol / m 2, and the mixture was stirred for 1 hour. Thereafter, an aqueous solution of vinyltrimethoxysilane (temperature: 80 ° C, concentration: 1 wt%) whose pH was adjusted to about 3 with acetic acid was added so that the number of moles as the coating of the second layer became 8.7 µmol / m 2. Stir for 12 hours. Then, it was washed with water, dehydrated, dried and pulverized to obtain a surface-treated magnesium hydroxide powder. Next, 100 parts by weight of the ethylene-vinyl acetate copolymer and 200 parts by weight of the surface-treated magnesium hydroxide were kneaded by a laboplast mill at 150 ° C. for 5 minutes, and press-molded to obtain a 130 × 130 × 1 mm sample sheet. It was prepared and subjected to a water resistance test. Almost all of the added sodium behenate and vinyltrimethoxysilane are adsorbed on the magnesium hydroxide particles, and the added amount of sodium behenate and vinyltrimethoxysilane shows the difference between the charged amount and the amount lost by washing with water. , Not the charge. This point is common throughout the examples and comparative examples.
[0016]
Embodiment 2
The same operation as in Example 1 was performed except that an aqueous solution of diethanolamine stearate (temperature: 80 ° C., concentration: 1 wt%) was added so that the number of moles of the first layer film became 5.5 μmol / m 2 . .
[0017]
Embodiment 3
5 L of an aqueous suspension containing 1 kg of natural brucite having a BET specific surface area of 7.5 m 2 / g and an average particle diameter of 4.5 μm was heated to 80 ° C. with stirring, and the number of moles of the first layer coating film was 4 An aqueous solution of ammonium behenate (temperature: 80 ° C., concentration: 1 wt%) was added to the mixture so that the concentration became 0.5 μmol / m 2, and the mixture was stirred for 1 hour. Thereafter, an aqueous solution of vinyltrimethoxysilane (temperature: 80 ° C., concentration: 1% by weight) whose pH was adjusted to about 3 with acetic acid was added so that the number of moles of the second layer became 2.5 μmol / m 2. Stir for 12 hours. Thereafter, the same operation as in Example 1 was performed.
[0018]
[Comparative Example 1]
The same operation as in Example 1 was performed except that an aqueous solution of sodium behenate was added so that the number of moles of the first layer film became 2.0 μmol / m 2 .
[0019]
[Comparative Example 2]
The same operation as in Example 1 was performed except that the surface treatment was performed with the sodium behenate aqueous solution alone such that the number of moles became 3.5 μmol / m 2 .
[0020]
[Comparative Example 3]
The same operation as in Example 1 was performed, except that the surface treatment was performed with the vinyltrimethoxysilane aqueous solution alone so that the number of moles became 8.7 μmol / m 2 .
[0021]
[Comparative Example 4]
The same operation as in Example 3 was performed except that an aqueous solution of vinyltrimethoxysilane was added so that the number of moles of the second layer as a coating film was 1.0 μmol / m 2 .
[0022]
[Comparative Example 5]
