JP2004269548A - Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same - Google Patents

Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same Download PDF

Info

Publication number
JP2004269548A
JP2004269548A JP2000271396A JP2000271396A JP2004269548A JP 2004269548 A JP2004269548 A JP 2004269548A JP 2000271396 A JP2000271396 A JP 2000271396A JP 2000271396 A JP2000271396 A JP 2000271396A JP 2004269548 A JP2004269548 A JP 2004269548A
Authority
JP
Japan
Prior art keywords
styrene
conjugated diene
copolymer
block copolymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000271396A
Other languages
Japanese (ja)
Inventor
Hideaki Nitta
英昭 新田
Takeshi Sasaki
毅 佐々木
Shunichi Matsumura
俊一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000271396A priority Critical patent/JP2004269548A/en
Priority to AU2001282602A priority patent/AU2001282602A1/en
Priority to PCT/JP2001/007592 priority patent/WO2002020662A1/en
Priority to TW90122138A priority patent/TW572963B/en
Publication of JP2004269548A publication Critical patent/JP2004269548A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly hydrogenated styrenic copolymer composition suitable as a substrate material for an optical disk coping with high recording density which has high melt fluidity and tenacity and slightly suffers from decrease in elastic modulus. <P>SOLUTION: The hydrogenated styrenic block copolymer composition comprises a hydrogenated styrenic block copolymer (a) which is obtained by hydrogenating all of the double bonds and at least 90 mol% of an aromatic ring in a styrene/conjugated diene block copolymer comprising 80-99 wt% of the styrene component and 20-1 wt% of the conjugated diene component and has a weight-average molecular weight of 40,000-100,000, and a hydrogenated styrenic block copolymer (b) which is obtained by hydrogenating all of the double bonds and at least 90 mol% of an aromatic ring in a styrene/conjugated diene block copolymer comprising 84-99 wt% of the styrene component and 16-1 wt% of the conjugated diene component and has a weight-average molecular weight of 200,000-600,000, in a weight ratio of (a)/(b) of 50/50-98/2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【特許の属する技術分野】
本発明は、水素化スチレン系ブロック共重合体を用いた組成物に関する。より詳しくは、透明性、力学強度、剛性、耐熱性、成形性に優れた光学部品に好適な共重合体組成物、特に光ディスク用基板に好適な共重合体組成物に関する。
【0002】
【従来の技術】
光ディスク用基板、光学用レンズ等の光学部品に用いられるプラスチックには、透明性の他に、光学等方性(低複屈折性)、寸法安定性、耐候性、熱安定性等の様々な特性が要求される。従来これらの光学用途には、ポリカーボネートあるいはポリメタクリル酸メチルが主として用いられてきたが、ポリカーボネートは固有複屈折率が大きく成形物に光学異方性が生じやすいこと、またポリメタクリル酸メチルは吸水率が極めて高いため寸法安定性に乏しいこと、また耐熱性も低いことが問題点となっていた。現在の光ディスク用基板にはポリカーボネートが専ら用いられているが、近年、光磁気記録ディスク(MOD)の大容量化、あるいはデジタルビデオディスク(DVD)の開発、ブルーレーザーの開発に代表される記録密度の高密度化の進展に伴い、かかるポリカーボネートの複屈折の大きさ、吸湿によるディスクの反りの問題が懸念されるようになってきている。
【0003】
かかる状況から、近年ポリカーボネートの代替材料として非晶性ポリオレフィンと呼ばれるポリオレフィン系樹脂の開発が盛んである。これらの一例としてポリスチレンの芳香族環を水素添加により水素化し、ポリビニルシクロヘキサン構造とした水素化ポリスチレンが提案されている(特公平7−114030号公報など)。かかる樹脂は、他の非晶性ポリオレフィンに比べて安価に製造できるという大きな利点を有するが力学的に脆いという欠点がある。この欠点の改善を目指したものとして、スチレンにイソプレンやブタジエンといった共役ジエンをブロック共重合させ、いわゆるゴム成分を導入したスチレン−共役ジエンブロック共重合体の水素化物を光ディスク用基板をはじめとする光学部品用材料として用いる例が報告されている(特許2730053号公報、特許2725402号公報)。かかる水素化スチレン−共役ジエンブロック共重合体は、ある程度の量のゴム成分を導入することにより力学的な脆さを改善する効果があるが、ゴム成分の量が多くなると耐熱性や剛性の低下、またそのゴム成分の凝集により相分離を起こし透明性が低下する恐れがある。
【0004】
光ディスクの分野では近年記録密度の高密度化が進んでおり、その基板成形においては、複屈折の低減とともにスタンパー形状の転写性に対する要求がますます厳しくなる傾向にある。従ってポリカーボネートを用いた射出成形では成形温度を高くする、あるいは分子量をできる限り下げることにより樹脂の溶融粘度を下げ流動性を上げる努力がなされている。しかしながら水素化スチレン系重合体の場合、一般に重合体の耐熱性が本質的にポリカーボネートに比べて高くないため、成形温度を上げることには限界がある。また分子量を低下させすぎると成形時にクラック等が発生しやすくなる。上記の水素化スチレン−共役ジエンブロック共重合体を用いると靭性が改善されるため、水素化ポリスチレンよりもさらに分子量を下げて流動性を上げることがある程度は可能である。
【0005】
しかし一般に共役ジエン成分量が多いほど靭性改善に効果があるが、その分成形物の弾性率は低下する。近年光ディスクの回転スピードはますます上昇する傾向にあり、反り、変形等の問題から樹脂の剛性、すなわち弾性率の高い樹脂が求められている。この樹脂の弾性率という要求特性を考慮すると共役ジエン成分をあまり多く導入するのも難しく、共役ジエン成分量を増やすことにより靭性を出来るだけ上げ、その一方で分子量を下げることにより溶融流動性を高めるという手法にも限界がある。
【0006】
すなわち水素化スチレン−共役ジエンブロック共重合体を用いた場合、成形物の靭性を維持しながら溶融流動性を上げることは、ゴム成分、すなわち共役ジエン成分量を増やすことにより充分達成可能であるが、さらに該重合体の弾性率を維持することまでも考え合わせると、光ディスク基板用材料として好適なものは未だ得られていないのが現状である。
【0007】
【発明が解決しようとする課題】
本発明の目的は、水素化スチレン系重合体組成物に関し、光ディスク基板用材料、特に高記録密度の光ディスク用基板として要求特性にこたえ得るような重合体組成物を提供することにある。より詳しくは従来の水素化スチレン−共役ジエンブロック共重合体と比較して、溶融流動性が高く、靭性があり、かつ弾性率の低下が小さい、という特性を有する重合体組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上述の課題を達成するために、水素化ポリスチレン系共重合体組成物として、低分子量成分と高分子量成分とのブレンド体に着目し検討を行ったところ、該低分子量成分、該高分子量成分それぞれの分子量、共役ジエン成分の割合、両者のブレンド比率をある範囲内で適切に組み合わせることにより重合体の流動性が高く、なおかつ衝撃強度にも優れ、さらに弾性率の低下が小さいものが得られることを見出し本発明に到達した。
【0009】
すなわち本発明は、スチレン成分が80〜99重量%、共役ジエン成分が20〜1重量%からなるスチレン−共役ジエンブロック共重合体中の共役ジエン成分に由来する二重結合のすべて、および芳香族環の90モル%以上を水素化して得られる共重合体であり、かつその重量平均分子量が40,000〜100,000である水素化スチレン系ブロック共重合体(a)と、スチレン成分が84〜99重量%、共役ジエン成分が16〜1重量%からなるスチレン−共役ジエンブロック共重合体中の共役ジエン成分に由来する二重結合のすべて、および芳香族環の90モル%以上を水素化して得られる共重合体であり、かつその重量平均分子量が200,000〜600,000である水素化スチレン系ブロック共重合体(b)からなる共重合体組成物であって、その重量比が(a)/(b)=50/50〜98/2の範囲にあることを特徴とする水素化ポリスチレン系ブロック共重合体組成物である。
【0010】
本発明の樹脂組成物は、光ディスク用基板などの光学部品用途に好適に用いられる。