5 L of an aqueous suspension containing 1 kg of synthetic magnesium hydroxide having a BET specific surface area of 9.6 m 2 / g and an average particle size of 0.9 μm was heated to 80 ° C. with stirring, and the number of moles as a first layer coating was increased. An aqueous solution of vinyltrimethoxysilane (temperature: 80 ° C, concentration: 1 wt%) whose pH was adjusted to about 3 with acetic acid was added so that the concentration became 8.7 µmol / m 2, and the mixture was stirred for 12 hours. Thereafter, an aqueous solution of sodium behenate (temperature: 80 ° C., concentration: 1% by weight) was added thereto such that the number of moles of the second layer became 3.5 μmol / m 2 , followed by stirring for 1 hour. Thereafter, the same operation as in Example 1 was performed.
[0023]
[Comparative Example 6]
A sodium behenate aqueous solution (3.5 mol / m 2 , temperature 80 ° C., 1 wt% concentration) and a vinyltrimethoxysilane aqueous solution adjusted to pH 3 with acetic acid (8.7 mol / m 2 , temperature 80) (C, 1 wt%) to obtain a prepared aqueous solution. Then, the mixed aqueous solution of the prepared surface treatment agent was stirred into 5 L of an aqueous suspension containing 1 kg of synthetic magnesium hydroxide having a BET specific surface area of 9.6 m 2 / g and an average particle diameter of 0.9 μm and heated to 80 ° C. Added below and stirred for 12 hours. Thereafter, the same operation as in Example 1 was performed.
[0024]
[Comparative Example 7]
The same operation as in Example 1 was performed except that an aqueous solution of sodium laurate was used as the first layer.
[0025]
[Comparative Example 8]
The same operation as in Example 1 was performed except that an aqueous solution of sodium oleate was used as the first layer.
[0026]
[Comparative Example 9]
A water resistance test was carried out in the same manner as in Example 1 for a synthetic magnesium hydroxide untreated product having a BET specific surface area of 9.6 m 2 / g and an average particle size of 0.9 μm.
[0027]
The initial volume resistivity is 2.0 × 10 15 Ω · cm or more ((), 1.0 × 10 15 Ω · cm or more and less than 2.0 × 10 15 Ω · cm (△), 1.0 × It was less than 10 15 Ω · cm (×). Further, the volume resistivity after water resistance is 2.0 × 10 14 Ω · cm or more (、), 1.0 × 10 14 Ω · cm or more and less than 2.0 × 10 14 Ω · cm (△), and 1. It was less than 0 × 10 14 Ω · cm (×).
[0028]
[Table 1]
Figure 2004269723
[0029]
[Table 2]
Figure 2004269723
Figure 2004269723
Figure 2004269723
[0030]
【The invention's effect】
According to the present invention, magnesium hydroxide is surface-treated with an alkali metal salt and / or ammonium salt of a saturated fatty acid having 18 or more carbon atoms to form a first layer film, and further surface-treated with a silane coupling agent. The formation of the second layer coating provides a phosphorus-free flame retardant excellent in water resistance, and the addition of the magnesium hydroxide-based flame retardant provides a resin composition excellent in water resistance. Further, the magnesium hydroxide-based flame retardant and the resin composition obtained by kneading the flame retardant are halogen-free and phosphorus-free, and do not generate harmful gas even when the resin composition is burned. The load on the human body is small.

Claims (5)

水酸化マグネシウム粒子を、式(1)の飽和脂肪酸のアルカリ金属塩、式(2)の飽和脂肪酸のアンモニウム塩、および式(3)の飽和脂肪酸のアルコールアミン塩の、少なくとも一員で表面処理して第一層の被膜を形成した後に、
前記第一層の被膜を設けた水酸化マグネシウム粒子を、更にシランカップリング剤で表面処理して第二層の被膜を形成した、リンフリーの水酸化マグネシウム系難燃剤。
2a+1COO(a≧17、Mはアルカリ金属イオンを示す) (1)
2a+1COONH (a≧17) (2)
2a+1COO[HN(C2cOH)4−b(a≧17、1≦b≦3、1≦c≦4) (3)
Surface treatment of the magnesium hydroxide particles with at least one member of an alkali metal salt of a saturated fatty acid of formula (1), an ammonium salt of a saturated fatty acid of formula (2), and an alcoholamine salt of a saturated fatty acid of formula (3) After forming the first layer coating,
A phosphorus-free magnesium hydroxide-based flame retardant, wherein the magnesium hydroxide particles provided with the first layer coating are further surface-treated with a silane coupling agent to form a second layer coating.
C a H 2a + 1 COO - M + (a ≧ 17, M + represents an alkali metal ion) (1)
C a H 2a + 1 COO - NH 4 + (a ≧ 17) (2)
C a H 2a + 1 COO - [H b N (C c H 2c OH) 4-b] + (a ≧ 17,1 ≦ b ≦ 3,1 ≦ c ≦ 4) (3)
第一層の被膜は、水酸化マグネシウム粒子の表面積当りの飽和脂肪酸が3μmol/m以上であり、第二層の被膜は、水酸化マグネシウム粒子の表面積当りのシランカップリング剤が2μmol/m以上であることを特徴とする、請求項1のリンフリーの水酸化マグネシウム系難燃剤。The first layer coating has a saturated fatty acid of 3 μmol / m 2 or more per surface area of the magnesium hydroxide particles, and the second layer coating has a silane coupling agent of 2 μmol / m 2 per surface area of the magnesium hydroxide particles. The phosphorus-free magnesium hydroxide flame retardant according to claim 1, characterized in that: 水酸化マグネシウム粒子を、式(1)の飽和脂肪酸のアルカリ金属塩 、式(2)の飽和脂肪酸のアンモニウム塩、および式(3)の飽和脂肪酸のアルコールアミン塩の、少なくとも一員で表面処理して第一層の被膜を形成した後に、シランカップリング剤で表面処理して第二層の被膜を形成する、リンフリーの水酸化マグネシウム系難燃剤の製造方法。
2a+1COO(a≧17、Mはアルカリ金属イオンを示す) (1)
2a+1COONH (a≧17) (2)
2a+1COO[HN(C2cOH)4−b(a≧17、1≦b≦3、1≦c≦4) (3)
Surface treatment of the magnesium hydroxide particles with at least one member of an alkali metal salt of a saturated fatty acid of formula (1), an ammonium salt of a saturated fatty acid of formula (2), and an alcoholamine salt of a saturated fatty acid of formula (3) A method for producing a phosphorus-free magnesium hydroxide-based flame retardant, comprising forming a first layer film and then treating the surface with a silane coupling agent to form a second layer film.
C a H 2a + 1 COO - M + (a ≧ 17, M + represents an alkali metal ion) (1)
C a H 2a + 1 COO - NH 4 + (a ≧ 17) (2)
C a H 2a + 1 COO - [H b N (C c H 2c OH) 4-b] + (a ≧ 17,1 ≦ b ≦ 3,1 ≦ c ≦ 4) (3)
第一層の被膜は、水酸化マグネシウム粒子の表面積当りの飽和脂肪酸が3μmol/m以上であり、第二層の被膜は、水酸化マグネシウム粒子の表面積当りのシランカップリング剤が2μmol/m以上であることを特徴とする、請求項3のリンフリーの水酸化マグネシウム系難燃剤の製造方法。The first layer coating has a saturated fatty acid of 3 μmol / m 2 or more per surface area of the magnesium hydroxide particles, and the second layer coating has a silane coupling agent of 2 μmol / m 2 per surface area of the magnesium hydroxide particles. The method for producing a phosphorus-free magnesium hydroxide-based flame retardant according to claim 3, characterized in that: リンフリー樹脂100重量部に対し、請求項1または2の水酸化マグネシウム系難燃剤を5〜500重量部配合した、難燃性樹脂組成物。3. A flame-retardant resin composition comprising 5 to 500 parts by weight of the magnesium hydroxide-based flame retardant of claim 1 or 2 based on 100 parts by weight of a phosphorus-free resin.
JP2003063182A 2003-03-10 2003-03-10 Method for producing phosphorus-free magnesium hydroxide flame retardant Expired - Fee Related JP3773247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063182A JP3773247B2 (en) 2003-03-10 2003-03-10 Method for producing phosphorus-free magnesium hydroxide flame retardant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063182A JP3773247B2 (en) 2003-03-10 2003-03-10 Method for producing phosphorus-free magnesium hydroxide flame retardant

Publications (2)

Publication Number Publication Date
JP2004269723A true JP2004269723A (en) 2004-09-30
JP3773247B2 JP3773247B2 (en) 2006-05-10

Family

ID=33124828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063182A Expired - Fee Related JP3773247B2 (en) 2003-03-10 2003-03-10 Method for producing phosphorus-free magnesium hydroxide flame retardant

Country Status (1)