【0011】
【発明の実施の形態】
以下、本発明について詳述する。
本発明において用いられる水素化ポリスチレン系ブロック共重合体とは、スチレンと共役ジエンとのブロック共重合体中の共役ジエン成分に由来する二重結合のすべて、および芳香族環の90モル%を水素化したものである。重合成分のうちの1つにはスチレンを用いるが、他のビニル芳香族化合物、例えばαーメチルスチレン、4−メチルスチレン、2−メチルスチレン、ビニルナフタレン等をスチレンと併用することも可能である。共重合成分のもう一方には共役ジエンを用いる。該共役ジエンとしては、イソプレン、1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等が挙げられる。これらのなかでも重合活性、経済性の面からイソプレン、1,3−ブタジエンが好ましい。これらは単独で用いても良いし、2種類以上併用して用いても良い。
【0012】
本発明は、低分子量の水素化スチレン系ブロック共重合体と、高分子量の水素化スチレン系ブロック共重合体との組成物であることを特徴とする。
【0013】
低分子量の水素化スチレン系ブロック共重合体(a)において、水素添加前のスチレン−共役ジエン共重合体における共役ジエン成分の割合が、1〜20重量%の範囲にあることが好ましい。1重量%未満であると耐衝撃性等の靭性に関する特性を向上できず、20重量%を越えると弾性率の低下が大きく、また共役ジエン成分が凝集し結晶化が起こりやすくなり、その結果透明性が低下するため好ましくない。より好ましくは共役ジエン成分が1〜15重量%である。また水素添加後の重量平均分子量(Mw)が40,000〜100,000であることが好ましい。ここでMwとはゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量のことを表す。このMwが40,000よりも低いと、高分子量成分とブレンドしても該組成物の靭性を保持することは困難となり好ましくなく、また100,000よりも高いと、靭性は高くなるが溶融流動性の高いものが得られなくなり好ましくない。より好ましくは、Mwが50,000〜90,000の範囲である。
【0014】
高分子量の水素化スチレン系ブロック共重合体(b)においては、水素添加前のスチレン−共役ジエン共重合体における共役ジエン成分の割合が、1〜16重量%の範囲にあることが好ましい。耐衝撃性等の靭性に関する特性の点からは共役ジエン成分量を上げることが好ましいが、共役ジエン成分が多いと低分子量の共重合体の場合と同様に弾性率の低下が大きく、また共役ジエン成分の凝集、結晶化により白濁する恐れが高くなる。高分子量の共重合体では、共役ジエン成分量が同じでも1本あたりの共役ジエン成分の鎖長が長くなるため、共役ジエン成分の共重合による靭性改善の効果が大きくなる。共役ジエン成分量としてより好ましくは2〜15重量%である。高分子量の水素化ポリスチレン系ブロック共重合体の望ましい分子量としては、重量平均分子量(Mw)で200,000〜600,000の範囲であり、200,000〜500,000の範囲であることがより好ましい。Mwが200,000よりも小さいと、低分子量成分とブレンドした場合に、靭性を維持する効果が充分でないため好ましくなく、Mwが600,000よりも大きいと、溶融粘度が高くなりすぎて溶融流動性の点から好ましくない。
【0015】
本発明における重合体組成物の組成比は、かかる低分子量共重合体(a)と高分子量共重合体(b)それぞれの分子量、共役ジエン成分量を勘案して決められるが、重量比で(a)/(b)=50/50〜98/2の範囲である。低分子量共重合体成分がこの範囲より少ないと溶融流動性が高くなりすぎて好ましくなく、逆に多すぎると靭性を維持することが困難となる。より好ましい範囲は、(a)/(b)=60/40〜90/10である。
【0016】
一般に水素化スチレン系ブロック共重合体の弾性率は、該共重合体の分子量よりも共役ジエン成分量に大きく影響を受ける。本発明では、弾性率の観点から共重合体組成物全体に占める共役ジエン成分量を15重量%以下にすることが好ましく、より好ましくは12重量%以下、さらに好ましくは10重量%以下である。
【0017】
かかる両成分をブレンドする方法については特に制限はなく、予め単離した重合体同士を押出機等により溶融混練する、あるいは溶液状態で混合した後、脱溶媒する等の既知の方法を用いることが出来る。
【0018】
水添前の共重合体であるスチレン−共役ジエンブロック共重合体は、有機リチウムを開始剤とするアニオン重合等の公知の方法により重合することが出来る。
【0019】
かかる重合方法において、重合反応は通常、炭化水素系溶媒を使用して行われる。具体的にはペンタン、ヘキサン、ヘプタン、オクタン、デカン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等を挙げることが出来る。かかる炭化水素系溶媒のなかでも、溶解性、反応性の点でシクロヘキサンあるいはメチルシクロヘキサンが好ましく使用される。
【0020】
上記炭化水素系溶媒に加えて、重合反応の制御、共役ジエン部分のミクロ構造の制御等の目的で極性溶媒を用いても良い。かかる極性溶媒としては、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、メチル−tert−ブチルエーテル等のエーテル類;トリエチルアミン、テトラエチルエチレンジアミン等のアミン類;ホスフィン類等が挙げられる。
【0021】
重合に用いられるアニオン重合開始剤としては、一般に有機リチウム化合物が用いられ、具体的にはエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム等が挙げられる。これらのなかでも入手の容易さ、重合反応の開始能力等から、n−ブチルリチウムあるいはsec−ブチルリチウムが好ましく用いられる。また有機リチウム化合物を用いた場合、重合温度は、通常−20℃〜120℃、好ましくは10℃〜100℃の範囲である。重合は触媒および重合途中の重合体の活性末端の失活を防ぐため、窒素やアルゴン等の不活性雰囲気下で行う必要がある。重合反応は用いる開始剤の濃度および種類によるが、通常は数分〜数時間で終了し、ほぼモノマーの仕込み量どおりに定量的に共重合体が得られる。
【0022】
かかる重合工程において、スチレンと共役ジエンとをどのように共重合させるかにより最終的に得られる共重合体の構造が異なってくる。本発明では成形物の力学特性のバランスが優れているという点から、スチレン−共役ジエン−スチレンの3元共重合体構造をとるスチレン−共役ジエンブロック共重合体を好ましくあげることが出来る。また本発明では、各共重合成分がその境界で混じり合った形で重合したいわゆるテーパー型ではなく、出来る限り完全に分離した形であるブロック共重合体であることが、成形物内のゴム成分の相分離構造を明確にし、耐熱性、弾性率の低下を抑制するという観点から好ましい。かかる構造を形成せしめるには、スチレンをまず重合させ、次に共役ジエン、最後にスチレンを順に重合反応系に添加していけば良く、それぞれの重合工程において、前に添加したモノマーがほぼ完全に反応した後に次のモノマーを添加することが望ましい。
【0023】
水素添加反応は、重合反応後の共重合体をいったん単離してから行っても良いが、重合反応後の溶液状態のまま行うことが可能であり経済的な面からも好ましい。本発明において用いる水素化触媒は特に限定されず、芳香族環を核水添することが可能な公知の触媒を使用することが出来る。具体的にはニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウム等の貴金属またはその酸化物、塩、錯体等の化合物をカーボン、アルミナ、シリカ、シリカ・アルミナ珪藻土等の多孔性担体に担持した固体触媒が挙げられる。これらのなかでもニッケル、パラジウム、白金をアルミナ、シリカ、シリカ・アルミナ珪藻土に担持したものが反応性が高く好ましく用いられる。かかる水素化触媒は、その触媒活性によるが共重合体に対して0.5〜40重量%の範囲で使用することが好ましい。
【0024】
水素化反応条件は、通常水素圧2.94〜24.5MPa(30〜250kgf/cm)、反応温度70〜250℃の範囲内で行われる。反応温度が70℃より低すぎると反応が進行しにくく、反応温度が250℃をこえるとと分子鎖の切断による分子量の低下が起りやすくなる。分子鎖の切断による分子量低下を防ぎかつ円滑に反応を進行させるには、用いる触媒の種類および濃度、共重合体の溶液濃度、分子量等により適宜決定される適切な温度、水素圧により水素化反応を行うことが好ましい。
【0025】
水素化反応の際に用いられる溶媒は、水素化触媒の触媒毒とならない溶媒を選ぶことが好ましく、重合反応時の溶媒として用いられるシクロヘキサン、メチルシクロヘキサン等の飽和脂肪族炭化水素系溶媒を好適に挙げることが出来る。その他に反応の活性を高める、あるいは分子鎖の切断による分子量の低下を抑制する目的で、テトラヒドロフラン、ジオキサン、メチル−tert−ブチルエーテル等のエーテル類;エステル類;アルコール類等の極性溶媒を、共重合体の溶解性を妨げない範囲内で上記溶媒に加えても良い。本発明においては重合後の溶液状態のまま共重合体を単離することなく水素化を行うことが好ましく、従って重合反応後の溶液そのまま、あるいはさらに必要な極性溶媒を加えた溶媒系にて水素化反応を行う方法が好ましく挙げられる。
【0026】
本発明では生産性、反応性、および溶液粘度の点から、上記の溶媒系で、共重合体の濃度が3〜50重量%の範囲内で水素化反応を行うことが好ましい。
【0027】
上記の水素化反応はいわゆる核水添反応であり、共重合体中の共役ジエン由来の二重結合は完全に水素化され、一方スチレン由来の芳香族環はシクロヘキサン構造となる。ここで言う完全に水素化されているとは、実質的に水添率が99モル%以上のことを指す。本発明においては、かかる共重合体の芳香族環の水添率は90モル%以上、好ましくは98モル%以上、さらに好ましくは99モル%以上である。水添率が90モル%未満であると、得られる水素化共重合体の透明性の低下、耐熱性の低下、成形物の複屈折率の増大等の問題があり好ましくない。水添率は出来る限り高いことが望ましいが、実際には得られる水素化共重合体の物性と、該水添率を達成するために要求される水素化工程の設備面、運転面も含めた経済性とを勘案して決定される。また該水添率はNMR測定等の方法により算出できる。
【0028】
水素化反応終了後は、遠心分離、濾過などの公知の後処理方法により触媒の除去を行うことが出来る。光学材料用途に用いる本発明では物性に悪影響を及ぼさないように、共重合体内の残留触媒金属成分は出来る限り少なくする必要があり、かかる残留触媒金属量が10ppm以下が好ましく、より好ましくは1ppm以下である。水素化触媒を除去した重合体溶液から、溶媒の蒸発留去、ストリッピングあるいは再沈殿等の方法により目的の水素化共重合体を得ることが出来る。
【0029】
本発明の水素化共重合体組成物には、溶融成形時の熱安定性を向上させるため、「イルガノックス1010」、「イルガノックス1076」(チバガイギー(株)社製)等のヒンダードフェノール系;「スミライザーGS」,「スミライザーGM」(住友化学工業(株)社製)に代表される部分アクリル化多価フェノール系;「イルガフォス168」(チバガイギー(株)社製)等のホスファイト系等に代表される安定剤を加えることが好ましい。また必要に応じて長鎖脂肪族アルコール、長鎖脂肪族エステル等の離型剤、その他滑剤、可塑剤、紫外線吸収剤、帯電防止剤等の添加剤を添加することが出来る。
【0030】
本発明の水素化共重合組成物は、射出成形、押し出し成形、溶液流延法等の公知の成形方法により成形することが出来る。特に射出成形による光ディスク用基板の製造に好適に用いることが出来る。かかる光ディスク用基板の成形では、成形温度270〜350℃で射出成形される。
【0031】
【実施例】
以下に実施例により本発明を詳述する。但し、本発明はこれら実施例に何ら限定されるものではない。
【0032】
溶媒であるシクロヘキサン、メチル−tert−ブチルエーテル、共重合体のモノマーであるスチレン、イソプレンはすべて蒸留精製を行い充分に乾燥したものを用いた。n−ブチルリチウムは関東化学(株)より濃度1.57Mのn−ヘキサン溶液を購入し、そのまま用いた。Ni/シリカ・アルミナ触媒(Ni担持率65重量%)はAldrichより購入し、そのまま用いた。
【0033】
実施例及び参考例で行った各種物性測定は以下の方法で行ったものである。
1)ガラス転移温度(Tg):TAInstruments製 2920型DSCを使用し、昇温速度は20℃/分で測定した。
【0034】
2)還元粘度:濃度0.5g/dLのトルエン溶液の、30℃における還元粘度ηsp/cを測定した。
【0035】
3)重量平均分子量:ゲルパーミエーションクロマトグラフィー(昭和電工(株)製GPC、「Shodex System−11」)により、THFを溶媒として測定し、ポリスチレン換算の重量平均分子量Mwを求めた。
【0036】
4)水添率:JEOL JNM−A−400型核磁気共鳴吸収装置を用い、H−NMR測定により定量した。
【0037】
5)溶融粘度:(株)島津製作所製高下式フローテスターを用いて測定し、シェアレートが10−1と10−1における溶融粘度を算出した。
【0038】
6)全光線透過率:(株)島津製作所製紫外可視分光器(UV−240)を使用した。
【0039】
7)ヘイズ値:日本電色工業(株)製自動デジタルヘイズメーターUDH−20Dを使用した。
【0040】
8)アイゾット衝撃強度:JIS K−7110に準拠し、(株)上島製作所製UF IMPACT TESTERを使用して、成形サンプルをノッチありおよびノッチなしで衝撃試験を行い測定した。
【0041】
9)熱変形温度(HDT):JIS K−7207に準拠し、荷重181.3N/cmにて測定した。
10)曲げ弾性率:(株)オリエンテック社製UCT−1Tを使用し、試料厚み3mm、試料幅12mm、エッジスパン幅46mm、クロスヘッド速度2mm/分で3点曲げ測定を行い、算出した。
【0042】
(製造例1:低分子量の水素化スチレン−イソプレン共重合体Aの合成)
容量10Lのステンレス製オートクレーブの内部を充分に乾燥し、窒素置換した後、スチレン185g、シクロヘキサン965gの溶液を仕込んだ。続いてn−ブチルリチウム6.30mmolに相当する量を濃度1.57Mのシクロヘキサン溶液の形で加えて重合を開始させた。温度50℃で2時間攪拌してスチレンを完全に反応させた後、イソプレン40g、シクロヘキサン80gの溶液を加えてさらに50℃で2時間反応させた。次いでスチレン179g、シクロヘキサン640gの溶液を加えさらに50℃で2時間反応させた。この後イソプロパノール2mLを加えて反応を停止させた。一部サンプリングした後、この共重合体溶液に、シクロヘキサン500g、メチル−t−ブチルエーテル700g、Ni/シリカ・アルミナ触媒(Ni担持量65重量%)80gを加え、水素圧9.81MPa(100kg/cm)、温度180℃で5時間水添反応を行った。常温に戻し窒素置換を充分行った後、溶液をオートクレーブより取り出して孔径0.1ミクロンのメンブランフィルター(住友電工(株)製「フルオロポア」)を用いて加圧濾過を行ったところ、無色透明な溶液が得られた。水素化前後の共重合体のH−NMR分析から、イソプレン成分含量が9.8重量%、芳香族環の水添率は99.9モル%、イソプレン成分の水添率は99モル%以上であることが分かった。このことから共役ジエン成分は実質的にすべて水素化されているとみなした。またこの水素化共重合体の濃度0.5g/dLのトルエン溶液中、30℃で測定した還元粘度ηsp/cは0.30dL/g、GPC測定による重量平均分子量Mwは65,000であった。これらの物性を表1に示す。
【0043】
(製造例2:低分子量の水素化スチレン−イソプレン共重合体Bの合成)
最初の仕込み量を、スチレン229g、シクロヘキサン1270gに、n−ブチルリチウムを6.85mmolに、次に加えるイソプレンを57g、シクロヘキサンを120gに、さらにその次に加えるスチレンを159g、シクロヘキサンを752gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の重合を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を表1に示す。なお製造例2〜6および比較例1、2においてはイソプレン成分の水添率はすべて99モル%以上であった。このことから共役ジエン成分は実質的にすべて水素化されているとみなした。
【0044】
(製造例3:低分子量の水素化スチレン−イソプレン共重合体Cの合成)
最初の仕込み量を、スチレン210g、シクロヘキサン1250gに、n−ブチルリチウムを7.00mmolに、次に加えるイソプレンを45g、シクロヘキサンを100gに、さらにその次に加えるスチレンを187g、シクロヘキサンを847gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の重合を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を表1に示す。
【0045】
(製造例4:高分子量の水素化スチレン−イソプレン共重合体Dの合成)
最初の仕込み量を、スチレン181g、シクロヘキサン1250gに、n−ブチルリチウムを2.00mmolに、次に加えるイソプレンを30g、シクロヘキサンを60gに、さらにその次に加えるスチレンを173g、シクロヘキサンを630gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の重合を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を表1に示す。
【0046】
(製造例5:高分子量の水素化スチレン−イソプレン共重合体Eの合成)
最初の仕込み量を、スチレン135g、シクロヘキサン1480gに、n−ブチルリチウムを1.30mmolに、次に加えるイソプレンを8g、シクロヘキサンを20gに、さらにその次に加えるスチレンを103g、シクロヘキサンを633gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の重合を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を表1に示す。
【0047】
(製造例6:高分子量の水素化スチレン−イソプレン共重合体Fの合成)
最初の仕込み量を、スチレン146g、シクロヘキサン1358gに、n−ブチルリチウムを1.55mmolに、次に加えるイソプレンを28g、シクロヘキサンを70gに、さらにその次に加えるスチレンを92g、シクロヘキサンを705gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の重合を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を表1に示す。
【0048】
【表1】

Figure 2004269548
【0049】
[実施例1]
製造例1で得られた低分子量の水素化スチレン−イソプレン共重合体Aの溶液と、製造例4で得られた高分子量の水素化スチレン−イソプレン共重合体Dの溶液とを、その共重合体の重量比がA/D=67/33となるように両者を混合し、安定剤として「スミライザーGS」(住友化学工業(株)社製)を全重合体に対して0.3重量%加えた。かかる混合溶液の減圧濃縮、フラッシングを行い溶媒を留去して塊状の無色透明な重合体を得た。該重合体のTgは137℃、温度300℃で測定した溶融粘度はシェアレート10−1で165Pa・s、シェアレート10−1で57Pa・sであった。次いでシリンダー温度300℃、金型温度70℃で射出成形を行い、物性測定用の各種成形物を得た。該成形により得られた厚み2mmの円板の全光線透過率は90.9%、ヘイズ値は1.5%であり、光学部品用材料として充分に透明性の高いものであった。またアイゾット衝撃試験により成形物の衝撃強度を測定したところ、1.3J/m(ノッチ付き)、5.5J/m(ノッチなし)であった。また熱変形温度(HDT)は102℃、3点曲げ試験方法により測定した曲げ弾性率は2.2GPaであった。これらの結果を表2に示す。
【0050】
[実施例2]
製造例2で得られた低分子量の水素化スチレン−イソプレン共重合体Bの溶液と、製造例5で得られた高分子量の水素化スチレン−イソプレン共重合体Eの溶液とを、その共重合体の重量比がB/E=70/30となるように両者を混合し、安定剤として「スミライザーGS」(住友化学工業(株)社製)を全重合体に対して0.3重量%加えた。かかる混合溶液の減圧濃縮、フラッシングを行い溶媒を留去して塊状の無色透明な重合体を得た。かかる重合体の物性および実施例1と同様にして成形した成形物の物性を表2に示した。
【0051】
[実施例3]
製造例3で得られた低分子量の水素化スチレン−イソプレン共重合体Cの溶液と、製造例6で得られた高分子量の水素化スチレン−イソプレン共重合体Fの溶液とを、その共重合体の重量比がC/F=70/30となるように両者を混合し、安定剤として「スミライザーGS」(住友化学工業(株)社製)を全重合体に対して0.3重量%加えた。かかる混合溶液の減圧濃縮、フラッシングを行い溶媒を留去して塊状の無色透明な重合体を得た。かかる重合体の物性および実施例1と同様にして成形した成形物の物性を表2に示した。
【0052】
[比較例1]
最初の仕込み量を、スチレン198g、シクロヘキサン1244gに、n−ブチルリチウムを6.77mmolに、次に加えるイソプレンを74gに、シクロヘキサンを150gに、さらにその次に加えるスチレンを148gに、シクロヘキサンを783gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の合成を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を第1表に示す。またこの溶液に安定剤として「スミライザーGS」(住友化学工業(株)社製)を重合体に対して0.3重量%加えた後、減圧濃縮、フラッシングを行い溶媒を留去して塊状の無色透明な重合体を得た。かかる重合体の物性および実施例1と同様にして成形した成形物の物性を表2に示した。
【0053】
該成形物の物性は、実施例の樹脂組成物の場合と同様に溶融粘度が低くしかも成形物の衝撃強度も高かったが、曲げ弾性率が1.5GPaと低く、反りや変形が起こりやすいものであった。
【0054】
[比較例2]
最初の仕込み量を、スチレン176g、シクロヘキサン1108gに、n−ブチルリチウムを6.59mmolに、次に加えるイソプレンを36gに、シクロヘキサンを80gに、さらにその次に加えるスチレンを152gに、シクロヘキサンを750gに変更した他は、製造例1と同様にして水素化スチレン−イソプレン共重合体の合成を行い、その共重合体のシクロヘキサン溶液を得た。得られた水素化共重合体の物性を第1表に示す。またこの溶液に安定剤として「スミライザーGS」(住友化学工業(株)社製)を重合体に対して0.3重量%加えた後、減圧濃縮、フラッシングを行い溶媒を留去して塊状の無色透明な重合体を得た。かかる重合体の物性および実施例1と同様にして成形した成形物の物性を第2表に示した。
【0055】
該成形物では、実施例の組成物の場合と同様に溶融粘度が低くまた成形物の曲げ弾性率も同程度であったが、衝撃強度が4.2J/mと低いため極めて脆く成形後の取り扱いが非常に困難なものであった。
【0056】
【表2】
Figure 2004269548
【0057】
【発明の効果】
本発明の低分子量成分と高分子量成分からなる水素化スチレン系ブロック共重合体組成物を用いることにより、透明性、耐熱性に優れるのみならず、溶融流動性が高くて靭性が高く、なおかつ弾性率の低下が小さいという特徴を持った材料を提供することが可能となる。かかる特徴から本発明の共重合体組成物は、高記録密度対応の光ディスク用基板材料として好適に用いることが出来る。[0001]
[Technical field to which the patent belongs]
The present invention relates to a composition using a hydrogenated styrene-based block copolymer. More specifically, the present invention relates to a copolymer composition suitable for an optical component having excellent transparency, mechanical strength, rigidity, heat resistance, and moldability, and particularly to a copolymer composition suitable for a substrate for an optical disk.
[0002]
[Prior art]
Plastics used for optical components such as optical disc substrates and optical lenses have various properties such as optical isotropy (low birefringence), dimensional stability, weather resistance, and thermal stability, in addition to transparency. Is required. Conventionally, polycarbonate or polymethyl methacrylate has been mainly used for these optical applications.However, polycarbonate has a large intrinsic birefringence and tends to cause optical anisotropy in molded products, and polymethyl methacrylate has a high water absorption. Are extremely high, so that dimensional stability is poor and heat resistance is low. At present, polycarbonate is exclusively used for optical disc substrates. In recent years, recording densities represented by the increase in capacity of magneto-optical recording disks (MOD), the development of digital video disks (DVD), and the development of blue lasers With the development of high density, there is a growing concern about the size of the birefringence of the polycarbonate and the warping of the disc due to moisture absorption.
[0003]
Under such circumstances, development of a polyolefin-based resin called amorphous polyolefin as an alternative material to polycarbonate has been active in recent years. As an example of these, hydrogenated polystyrene having a polyvinylcyclohexane structure by hydrogenating an aromatic ring of polystyrene by hydrogenation has been proposed (Japanese Patent Publication No. 7-140030 and the like). Such a resin has a great advantage that it can be produced at a lower cost than other amorphous polyolefins, but has a disadvantage that it is mechanically brittle. In order to improve this defect, styrene is used to block copolymerize styrene with a conjugated diene such as isoprene or butadiene, and a hydride of a styrene-conjugated diene block copolymer in which a so-called rubber component is introduced. Examples of use as a component material have been reported (Japanese Patent No. 2730053, Japanese Patent No. 2725402). Such a hydrogenated styrene-conjugated diene block copolymer has an effect of improving mechanical brittleness by introducing a certain amount of a rubber component, but as the amount of the rubber component increases, heat resistance and rigidity decrease. In addition, there is a fear that phase separation is caused by aggregation of the rubber component and transparency is reduced.
[0004]
In the field of optical discs, the recording density has been increasing in recent years, and in the molding of substrates, there is a tendency that requirements for transferability of a stamper shape as well as reduction of birefringence become more and more strict. Therefore, in the injection molding using polycarbonate, efforts are being made to increase the molding temperature or to reduce the molecular weight as much as possible to reduce the melt viscosity of the resin and increase the fluidity. However, in the case of a hydrogenated styrene-based polymer, generally, the heat resistance of the polymer is not essentially higher than that of polycarbonate, and thus there is a limit to increasing the molding temperature. On the other hand, if the molecular weight is too low, cracks and the like are likely to occur during molding. Since the toughness is improved by using the above hydrogenated styrene-conjugated diene block copolymer, it is possible to some extent to lower the molecular weight and increase the fluidity as compared with hydrogenated polystyrene.
[0005]
However, in general, the greater the amount of the conjugated diene component, the more effective the improvement in toughness, but the lower the elastic modulus of the molded product. In recent years, the rotation speed of an optical disk has been increasing more and more, and a resin having a high rigidity, that is, a resin having a high elastic modulus has been demanded due to problems such as warpage and deformation. It is difficult to introduce too much conjugated diene component in consideration of the required characteristic of the elastic modulus of this resin, and by increasing the conjugated diene component amount, the toughness is increased as much as possible, while the molecular weight is reduced to increase the melt flowability. There is a limit to this method.
[0006]
That is, when the hydrogenated styrene-conjugated diene block copolymer is used, it is possible to sufficiently increase the melt fluidity while maintaining the toughness of the molded product by sufficiently increasing the amount of the rubber component, that is, the conjugated diene component. In view of maintaining the elastic modulus of the polymer, a material suitable for an optical disk substrate has not yet been obtained.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a hydrogenated styrene-based polymer composition, and to provide a polymer composition that can meet the required characteristics as a material for an optical disk substrate, particularly a substrate for an optical disk having a high recording density. More specifically, to provide a polymer composition having characteristics such as higher melt fluidity, toughness, and a small decrease in elastic modulus as compared with a conventional hydrogenated styrene-conjugated diene block copolymer. It is in.
[0008]
[Means for Solving the Problems]
The present inventors have studied the hydrogenated polystyrene-based copolymer composition as a hydrogenated polystyrene-based copolymer composition by focusing on a blend of a low molecular weight component and a high molecular weight component. By appropriately combining the molecular weight of each of the high molecular weight components, the ratio of the conjugated diene component, and the blend ratio of the two within a certain range, the fluidity of the polymer is high, the impact strength is excellent, and the decrease in elastic modulus is small. It was found that a product was obtained, and the present invention was reached.
[0009]
That is, the present invention relates to all of the double bonds derived from the conjugated diene component in the styrene-conjugated diene block copolymer comprising 80 to 99% by weight of the styrene component and 20 to 1% by weight of the conjugated diene component, and aromatic compounds. A hydrogenated styrene block copolymer (a) having a weight average molecular weight of 40,000 to 100,000, which is a copolymer obtained by hydrogenating at least 90 mol% of rings, Hydrogenation of all the double bonds originating from the conjugated diene component in the styrene-conjugated diene block copolymer comprising from 1 to 99% by weight, and from 16 to 1% by weight of the conjugated diene component, and 90 mol% or more of the aromatic ring. Comprising a hydrogenated styrene-based block copolymer (b) having a weight average molecular weight of 200,000 to 600,000 A composition, the weight ratio (a) / (b) = 50 / 50~98 / 2 of hydrogenated polystyrene-based block copolymer composition characterized in that the range.
[0010]
The resin composition of the present invention is suitably used for optical components such as optical disc substrates.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The hydrogenated polystyrene-based block copolymer used in the present invention means that all the double bonds derived from the conjugated diene component in the block copolymer of styrene and the conjugated diene and 90 mol% of the aromatic ring are hydrogen. It is a thing. Styrene is used as one of the polymerization components, but other vinyl aromatic compounds such as α-methylstyrene, 4-methylstyrene, 2-methylstyrene, and vinylnaphthalene can be used in combination with styrene. A conjugated diene is used as the other of the copolymer components. Examples of the conjugated diene include isoprene, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. Of these, isoprene and 1,3-butadiene are preferred in view of polymerization activity and economy. These may be used alone or in combination of two or more.
[0012]
The present invention is characterized in that it is a composition of a low molecular weight hydrogenated styrene-based block copolymer and a high molecular weight hydrogenated styrene-based block copolymer.
[0013]
In the low molecular weight hydrogenated styrene-based block copolymer (a), the ratio of the conjugated diene component in the styrene-conjugated diene copolymer before hydrogenation is preferably in the range of 1 to 20% by weight. If it is less than 1% by weight, it is not possible to improve the properties relating to toughness such as impact resistance, and if it exceeds 20% by weight, the elastic modulus is greatly reduced, and the conjugated diene component is agglomerated and crystallization is likely to occur. It is not preferable because the property is lowered. More preferably, the conjugated diene component is 1 to 15% by weight. The weight average molecular weight (Mw) after hydrogenation is preferably from 40,000 to 100,000. Here, Mw represents a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC). If the Mw is lower than 40,000, it is difficult to maintain the toughness of the composition even when blended with a high molecular weight component, which is not preferable. It is not preferable because a product having high property cannot be obtained. More preferably, Mw is in the range of 50,000 to 90,000.
[0014]
In the high molecular weight hydrogenated styrene-based block copolymer (b), the ratio of the conjugated diene component in the styrene-conjugated diene copolymer before hydrogenation is preferably in the range of 1 to 16% by weight. It is preferable to increase the amount of the conjugated diene component in terms of toughness such as impact resistance, but if the conjugated diene component is large, the decrease in the elastic modulus is large as in the case of the low molecular weight copolymer, and the conjugated diene Agglomeration and crystallization of components increase the possibility of cloudiness. In a high molecular weight copolymer, even if the amount of the conjugated diene component is the same, the chain length of one conjugated diene component increases, so that the effect of improving the toughness by copolymerizing the conjugated diene component increases. The amount of the conjugated diene component is more preferably 2 to 15% by weight. Desirable molecular weight of the high molecular weight hydrogenated polystyrene-based block copolymer is in the range of 200,000 to 600,000 in weight average molecular weight (Mw), and more preferably in the range of 200,000 to 500,000. preferable. If Mw is less than 200,000, the effect of maintaining toughness is not sufficient when blended with a low molecular weight component, which is not preferable. If Mw is greater than 600,000, the melt viscosity becomes too high and the melt flow It is not preferable from the viewpoint of sex.
[0015]
The composition ratio of the polymer composition in the present invention is determined in consideration of the molecular weight of each of the low molecular weight copolymer (a) and the high molecular weight copolymer (b) and the amount of the conjugated diene component. a) / (b) = 50/50 to 98/2. If the low molecular weight copolymer component is less than this range, the melt fluidity becomes too high, which is not preferable. On the other hand, if it is too large, it becomes difficult to maintain toughness. A more preferred range is (a) / (b) = 60/40 to 90/10.
[0016]
Generally, the elastic modulus of a hydrogenated styrene-based block copolymer is more greatly affected by the amount of the conjugated diene component than by the molecular weight of the copolymer. In the present invention, the amount of the conjugated diene component in the whole copolymer composition is preferably 15% by weight or less, more preferably 12% by weight or less, further preferably 10% by weight or less from the viewpoint of the elastic modulus.
[0017]
There is no particular limitation on the method of blending the two components, and a known method such as melt-kneading the polymers isolated in advance by an extruder or the like, or mixing in a solution state and then removing the solvent may be used. I can do it.
[0018]
The styrene-conjugated diene block copolymer which is a copolymer before hydrogenation can be polymerized by a known method such as anionic polymerization using organolithium as an initiator.
[0019]
In such a polymerization method, the polymerization reaction is usually performed using a hydrocarbon solvent. Specifically, aliphatic hydrocarbons such as pentane, hexane, heptane, octane and decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane and cyclooctane; aromatic hydrocarbons such as benzene, toluene and xylene Can be mentioned. Among these hydrocarbon solvents, cyclohexane or methylcyclohexane is preferably used in terms of solubility and reactivity.
[0020]
In addition to the hydrocarbon solvent, a polar solvent may be used for the purpose of controlling the polymerization reaction, controlling the microstructure of the conjugated diene portion, and the like. Examples of such polar solvents include ethers such as tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, diethyl ether, methyl ethyl ether, and methyl-tert-butyl ether; amines such as triethylamine and tetraethylethylene diamine; and phosphines.
[0021]
As the anionic polymerization initiator used for the polymerization, an organic lithium compound is generally used, and specific examples thereof include ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, and the like. No. Among these, n-butyllithium or sec-butyllithium is preferably used from the viewpoint of availability and the ability to initiate a polymerization reaction. When an organic lithium compound is used, the polymerization temperature is usually in the range of -20C to 120C, preferably 10C to 100C. The polymerization must be performed in an inert atmosphere such as nitrogen or argon in order to prevent deactivation of the catalyst and the active terminal of the polymer during the polymerization. Although the polymerization reaction depends on the concentration and type of the initiator used, it is usually completed within several minutes to several hours, and a copolymer can be obtained quantitatively almost in accordance with the charged amount of the monomer.
[0022]
In such a polymerization step, the structure of the finally obtained copolymer differs depending on how styrene and the conjugated diene are copolymerized. In the present invention, a styrene-conjugated diene block copolymer having a tertiary copolymer structure of styrene-conjugated diene-styrene can be preferably used in view of excellent balance of mechanical properties of a molded product. Further, in the present invention, the rubber component in the molded product is not a so-called taper type in which each copolymer component is polymerized in a form mixed at its boundary, but a block copolymer in a form as completely separated as possible. Is preferable from the viewpoint of clarifying the phase separation structure and suppressing the decrease in heat resistance and elastic modulus. In order to form such a structure, styrene is first polymerized, then the conjugated diene and finally styrene may be added to the polymerization reaction system in that order, and in each polymerization step, the previously added monomer is almost completely added. It is desirable to add the next monomer after the reaction.
[0023]
The hydrogenation reaction may be performed after the copolymer after the polymerization reaction is once isolated, but can be performed in a solution state after the polymerization reaction, which is preferable from the economical viewpoint. The hydrogenation catalyst used in the present invention is not particularly limited, and a known catalyst capable of subjecting an aromatic ring to nuclear hydrogenation can be used. Specifically, a solid catalyst in which a noble metal such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium or a compound such as an oxide, salt, or complex thereof is supported on a porous carrier such as carbon, alumina, silica, and silica-alumina diatomaceous earth Is mentioned. Among them, those in which nickel, palladium, and platinum are supported on alumina, silica, and silica-alumina diatomaceous earth have high reactivity and are preferably used. Such a hydrogenation catalyst is preferably used in a range of 0.5 to 40% by weight based on the copolymer, depending on its catalytic activity.
[0024]
Hydrogenation reaction conditions are usually a hydrogen pressure of 2.94 to 24.5 MPa (30 to 250 kgf / cm 2 ), The reaction temperature is in the range of 70 to 250 ° C. When the reaction temperature is lower than 70 ° C., the reaction hardly proceeds, and when the reaction temperature is higher than 250 ° C., the molecular weight is liable to be reduced due to molecular chain scission. In order to prevent a decrease in molecular weight due to molecular chain breakage and to promote the reaction smoothly, the hydrogenation reaction is carried out at an appropriate temperature and hydrogen pressure appropriately determined by the type and concentration of the catalyst used, the solution concentration of the copolymer, the molecular weight, etc. Is preferably performed.
[0025]
As the solvent used in the hydrogenation reaction, it is preferable to select a solvent that does not become a catalyst poison of the hydrogenation catalyst, and a cycloaliphatic solvent used as a solvent in the polymerization reaction, a saturated aliphatic hydrocarbon solvent such as methylcyclohexane is preferably used. Can be mentioned. In addition, polar solvents such as ethers such as tetrahydrofuran, dioxane and methyl-tert-butyl ether; esters; alcohols and the like are used for the purpose of enhancing the activity of the reaction or suppressing the decrease in molecular weight due to molecular chain cleavage. It may be added to the above-mentioned solvent as long as the solubility of the union is not hindered. In the present invention, it is preferable to carry out the hydrogenation without isolating the copolymer in the solution state after the polymerization.Therefore, the hydrogenation is carried out as it is after the polymerization reaction, or in a solvent system to which a necessary polar solvent is further added. A preferred method is to carry out a chemical reaction.
[0026]
In the present invention, from the viewpoint of productivity, reactivity, and solution viscosity, it is preferable to carry out the hydrogenation reaction in the above solvent system at a copolymer concentration of 3 to 50% by weight.
[0027]
The above hydrogenation reaction is a so-called nuclear hydrogenation reaction, in which the double bond derived from the conjugated diene in the copolymer is completely hydrogenated, while the aromatic ring derived from styrene has a cyclohexane structure. The term "completely hydrogenated" as used herein means that the degree of hydrogenation is substantially 99 mol% or more. In the present invention, the degree of hydrogenation of the aromatic ring of such a copolymer is at least 90 mol%, preferably at least 98 mol%, more preferably at least 99 mol%. If the degree of hydrogenation is less than 90 mol%, there are problems such as a decrease in transparency, a decrease in heat resistance, and an increase in the birefringence of the molded product, which is not preferable. It is desirable that the hydrogenation rate is as high as possible, but in practice, it includes the physical properties of the hydrogenated copolymer obtained, and the equipment and operation aspects of the hydrogenation process required to achieve the hydrogenation rate. Determined in consideration of economics. The hydrogenation ratio can be calculated by a method such as NMR measurement.
[0028]
After completion of the hydrogenation reaction, the catalyst can be removed by a known post-treatment method such as centrifugation or filtration. In the present invention used for optical material applications, the residual catalyst metal component in the copolymer must be as small as possible so as not to adversely affect the physical properties, and the amount of the residual catalyst metal is preferably 10 ppm or less, more preferably 1 ppm or less. It is. From the polymer solution from which the hydrogenation catalyst has been removed, the target hydrogenated copolymer can be obtained by a method such as evaporation of the solvent, stripping or reprecipitation.
[0029]
The hydrogenated copolymer composition of the present invention has a hindered phenol type such as "Irganox 1010" or "Irganox 1076" (manufactured by Ciba Geigy Co., Ltd.) in order to improve thermal stability during melt molding. A partially acrylated polyhydric phenol represented by "SUMILIZER GS" and "SUMILIZER GM" (manufactured by Sumitomo Chemical Co., Ltd.); a phosphite system such as "Irgafos 168" (manufactured by Ciba Geigy). It is preferable to add a stabilizer represented by If necessary, release agents such as long-chain aliphatic alcohols and long-chain aliphatic esters, and other additives such as lubricants, plasticizers, ultraviolet absorbers, and antistatic agents can be added.
[0030]
The hydrogenated copolymer composition of the present invention can be molded by a known molding method such as injection molding, extrusion molding, and solution casting. In particular, it can be suitably used for manufacturing an optical disk substrate by injection molding. In molding such an optical disc substrate, injection molding is performed at a molding temperature of 270 to 350 ° C.
[0031]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to these examples.
[0032]
Solvents cyclohexane, methyl-tert-butyl ether, copolymer monomers styrene and isoprene were all purified by distillation and sufficiently dried. n-Butyllithium was purchased from Kanto Chemical Co., Ltd. at a concentration of 1.57 M in an n-hexane solution and used as it was. The Ni / silica-alumina catalyst (Ni loading 65% by weight) was purchased from Aldrich and used as it was.
[0033]
Various physical property measurements performed in Examples and Reference Examples were performed by the following methods.
1) Glass transition temperature (Tg): Measured at a rate of temperature rise of 20 ° C./min using Model 2920 DSC manufactured by TA Instruments.
[0034]
2) Reduced viscosity: reduced viscosity η of a 0.5 g / dL toluene solution at 30 ° C. sp / C was measured.
[0035]
3) Weight average molecular weight: Measured by gel permeation chromatography (GPC manufactured by Showa Denko KK, "Shodex System-11") using THF as a solvent, and the weight average molecular weight Mw in terms of polystyrene was determined.
[0036]
4) Hydrogenation rate: using a JEOL JNM-A-400 type nuclear magnetic resonance absorption apparatus, 1 It was quantified by 1 H-NMR measurement.
[0037]
5) Melt viscosity: Measured using a high-low type flow tester manufactured by Shimadzu Corporation. 2 s -1 And 10 3 s -1 Was calculated.
[0038]
6) Total light transmittance: an ultraviolet-visible spectrometer (UV-240) manufactured by Shimadzu Corporation was used.
[0039]
7) Haze value: An automatic digital haze meter UDH-20D manufactured by Nippon Denshoku Industries Co., Ltd. was used.
[0040]
8) Izod impact strength: A molded sample was subjected to an impact test with and without a notch using UF IMPACT TESTER manufactured by Kamishima Seisakusho in accordance with JIS K-7110.
[0041]
9) Heat distortion temperature (HDT): Load 181.3 N / cm according to JIS K-7207 2 Was measured.
10) Flexural modulus: Using UCT-1T manufactured by Orientec Co., Ltd., a three-point bending measurement was performed at a sample thickness of 3 mm, a sample width of 12 mm, an edge span width of 46 mm, and a crosshead speed of 2 mm / min.
[0042]
(Production Example 1: Synthesis of low molecular weight hydrogenated styrene-isoprene copolymer A)
After the inside of a stainless steel autoclave having a capacity of 10 L was sufficiently dried and purged with nitrogen, a solution of 185 g of styrene and 965 g of cyclohexane was charged. Subsequently, an amount corresponding to 6.30 mmol of n-butyllithium was added in the form of a 1.57M cyclohexane solution to initiate polymerization. After stirring at a temperature of 50 ° C. for 2 hours to completely react styrene, a solution of 40 g of isoprene and 80 g of cyclohexane was added, and further reacted at 50 ° C. for 2 hours. Next, a solution of 179 g of styrene and 640 g of cyclohexane was added, and the mixture was further reacted at 50 ° C. for 2 hours. Thereafter, 2 mL of isopropanol was added to stop the reaction. After partially sampling, 500 g of cyclohexane, 700 g of methyl-t-butyl ether, and 80 g of Ni / silica-alumina catalyst (65% by weight of Ni supported) were added to the copolymer solution, and a hydrogen pressure of 9.81 MPa (100 kg / cm) was added. 2 ) And a hydrogenation reaction was performed at a temperature of 180 ° C for 5 hours. After returning to room temperature and performing a sufficient amount of nitrogen substitution, the solution was taken out of the autoclave and subjected to pressure filtration using a membrane filter having a pore diameter of 0.1 μm (“Fluoropore” manufactured by Sumitomo Electric Industries, Ltd.). A solution was obtained. Before and after hydrogenation of the copolymer 1 From H-NMR analysis, it was found that the content of the isoprene component was 9.8% by weight, the hydrogenation ratio of the aromatic ring was 99.9 mol%, and the hydrogenation ratio of the isoprene component was 99 mol% or more. From this, it was considered that the conjugated diene component was substantially completely hydrogenated. The reduced viscosity η measured at 30 ° C. in a 0.5 g / dL toluene solution of the hydrogenated copolymer was measured. sp / C was 0.30 dL / g, and the weight average molecular weight Mw measured by GPC was 65,000. Table 1 shows these physical properties.
[0043]
(Production Example 2: Synthesis of low molecular weight hydrogenated styrene-isoprene copolymer B)
The initial charge was changed to 229 g of styrene, 1270 g of cyclohexane, 6.85 mmol of n-butyllithium, 57 g of isoprene to be added, 120 g of cyclohexane, 159 g of styrene to be added next, and 752 g of cyclohexane. Otherwise, the hydrogenated styrene-isoprene copolymer was polymerized in the same manner as in Production Example 1 to obtain a cyclohexane solution of the copolymer. Table 1 shows the physical properties of the obtained hydrogenated copolymer. In Production Examples 2 to 6 and Comparative Examples 1 and 2, the hydrogenation ratio of the isoprene component was all 99 mol% or more. From this, it was considered that the conjugated diene component was substantially all hydrogenated.
[0044]
(Production Example 3: Synthesis of low molecular weight hydrogenated styrene-isoprene copolymer C)
The initial charge was changed to 210 g of styrene, 1250 g of cyclohexane, 7.00 mmol of n-butyllithium, 45 g of isoprene to be added, 100 g of cyclohexane, 187 g of styrene to be added next, and 847 g of cyclohexane. Otherwise, the hydrogenated styrene-isoprene copolymer was polymerized in the same manner as in Production Example 1 to obtain a cyclohexane solution of the copolymer. Table 1 shows the physical properties of the obtained hydrogenated copolymer.
[0045]
(Production Example 4: Synthesis of high molecular weight hydrogenated styrene-isoprene copolymer D)
The initial charge amount was changed to 181 g of styrene, 1250 g of cyclohexane, 2.00 mmol of n-butyllithium, 30 g of isoprene to be added next, 60 g of cyclohexane, 173 g of styrene to be added next, and 630 g of cyclohexane to be added next. Otherwise, the hydrogenated styrene-isoprene copolymer was polymerized in the same manner as in Production Example 1 to obtain a cyclohexane solution of the copolymer. Table 1 shows the physical properties of the obtained hydrogenated copolymer.
[0046]
(Production Example 5: Synthesis of high molecular weight hydrogenated styrene-isoprene copolymer E)
The initial charging amount was changed to 135 g of styrene, 1480 g of cyclohexane, 1.30 mmol of n-butyllithium, 8 g of isoprene to be added next, 20 g of cyclohexane, 103 g of styrene to be added next, and 633 g of cyclohexane to be added next. Otherwise, the hydrogenated styrene-isoprene copolymer was polymerized in the same manner as in Production Example 1 to obtain a cyclohexane solution of the copolymer. Table 1 shows the physical properties of the obtained hydrogenated copolymer.
[0047]
(Production Example 6: Synthesis of high molecular weight hydrogenated styrene-isoprene copolymer F)
The initial charge amount was changed to 146 g of styrene and 1358 g of cyclohexane, 1.55 mmol of n-butyllithium, 28 g of isoprene to be added, 70 g of cyclohexane, 92 g of styrene to be added next, and 705 g of cyclohexane. Otherwise, the hydrogenated styrene-isoprene copolymer was polymerized in the same manner as in Production Example 1 to obtain a cyclohexane solution of the copolymer. Table 1 shows the physical properties of the obtained hydrogenated copolymer.
[0048]
[Table 1]
Figure 2004269548
[0049]
[Example 1]
The solution of the low molecular weight hydrogenated styrene-isoprene copolymer A obtained in Production Example 1 and the solution of the high molecular weight hydrogenated styrene-isoprene copolymer D obtained in Production Example 4 were copolymerized. The two were mixed so that the weight ratio of the coalesced was A / D = 67/33, and "Sumilyzer GS" (manufactured by Sumitomo Chemical Co., Ltd.) was used as a stabilizer in an amount of 0.3% by weight based on the whole polymer. added. The mixed solution was concentrated under reduced pressure and flushed, and the solvent was distilled off to obtain a massive colorless and transparent polymer. The Tg of the polymer was 137 ° C. and the melt viscosity measured at a temperature of 300 ° C. was a shear rate of 10. 2 s -1 165Pa · s, share rate 10 3 s -1 Was 57 Pa · s. Next, injection molding was performed at a cylinder temperature of 300 ° C. and a mold temperature of 70 ° C. to obtain various molded products for measuring physical properties. The disc having a thickness of 2 mm obtained by the molding had a total light transmittance of 90.9% and a haze value of 1.5%, and was sufficiently transparent as a material for optical parts. When the impact strength of the molded product was measured by an Izod impact test, it was 1.3 J / m. 2 (With notch) 5.5 J / m 2 (No notch). The heat distortion temperature (HDT) was 102 ° C., and the flexural modulus measured by a three-point bending test method was 2.2 GPa. Table 2 shows the results.
[0050]
[Example 2]
The solution of the low molecular weight hydrogenated styrene-isoprene copolymer B obtained in Production Example 2 and the solution of the high molecular weight hydrogenated styrene-isoprene copolymer E obtained in Production Example 5 were copolymerized. The two are mixed so that the weight ratio of the coalesced is B / E = 70/30, and “Sumilyzer GS” (manufactured by Sumitomo Chemical Co., Ltd.) as a stabilizer is added at 0.3% by weight based on the total polymer. added. The mixed solution was concentrated under reduced pressure and flushed, and the solvent was distilled off to obtain a massive colorless and transparent polymer. Table 2 shows the physical properties of such a polymer and the physical properties of a molded article molded in the same manner as in Example 1.
[0051]
[Example 3]
The solution of the low molecular weight hydrogenated styrene-isoprene copolymer C obtained in Production Example 3 and the solution of the high molecular weight hydrogenated styrene-isoprene copolymer F obtained in Production Example 6 were copolymerized. The two were mixed so that the weight ratio of the coalesced was C / F = 70/30, and "Sumilyzer GS" (manufactured by Sumitomo Chemical Co., Ltd.) was used as a stabilizer in an amount of 0.3% by weight based on the whole polymer. added. The mixed solution was concentrated under reduced pressure and flushed, and the solvent was distilled off to obtain a massive colorless and transparent polymer. Table 2 shows the physical properties of such a polymer and the physical properties of a molded article molded in the same manner as in Example 1.
[0052]
[Comparative Example 1]
The initial charge was 198 g of styrene, 1244 g of cyclohexane, 6.77 mmol of n-butyllithium, 74 g of isoprene to be added, 150 g of cyclohexane, 148 g of styrene to be added, and 783 g of cyclohexane. A hydrogenated styrene-isoprene copolymer was synthesized in the same manner as in Production Example 1 except for the change, and a cyclohexane solution of the copolymer was obtained. Table 1 shows the physical properties of the obtained hydrogenated copolymer. Further, "Sumilyzer GS" (manufactured by Sumitomo Chemical Co., Ltd.) as a stabilizer was added to the solution in an amount of 0.3% by weight based on the weight of the polymer. A colorless and transparent polymer was obtained. Table 2 shows the physical properties of such a polymer and the physical properties of a molded article molded in the same manner as in Example 1.
[0053]
The physical properties of the molded product were such that the melt viscosity was low and the impact strength of the molded product was high as in the case of the resin composition of the example, but the flexural modulus was low at 1.5 GPa and warpage and deformation were likely to occur. Met.
[0054]
[Comparative Example 2]
The initial charge was 176 g of styrene, 1108 g of cyclohexane, 6.59 mmol of n-butyllithium, 36 g of isoprene to be added, 80 g of cyclohexane, 152 g of styrene to be added, and 750 g of cyclohexane. A hydrogenated styrene-isoprene copolymer was synthesized in the same manner as in Production Example 1 except for the change, and a cyclohexane solution of the copolymer was obtained. Table 1 shows the physical properties of the obtained hydrogenated copolymer. Further, "Sumilyzer GS" (manufactured by Sumitomo Chemical Co., Ltd.) as a stabilizer was added to the solution in an amount of 0.3% by weight based on the weight of the polymer. A colorless and transparent polymer was obtained. Table 2 shows the physical properties of the polymer and the physical properties of a molded product molded in the same manner as in Example 1.
[0055]
As in the case of the composition of the example, the molded product had a low melt viscosity and the same flexural modulus as the molded product, but the impact strength was 4.2 J / m. 2 , It was very brittle and very difficult to handle after molding.
[0056]
[Table 2]
Figure 2004269548
[0057]
【The invention's effect】
By using the hydrogenated styrene-based block copolymer composition comprising a low molecular weight component and a high molecular weight component of the present invention, not only excellent transparency and heat resistance, but also high melt fluidity, high toughness, and elasticity It is possible to provide a material having a characteristic that the reduction in the rate is small. From such characteristics, the copolymer composition of the present invention can be suitably used as a substrate material for an optical disk compatible with a high recording density.

Claims (2)

スチレン成分が80〜99重量%、共役ジエン成分が20〜1重量%からなるスチレン−共役ジエンブロック共重合体中の共役ジエン成分に由来する二重結合のすべて、および芳香族環の90モル%以上を水素化して得られる共重合体であり、かつその重量平均分子量が40,000〜100,000である水素化ポリスチレン系ブロック共重合体(a)と、スチレン成分が84〜99重量%、共役ジエン成分が16〜1重量%からなるスチレン−共役ジエンブロック共重合体中の共役ジエン成分に由来する二重結合のすべて、および芳香族環の90モル%以上を水素化して得られる共重合体であり、かつその重量平均分子量が200,000〜600,000である水素化ポリスチレン系ブロック共重合体(b)とからなる共重合体組成物であって、その重量比が(a)/(b)=50/50〜98/2の範囲にあることを特徴とする水素化スチレン系ブロック共重合体組成物。All of the double bonds derived from the conjugated diene component in the styrene-conjugated diene block copolymer comprising 80 to 99% by weight of the styrene component and 20 to 1% by weight of the conjugated diene component, and 90% by mole of the aromatic ring A hydrogenated polystyrene-based block copolymer (a) having a weight average molecular weight of 40,000 to 100,000, which is a copolymer obtained by hydrogenating the above, and a styrene component of 84 to 99% by weight; All of the double bonds derived from the conjugated diene component in the styrene-conjugated diene block copolymer comprising 16 to 1% by weight of the conjugated diene component and a copolymer obtained by hydrogenating at least 90 mol% of the aromatic ring. A copolymer composition comprising a hydrogenated polystyrene-based block copolymer (b), which is a unified and has a weight average molecular weight of 200,000 to 600,000. There are a weight ratio (a) / (b) = 50 / 50~98 / 2 of hydrogenated styrenic block copolymer composition characterized in that the range. 請求項1に記載の共重合体組成物からなる光ディスク用基板。An optical disc substrate comprising the copolymer composition according to claim 1.
JP2000271396A 2000-09-07 2000-09-07 Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same Pending JP2004269548A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000271396A JP2004269548A (en) 2000-09-07 2000-09-07 Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same
AU2001282602A AU2001282602A1 (en) 2000-09-07 2001-09-03 Hydrogenated styrene block copolymer composition and optical disk substrate obtained therefrom
PCT/JP2001/007592 WO2002020662A1 (en) 2000-09-07 2001-09-03 Hydrogenated styrene block copolymer composition and optical disk substrate obtained therefrom
TW90122138A TW572963B (en) 2000-09-07 2001-09-06 Hydrogenated styrene block copolymer composition and optical disk substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000271396A JP2004269548A (en) 2000-09-07 2000-09-07 Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same

Publications (1)

Publication Number Publication Date
JP2004269548A true JP2004269548A (en) 2004-09-30

Family

ID=18757689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000271396A Pending JP2004269548A (en) 2000-09-07 2000-09-07 Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same

Country Status (4)

Country Link
JP (1) JP2004269548A (en)
AU (1) AU2001282602A1 (en)
TW (1) TW572963B (en)
WO (1) WO2002020662A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257301A (en) * 2005-03-17 2006-09-28 Jsr Corp Hydrogenated aromatic vinyl copolymer composition and molding thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725402B2 (en) * 1989-09-28 1998-03-11 三菱化学株式会社 Hydrogenated vinyl aromatic hydrocarbon polymer composition and optical disk substrate
JP2995884B2 (en) * 1991-03-18 1999-12-27 三菱化学株式会社 Hydrogenated vinyl aromatic hydrocarbon polymer composition and optical disk substrate
JP3994230B2 (en) * 1997-04-04 2007-10-17 Jsr株式会社 Hydrogenated block copolymer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257301A (en) * 2005-03-17 2006-09-28 Jsr Corp Hydrogenated aromatic vinyl copolymer composition and molding thereof
JP4525398B2 (en) * 2005-03-17 2010-08-18 Jsr株式会社 Hydrogenated aromatic vinyl copolymer composition and molded article thereof

Also Published As

Publication number Publication date
AU2001282602A1 (en) 2002-03-22
TW572963B (en) 2004-01-21
WO2002020662A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
US7064164B2 (en) Transparent styrol-butadiene block copolymer mixtures
WO2001023437A1 (en) Optical material comprising star-shaped hydrogenated polystyrene block copolymer, process for producing the same, and substrate for optical disk
JP2001163934A (en) Optical material comprising hydrogenated polystyrene block copolymer of star type branched structure, method for preparing the same and substrate for optical disk
JP3857234B2 (en) Improved hydrogenated styrene-conjugated diene-styrene block copolymer and process for producing the same
JP2725402B2 (en) Hydrogenated vinyl aromatic hydrocarbon polymer composition and optical disk substrate
JP2004269548A (en) Hydrogenated styrenic block copolymer composition and substrate for optical disk obtained using the same
JP2002060447A (en) Hydrogenated block copolymer of styrene based aromatic hydrocarbon and conjugate diene, its composition, and optical molding material
JP2002327010A (en) Hydrogenated styrenic block copolymer
JP2002212380A (en) Hydrogenated aromatic vinyl-based copolymer composition and substrate using the same and used for optical disk
JP2002201213A (en) Hydrogenated styrenic copolymer and optical material
JP2003002938A (en) Hydrogenated styrene multiblock copolymer
JP2002025108A (en) Optical disk substrate consisting of alicyclic polyolefin
JPWO2002057324A1 (en) Hydrogenated styrene polymer, method for producing the same, and molded product obtained therefrom
JP2008239861A (en) Hydrogenated styrenic resin composition
JP2002047311A (en) Hydrogenated styrene copolymer and optical material
JP2004149549A (en) Continuous method for producing hydrogenated styrene block copolymer
JP2002308927A (en) Hydrogenated styrene/conjugated diene copolymer and optical material
EP1441007A1 (en) Hydrogenated styrene polymer resin composition and optical elements
JP2002060448A (en) Hydrogenated block copolymer of styrene based aromatic hydrocarbon and conjugate diene, its composition, and optical molding material
JP2002047310A (en) Hydrogenated cyclic conjugated diene polymer and optical disk substrate
JP2001302816A (en) Hydrogenated polystyrene-based film and method for producing the same
JP2010047738A (en) Hydrogenated styrene-based polymer
JP2002234953A (en) Optical disc substrate
JP2002308923A (en) Isotactic polystyrene polymer, its hydrogenated product and their manufacturing methods
JP2001133736A (en) Spectacle lens and method for manufacturing the same