Country Link
JP (1) JP3773247B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016153A (en) * 2005-07-08 2007-01-25 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant with high heat resistance, flame retardant resin composition and molded product
CN101792674A (en) * 2010-03-19 2010-08-04 大连理工大学 Method for preparing nitrogen-phosphorus-magnesium compound fire retardant
US7816440B2 (en) 2005-10-25 2010-10-19 Konoshima Chemical Co., Ltd. Flame retardant, flame-retardant resin composition and molded body
CN115558915A (en) * 2022-10-08 2023-01-03 深圳市豪龙新材料技术有限公司 Magnesium alloy high-corrosion-resistance hydrophobic sealant and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530584B (en) * 2014-11-07 2016-03-30 安徽省三乐门窗幕墙工程有限公司 Shock-resistant plastic-steel door window section bar of a kind of good flame resistance and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238434A (en) * 1988-07-29 1990-02-07 Nippon Unicar Co Ltd Flame-retarding polyolefin resin composition
JPH0565367A (en) * 1991-09-05 1993-03-19 Sumitomo Electric Ind Ltd Acid-resistant flame-retardant composition
JP2000195336A (en) * 1998-12-24 2000-07-14 Furukawa Electric Co Ltd:The Electric wire coating resin composition and insulated electric wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238434A (en) * 1988-07-29 1990-02-07 Nippon Unicar Co Ltd Flame-retarding polyolefin resin composition
JPH0565367A (en) * 1991-09-05 1993-03-19 Sumitomo Electric Ind Ltd Acid-resistant flame-retardant composition
JP2000195336A (en) * 1998-12-24 2000-07-14 Furukawa Electric Co Ltd:The Electric wire coating resin composition and insulated electric wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016153A (en) * 2005-07-08 2007-01-25 Konoshima Chemical Co Ltd Magnesium hydroxide-based flame retardant with high heat resistance, flame retardant resin composition and molded product
US7816440B2 (en) 2005-10-25 2010-10-19 Konoshima Chemical Co., Ltd. Flame retardant, flame-retardant resin composition and molded body
CN101792674A (en) * 2010-03-19 2010-08-04 大连理工大学 Method for preparing nitrogen-phosphorus-magnesium compound fire retardant
CN115558915A (en) * 2022-10-08 2023-01-03 深圳市豪龙新材料技术有限公司 Magnesium alloy high-corrosion-resistance hydrophobic sealant and preparation method thereof
CN115558915B (en) * 2022-10-08 2023-06-09 深圳市豪龙新材料技术有限公司 Magnesium alloy high corrosion-resistant hydrophobic sealing agent and preparation method thereof

Also Published As

Publication number Publication date
JP3773247B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
JP4947612B2 (en) Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition
EP0780425B1 (en) Heat deterioration resistant flame retardant, resin composition and molded articles
US7686986B2 (en) Magnesium hydroxide nanoparticles, methods of making same and compositions incorporating same
JP3299921B2 (en) Acid-resistant thermoplastic resin composition containing magnesium hydroxide
JPH0354233A (en) Complex flame retardant and flame-retardant resin composition containing same
JP5035545B2 (en) Method for producing alkaline zirconia sol
KR101763500B1 (en) Flame retardant agent, flame-retardant composition, and molded article
JP3339154B2 (en) Flame retardant composition and electric wire and cable
CN104282936B (en) Non-aqueous electrolyte secondary battery
JP2016106160A (en) Magnesium oxide particle, resin composition, rubber composition and molding
JP2009062214A (en) Magnesium hydroxide particulate, and method for producing the same
JP2003253266A (en) Flame-retardant, method for production thereof and flame-retardant resin composition containing the same
JP2003129056A (en) Flame retardant having high effective surface area, production method therefor and flame-retardant resin composition containing the same
JP2004269723A (en) Phosphorus-free magnesium hydroxide-based flame retardant, production method and flame retardant resin composition
JP2008001756A (en) Acid acceptor having improved electrical insulating property, composition containing the same and its molded article
JP5394380B2 (en) Flame retardant resin composition
JP5078270B2 (en) Magnesium hydroxide powder and method for producing the same, and resin composition and molded body
JP2001115057A (en) Magnesium oxide particle having high acid resistance and high hydration resistance and resin composition
JP2007016153A (en) Magnesium hydroxide-based flame retardant with high heat resistance, flame retardant resin composition and molded product
JP4366364B2 (en) Flame retardant, flame retardant resin composition and molded article
JP2018184306A (en) Hydrotalcite compound, resin composition blended with hydrotalcite compound, and molded body thereof
JP5405379B2 (en) Magnesium hydroxide-based flame retardant and method for producing the same, and resin composition and molded body
JP2002265948A (en) Magnesium hydroxide flame retardant coated with silane coupling agent, its production method, and flame- retardant resin composition
JP2007016152A (en) Magnesium hydroxide-based flame retardant having high heat resistance, flame retardant resin composition and molded article
JP2005171036A (en) Metal hydroxide and flame retardant resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees